B.J.A. Tesis
URI permanente para esta colección
Navegar
Examinando B.J.A. Tesis por Autor "Borja Soto, Jerson Manuel"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Comportamiento asintótico del número de Frobenius para semigrupos numéricos asociados a sucesiones de la forma x_n = n^k(Universidad de Córdoba, 2024-08-22) Terán Meléndez, Jaider Enrique; Borja Soto, Jerson Manuel; Arias, Fabian; García Gutiérrez, Ismael; Pinedo Tapia, HéctorEn este trabajo estudiamos las familias de semigrupos numéricos S_{n,k} = {x_{n+j} = (n + j)^k | j ∈ N }= ⟨n^k, (n + 1)^k, (n + 2)^k, . . .⟩ definidos para todo entero n ≥ 1, donde k ≥ 2 es un entero fijo. Probamos que la dimensión de embebimiento, e(Sn,2), tiene comportamiento asintótico lineal; generalizamos el trabajo hecho por Alessio Moscariello (para k = 2) en [3] y también probamos que el número de Frobenius para S_{n,k} tiene comportamiento asintótico como O(n^(k+ϵ)). Además, planteamos conjeturas para el comportamiento asintótico de e(S_{n,k}) para k ≥ 3 y sobre la posibilidad de eliminar el ϵ en O(n^(k+ϵ)).Publicación Acceso abierto Semigrupos numéricos generados por sucesiones que satisfacen una recurrencia lineal homogénea(Universidad de Córdoba, 2024-09-15) Mieles Rivero, Deisy Del Carmen; Borja Soto, Jerson Manuel; Benitez Babilonia, Luis Enrique; Pineda Tapia, HéctorEn el presente trabajo se estudian semigrupos numéricos asociados a sucesiones que satisfacen una relación de recurrencia lineal, se determinan los conjuntos generadores minimales, dimensión de embebimiento y número de Frobenius, bajo algunas condiciones especiales sobre la recurrencia o los valores iniciales de la sucesión. En especial trabajamos con recurrencias de orden 2 y algunas de orden 3.