B.J. Maestría en Matemáticas
URI permanente para esta comunidad
Navegar
Examinando B.J. Maestría en Matemáticas por Autor "Borja Soto, Jerson Manuel"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Comportamiento asintótico del número de Frobenius para semigrupos numéricos asociados a sucesiones de la forma x_n = n^k(Universidad de Córdoba, 2024-08-22) Terán Meléndez, Jaider Enrique; Borja Soto, Jerson Manuel; Arias, Fabian; García Gutiérrez, Ismael; Pinedo Tapia, HéctorEn este trabajo estudiamos las familias de semigrupos numéricos S_{n,k} = {x_{n+j} = (n + j)^k | j ∈ N }= ⟨n^k, (n + 1)^k, (n + 2)^k, . . .⟩ definidos para todo entero n ≥ 1, donde k ≥ 2 es un entero fijo. Probamos que la dimensión de embebimiento, e(Sn,2), tiene comportamiento asintótico lineal; generalizamos el trabajo hecho por Alessio Moscariello (para k = 2) en [3] y también probamos que el número de Frobenius para S_{n,k} tiene comportamiento asintótico como O(n^(k+ϵ)). Además, planteamos conjeturas para el comportamiento asintótico de e(S_{n,k}) para k ≥ 3 y sobre la posibilidad de eliminar el ϵ en O(n^(k+ϵ)).Publicación Acceso abierto El problema de frobenius para semigrupos numéricos generados por colas de sucesiones de la forma ca^n − d.(2022-08-31) Rhenals Julio, Calixto José; Borja Soto, Jerson ManuelIn this work we address the general study of the submonoids Sn of N generated by the set {xk | k ≥ n}, where xn = can − d for all n ≥ 1, a, c and d are integers with a ≥ 2 and c > 0. Furthermore, for these submonoids we give a characterization of the embedding dimension, the Apéry set Ap(Sn, xn), and we use these results for the calculation of Frobenius number of Sn, under fairly general conditions, as well as other special elements associated with Sn.Publicación Acceso abierto Representación de enteros como imágenes de polinomios de la forma $x^k+y^{\ell}$ en $\mathbb Z_n$(Universidad de Córdoba, 2024-12-20) Cuadrado Chica, Mary Alejandra; Borja Soto, Jerson Manuel; Benitez Babilonia, Luis Enrique; Galeano Anaya, Hugo AlbertoPara un polinomio $f(x_1,\ldots, x_t)$ y un entero positivo $n$, definimos el conjunto $A_n$ formado por los enteros $a\in \{0,\ldots, n-1\}$ para los cuales la congruencia $f(x_1,\ldots, x_t)\equiv a\ ({\rm mod }\ n)$ tiene solución. Definimos $\alpha(n)$ como el cardinal de $A_n$ y resulta que $\alpha(n)$ es una función multiplicativa, por lo que el problema de calcular $\alpha(n)$ se reduce a encontrar $\alpha(p^k)$, donde $p$ es un número primo y $1\leq k\leq n$. En este trabajo desarrollamos un método para calcular $\alpha(p^k)$ para la función asociada a un tipo especial de polinomios que llamamos \textit{polinomios admisibles}. Luego aplicamos este método a polinomios de la forma $x^k+y^{\ell}$, para calcular de manera explícita la función $\alpha$.Publicación Acceso abierto Semigrupos numéricos generados por sucesiones que satisfacen una recurrencia lineal homogénea(Universidad de Córdoba, 2024-09-15) Mieles Rivero, Deisy Del Carmen; Borja Soto, Jerson Manuel; Benitez Babilonia, Luis Enrique; Pineda Tapia, HéctorEn el presente trabajo se estudian semigrupos numéricos asociados a sucesiones que satisfacen una relación de recurrencia lineal, se determinan los conjuntos generadores minimales, dimensión de embebimiento y número de Frobenius, bajo algunas condiciones especiales sobre la recurrencia o los valores iniciales de la sucesión. En especial trabajamos con recurrencias de orden 2 y algunas de orden 3.