Este trabajo está dedicado al análisis de un sistema acoplado de ecuaciones fraccionarias de Schrödinger en $R^n x R$, $n \geq 1$, con no linealidades polinómicas, considerando la variación fraccionaria del tiempo en el sentido de Caputo, y una dispersión espacial fraccionaria. Probamos la existencia de soluciones locales y globales mild, así como la estabilidad asintótica de las soluciones globales mild, con datos iniciales en una gran clase de espacios singulares, a saber, los espacios $L^p$ débiles. Como consecuencia, derivamos la existencia de soluciones locales y globales mild, la estabilidad asintótica de soluciones globales mild y la existencia de soluciones autosimilares para la ecuación de Schrödinger fraccionaria espacio-temporal en el marco de los espacios $L^p$ débiles.