Publicación: Existencia de soluciones para un sistema no lineal de ecuaciones de Schrödinger de orden fraccionario
dc.contributor.advisor | Banquet Brango, Carlos Alberto | spa |
dc.contributor.advisor | Villamizar Roa, Élder Jesús | spa |
dc.contributor.author | González Cavadía, Edilberto | |
dc.date.accessioned | 2022-09-02T01:49:40Z | |
dc.date.available | 2023-08-31 | |
dc.date.available | 2022-09-02T01:49:40Z | |
dc.date.issued | 2022-09-01 | |
dc.description.abstract | Este trabajo está dedicado al análisis de un sistema acoplado de ecuaciones fraccionarias de Schrödinger en $R^n x R$, $n \geq 1$, con no linealidades polinómicas, considerando la variación fraccionaria del tiempo en el sentido de Caputo, y una dispersión espacial fraccionaria. Probamos la existencia de soluciones locales y globales mild, así como la estabilidad asintótica de las soluciones globales mild, con datos iniciales en una gran clase de espacios singulares, a saber, los espacios $L^p$ débiles. Como consecuencia, derivamos la existencia de soluciones locales y globales mild, la estabilidad asintótica de soluciones globales mild y la existencia de soluciones autosimilares para la ecuación de Schrödinger fraccionaria espacio-temporal en el marco de los espacios $L^p$ débiles. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Matemáticas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | Declaración de Autoría..........................................................................V | spa |
dc.description.tableofcontents | Resumen........................................................................................................................IX | spa |
dc.description.tableofcontents | Agradecimientos..................................................................................................XIII | spa |
dc.description.tableofcontents | 1. PRELIMINARES...........................................................................................................7 | spa |
dc.description.tableofcontents | 1.1. Preliminares del cálculo integral...........................................................................7 | spa |
dc.description.tableofcontents | 1.2. Espacios $L^p$............................................................................................8 | spa |
dc.description.tableofcontents | 1.3. Espacios $L^p$ débiles..........................................................................9 | spa |
dc.description.tableofcontents | 1.4. Espacios de Lorentz......................................................................................13 | spa |
dc.description.tableofcontents | 1.5. Funciones de Mittag-Leffler.......................................................................16 | spa |
dc.description.tableofcontents | 2. CÁLCULO FRACCIONARIO.................................................................................19 | spa |
dc.description.tableofcontents | 2.1. Algunos antecedentes........................................................................................19 | spa |
dc.description.tableofcontents | 2.2. La integral fraccionaria de Riemann-Liouville..................................................20 | spa |
dc.description.tableofcontents | 2.3. La derivada fraccionaria de Riemann-Liouville.................................................24 | spa |
dc.description.tableofcontents | 2.4. La derivada fraccionaria de Caputo..........................................................................25 | spa |
dc.description.tableofcontents | 3. EXISTENCIA DE SOLUCIÓN GLOBAL, SOLUCIÓN LOCAL, SOLUCIONES AUTOSIMILARES Y ESTABILIDAD ASINTÓTICA........................................29 | spa |
dc.description.tableofcontents | 3.1. Formulación fraccionaria.................................................................................30 | spa |
dc.description.tableofcontents | 3.2. Estimativas de decaimiento temporal..........................................................30 | spa |
dc.description.tableofcontents | 3.3. Estimativas para las no linealidades..........................................................................33 | spa |
dc.description.tableofcontents | 3.4. Solución global en tiempo...................................................................................43 | spa |
dc.description.tableofcontents | 3.5. Solución local en tiempo.......................................................................................48 | spa |
dc.description.tableofcontents | 3.6. Estabilidad asintótica......................................................................................50 | spa |
dc.description.tableofcontents | 4. CONCLUSIONES..............................................................................................55 | spa |
dc.description.tableofcontents | Bibliografía.......................................................................................................................57 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6516 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Matemáticas | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Fractional schrödinger equations | eng |
dc.subject.keywords | Global solutions | eng |
dc.subject.keywords | Asymptotic stability | eng |
dc.subject.proposal | Ecuaciones de schrödinger fraccionarias | spa |
dc.subject.proposal | Soluciones globales | spa |
dc.subject.proposal | Estabilidad asintótica | spa |
dc.title | Existencia de soluciones para un sistema no lineal de ecuaciones de Schrödinger de orden fraccionario | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] N. Achar, B. Yale y J. Hanneken. «Time Fractional Schrodinger Equation Revisited ». En: Advances in Mathematical Physics 2013 (2013). | spa |
dcterms.references | [2] H. Amann y J. Escher. Analysis III. Birkhauser, Basel-Boston-Berlin. Vol. III, 2009. | spa |
dcterms.references | [3] C. Banquet, L. Ferreira y E. Villamizar. «On existence and scattering theory for the Klein–Gordon–Schrödinger system in an infinite $L^2$-norm setting». En: Annali di Matematica Pura ed Applicata 194 (2014). | spa |
dcterms.references | [4] A. Borisov, V. Kiselev y A. Raskovalov. «Small-amplitude three-dimensional structures in magnets». En: Low Temperature Physics 44 (2018), págs. 651-654. | spa |
dcterms.references | [5] L. Bronski, J. Carr y J. Kutz. Bose-Einstein Condensates in Standing Waves. 2001. | spa |
dcterms.references | [6] M. Caputo. «Linear Models of Dissipation whoseQis almost Frequency Independent- II». En: Geophysical Journal of the Royal Astronomical Society 13 (2007), págs. 529 -539. | spa |
dcterms.references | [7] J. Dudley et al. «Self-similarity in ultrafast nonlinear optics». En: Nature Physics 3 (2007), págs. 597-603. | spa |
dcterms.references | [8] L.C.F. Ferreira y E.J. Villamizar-Roa. «Self-similarity and asymptotic stability for coupled nonlinear Schrödinger equations in high dimensions». En: Physica D: Nonlinear Phenomena 241 (2012), págs. 534-542. | spa |
dcterms.references | [9] G. Fibich. The Nonlinear Schrödinger Equation. Vol. 192. Springer, 2015. | spa |
dcterms.references | [10] L. Grafakos. Classical Fourier Analysis. Springer, 2014. | spa |
dcterms.references | [11] R. Grande. «Space-Time Fractional Nonlinear Schrodinger Equation». En: SIAM Journal on Mathematical Analysis 51 (2019), págs. 4172-4212. | spa |
dcterms.references | [12] A. D Ionescu y F. Pusateri. «Nonlinear fractional Schrödinger equations in one dimension». En: Journal of Functional Analysis 266 (2014), págs. 139-176. | spa |
dcterms.references | [13] V. I. Karpman. «Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations». En: Phys. Rev. E 53 (1996), R1336-R1339. | spa |
dcterms.references | [14] V.I Karpman y A. Shagalov. «Stability of soliton described by nonlinear Schrödingertype equations with higher-order dispersion». En: Physica D: Nonlinear Phenomena 144 (2000), págs. 194-210. | spa |
dcterms.references | [15] A. Kilbas, H. Srivastava y J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, 2006. | spa |
dcterms.references | [16] Y. Kivshar, R. Sammut y A. Buryak. «Bright and dark solitary waves in the presence of third-harmonic generation». En: JOSA B 15 (1998), págs. 1488-1496. | spa |
dcterms.references | [17] E. Kreyszig. Introductory Functional Analysis with Applications. John Wiley & Sons, 1978. | spa |
dcterms.references | [18] N. Laskin. «Fractional quantum mechanics». En: Physical Review E 62.3 (2000), pág. 3135. | spa |
dcterms.references | [19] N. Laskin. «Fractional quantum mechanics and Lévy path integrals». En: Physics Letters A 268 (2000), págs. 298-305. | spa |
dcterms.references | [20] N. Laskin. «Fractional schrödinger equation». En: Physical Review E 66 (2002), pág. 056108. | spa |
dcterms.references | [21] C. Menuyk, R. Schiek y L. Torner. «Solitary waves due to chi (2): chi (2) cascading ». En: Journal of the Optical Society of America B 11 (1994), págs. 2434-2443. | spa |
dcterms.references | [22] J. Munkres. Analysis on Manifolds. Addison-Wesley Publishing Company, 1991. | spa |
dcterms.references | [23] M. Naber. «Time fractional Schrödinger equation». En: Journal of mathematical physics 45 (2004), págs. 3339-3352. | spa |
dcterms.references | [24] C. Neto y P. Mendes. Fractional differential equations: a novel study of local and global solutions in Banach spaces. 2013. | spa |
dcterms.references | [25] K. Oldham y J. Spanier. The fractional calculus. Theory and applications of differentiation and integration to arbitrary order. Elsevier, 1974. | spa |
dcterms.references | [26] I. Podlubny. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, 1998. | spa |
dcterms.references | [27] B. Ross. Fractional calculus and its applications. Proceedings of the international conference held at the University of New Haven, June 1974. Springer, 2006. | spa |
dcterms.references | [28] P. Braz e Silva, L.C.F. Ferreira y E.J. Villamizar-Roa. «On the existence of infinite energy solutions for nonlinear Schrodinger equations». En: arXiv e-prints (2007), arXiv:0711.3441. | spa |
dcterms.references | [29] S. Snoussi, S. Tayachi y F. Weissler. «Asymptotically self-similar global solutions of a general semilinear heat equation». En: Mathematische Annalen 321 (2001), págs. 131-155. | spa |
dcterms.references | [30] X. Su, S. Zhao y M. Li. «Dispersive estimates for time and space fractional Schrödinger equations». En: Mathematical Methods in the Applied Sciences 44 (2021). | spa |
dcterms.references | [31] X. Su, S. Zhao y M. Li. «Local well-posedness of semilinear space-time fractional Schrödinger equation». En: Journal of Mathematical Analysis and Applications 479 (2019). | spa |
dcterms.references | [32] O. Tasbozan. «Approximate Analytical Solutions of Fractional Coupled mKdV Equation by Homotopy Analysis Method». En: Open Journal of Applied Sciences 2 (2012), págs. 193-197. | spa |
dcterms.references | [33] E. J. Villamizar-Roa y C. Banquet. «On the Schrödinger equations with isotropic and anisotropic fourth-order dispersion». En: Electron. J. Differential Equations 2016 (2016), págs. 1-20. | spa |
dcterms.references | [34] A. Yew. «Multipulses of Nonlinearly Coupled Schrödinger Equations». En: Journal of Differential Equations 173 (1999), págs. 92-137. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: