Show simple item record

dc.contributor.advisorArias Ríos, Jorge Enrique
dc.contributor.advisorMontaño Castañeda, Mary Cecilia
dc.contributor.authorFurnieles Núñez, Héctor Javier
dc.date.accessioned2020-11-13T20:54:20Zspa
dc.date.available2020-11-13T20:54:20Zspa
dc.date.issued2020-11-13spa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3611spa
dc.description.abstractIn the taxonomy of angiosperm plants, floral characters have generally been preferred over vegetative characters, as evidenced in many of the classification, systems; however, these can vary significantly, making it difficult in some cases to identify plant species. Chemotaxonomy or chemosystematics, evaluates the presence of chemical compounds in plant species; the chemical aspect of the classification of plants is based on their constituents, that is, on their molecular characteristics; These, like morphological characteristics, are genetically controlled, but have the advantage over morphological ones, of being able to be described exactly in terms of defined structures and configurational chemical formulas. In this study, it was proposed to determine the presence of phenolic compounds (Flavonoids) in the foliar ethanolic extracts of the Ficus benjamina L; Ficus insipid Willd; Ficus elastica Roxb ex Hornem and Ficus bullenei I.M. Johnst species, in order to apply the comparative method of chemical structures and the existing taxonomic relationship between the investigated species, from the chemotaxonomic point of view. On the other hand, the antioxidant activity of the foliar ethanolic extracts of the species F. benjamina, F. insipida, F. elastica and F. bullenei was evaluated, using the methods DPPH• (2,2- Diphenyl-1picrilhidrazil), ABTS+• (Acid 2,2'-azino-bis (3-ethylbenzothiazoline-6 sulphonic)) and FRAP (Iron Reduction Antioxidant Potential). For this, a range of working concentrations between 1 and 6 mg / L was established for all extracts. The IC50 values determined by the DPPH• method were 5.4 mg/L, 4.8 mg/L, 2.4 mg/L and 3.9 mg/L, respectively. For the ABTS+• method, the IC50 values calculated were 2.9 mg/L, 2.8mg/L, 3.7mg/L and 3.0 mg/L, for each species respectively. For these two methods 6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid (Tolox) was used as a reference. The FRAP method was used with a concentration range between 1 and 5 mg/L. All the foliar ethanolic extracts evaluated presented iron reduction potential, the most active being the extract of the Ficus elastica species and the one with the lowest potential against the TPTZ complex, was the foliar EtOH extract of the F. bullenei species, compared to the substance of reference (Gallic acid).eng
dc.description.tableofcontents1. CAPITULO 1. EVALUACIÓN DEL CONTENIDO DE FLAVONOIDES COMO CRITERIO QUIMIOTAXONÓMICO DE LOS EXTRACTOS ETANÓLICOS FOLIARES DE CUATRO ESPECIES DEL GÉNERO Ficus L. (MORACEAE)...............................................3spa
dc.description.tableofcontents1.1. Introducción........................................................................................... 4spa
dc.description.tableofcontents1.2. Objetivos........................................................................................... 5spa
dc.description.tableofcontents1.2.1. General.................................................................. 5spa
dc.description.tableofcontents1.2.2. Específicos............................................................. 5spa
dc.description.tableofcontents1.3. Estado de arte........................................................................ 6spa
dc.description.tableofcontents1.3.1. Marco referencial.............................................................................. 6spa
dc.description.tableofcontents1.3.2. Marco teórico........................................................................ 7spa
dc.description.tableofcontents1.3.2.1. Género Ficus L....................................................................... 8spa
dc.description.tableofcontents Distribución y Filogenia................................................................. 8spa
dc.description.tableofcontents Biología reproductiva...................................................................... 10spa
dc.description.tableofcontents Divergencia y Diversificación............................................................................. 11spa
dc.description.tableofcontents1.3.2.2. Fitoquímica del género............................................................... 12spa
dc.description.tableofcontents Flavonoides............................................................................ 12spa
dc.description.tableofcontents Terpenos y/o esteroles.................................................................... 14spa
dc.description.tableofcontents Alcaloides.......................................................................... 15spa
dc.description.tableofcontents1.3.2.3. Quimiotaxonomía en plantas............................................................................ 15spa
dc.description.tableofcontents Origen biosintético de los Flavonoides.................................................... 17spa
dc.description.tableofcontents1.3.2.4. Técnicas de separación y análisis cromatográfico................................................ 18spa
dc.description.tableofcontents Cromatografía de capa fina o capa delgada (CCF o CCD, por sus siglas en inglés) y Cromatografía en columna (CC)....... 19spa
dc.description.tableofcontents Cromatografía de Gases (CG o GC, por sus siglas en inglés).......................................... 20spa
dc.description.tableofcontents Cromatografía Líquida de Alta Eficiencia (CLAE o HPLC, por sus siglas en inglés).................................. 21spa
dc.description.tableofcontents1.4. Materiales y métodos.......................................... 23spa
dc.description.tableofcontents1.4.1. Fase de campo....................................... 23spa
dc.description.tableofcontents1.4.1.1. Área de estudio................................. 23spa
dc.description.tableofcontents1.4.1.2. Recolección del material biológico................................. 24spa
dc.description.tableofcontents1.4.2. Fase de laboratorio................................ 25spa
dc.description.tableofcontents1.4.2.1. Preparación de los extractos etanólicos foliares...................... 25spa
dc.description.tableofcontents1.4.2.2. Tamizaje fitoquímico preliminar.................................... 25spa
dc.description.tableofcontents Pruebas para alcaloides............................. 26spa
dc.description.tableofcontents Pruebas para terpenos y/o esteroles............................ 26spa
dc.description.tableofcontents Pruebas para Flavonoides........................ 27spa
dc.description.tableofcontents Reacción de la Cianidrina (HCl + Mg)........................... 27spa
dc.description.tableofcontents Reacción con HCl concentrado.................... 27spa
dc.description.tableofcontents1.4.2.3. Fraccionamiento de extractos etanólicos foliares por partición................ 27spa
dc.description.tableofcontents1.4.2.4. Fraccionamiento Cromatográfico (Cromatografía en columna)........................ 28spa
dc.description.tableofcontents1.5. Resultados y discusión..................................... 29spa
dc.description.tableofcontents1.5.1. Obtención de los extractos etanólicos foliares....................... 29spa
dc.description.tableofcontents1.5.2. Tamizaje fitoquímico............................... 29spa
dc.description.tableofcontents1.5.3. Obtención de subextractos acetato de etilo por partición.......................... 33spa
dc.description.tableofcontents1.6. Conclusiones parciales................................. 38spa
dc.description.tableofcontents1.7. Recomendaciones................................. 38spa
dc.description.tableofcontents2. CAPITULO 2. EVALUACIÓN DE LA ACTIVIDAD ANTIOXIDANTE DE LOS EXTRACTOS ETANÓLICOS FOLIARES DE CUATRO ESPECIES DEL GÉNERO Ficus L. (MORACEAE) RECOLECTADAS EN PLANETA RICA, (CÓRDOBA-COLOMBIA)........... 39spa
dc.description.tableofcontents2.1. Introducción............................. 40spa
dc.description.tableofcontents2.2. Objetivos........................... 42spa
dc.description.tableofcontents2.2.1. General................................. 42spa
dc.description.tableofcontents2.2.2. Específicos................................... 42spa
dc.description.tableofcontents2.3. Estado de arte...................................... 43spa
dc.description.tableofcontents2.3.1. Marco referencial............................... 43spa
dc.description.tableofcontents2.3.2. Marco teórico........................................ 45spa
dc.description.tableofcontents2.3.2.1 Estrés oxidativo..................................... 45spa
dc.description.tableofcontents2.3.2.2. Actividad antioxidante..................................... 46spa
dc.description.tableofcontents2.3.2.3. Sistema de defensa antioxidante.............................. 49spa
dc.description.tableofcontents Sistema de defensa enzimático......................... 50spa
dc.description.tableofcontents Sistema de defensa no enzimático...................... 51spa
dc.description.tableofcontents2.4. Materiales y métodos.................................. 52spa
dc.description.tableofcontents2.4.1. Ensayos de actividad antioxidante................................. 52spa
dc.description.tableofcontents2.4.2. Preparación y activación de los radicales DPPH• y ABTS+•.......................... 52spa
dc.description.tableofcontents2.4.3. Determinación de la actividad antioxidante, métodos DPPH•, ABTS+• y FRAP............. 53spa
dc.description.tableofcontents2.4.4. Análisis estadístico................................. 55spa
dc.description.tableofcontents2.5. Resultados y discusión........................ 55spa
dc.description.tableofcontents2.5.1. Actividad antioxidante........................... 55spa
dc.description.tableofcontents2.5.2. Análisis estadísticos................................ 60spa
dc.description.tableofcontents2.6. Conclusión.................................. 62spa
dc.description.tableofcontents2.7. Recomendaciones............................ 62spa
dc.description.tableofcontents2.8. BIBLIOGRAFÍA........................................ 63spa
dc.description.tableofcontents2.9. ANEXOS.............................................. 78spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleEstudio quimiotaxonómico y evaluación de la actividad antioxidante de extractos etanólicos foliares de cuatro especies del género Ficus l. (moraceae), Planeta Rica (Córdoba- Colombia).spa
dc.typeTrabajo de grado - Pregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.relation.referencesAhsan, H., Ahad, A., Iqbal, J., & Siddiqui, W. A. (2014). Pharmacological potential of tocotrienols: a review. Nutrition & metabolism, 11-52.spa
dc.relation.referencesAleixandre-Tudo, J.L., & du Toit, W. (2019). The Role of UV-Visible Spectroscopy for Phenolic Compounds Quantification in Winemaking. DOI:http://dx.doi.org/10.5772/intechopen.79550.spa
dc.relation.referencesAldana, D. (2007). Detección y cuantificación de flavonoides en Polypodium triseriale Swartz, Phlebodium decumanum (Willd.) J. Sm. y Phlebodium pseudoaureum (Cav.) Lellinger: tres especies de calahuala nativas de Guatemala.spa
dc.relation.referencesAl-Rubaye, A., Hameed, H., & Kadhim, M. (2017). A Review: Uses of Gas Chromatography-Mass Spectrometry (GC-MS) Technique for Analysis of Bioactive Natural Compounds of Some Plants. Int. J. Pharmacol. Res, 81- 85.spa
dc.relation.referencesAl-Snafi, A. (2017). Pharmacology of Ficus religiosa- A review. IOSR J. Pharm, 49-60spa
dc.relation.referencesAmorati, R., & Valgimigli, L. (2012). Modulation of the antioxidant activity of phenols by non-covalent interactions. Org. Biomol. Chem., 4147–4158.spa
dc.relation.referencesAnandjiwala, S., Bagul, M. S., Parabia, M., & Rajani, M. (2008). Evaluation of Free Radical Scavenging Activity of an Ayurvedic Formulation, Panchvalkala. Indian J. Pharm. Sci, 31–35.spa
dc.relation.referencesAndersen, O., & Markham, K. (2006). Flavonoids: chemistry, biochemistry and applications. London: Taylor & Francis.spa
dc.relation.referencesAnkanna, S., Suhrulatha, D., & Savithramma, N. (2012). Chemotaxonomical studies of some important monocotyledons. BRI, 90-96.spa
dc.relation.referencesAPG, IV. (2016). Distribución de la familia Moraceae. Disponible en: http://www.mobot.org/MOBOT/research/APweb/spa
dc.relation.referencesAswar, M., Urmila, A., Watkar, B., Vyas, M., Wagh, A., & Gujar, K. (2008). Anthelmintic activity of Ficus benghalensis. Int. J. Green Pharm, 170 - 172.spa
dc.relation.referencesAttia, M., Essa, E., Zaki, R., & Elkordy, A. (2020). An Overview of the Antioxidant Effects of Ascorbic Acid and Alpha Lipoic Acid (in Liposomal Forms) as Adjuvant in Cancer Treatment. Antioxidants, 1 - 15.spa
dc.relation.referencesBartosz, G. (2003). Second face of oxygen. Fre radicals in nature. Wydawnictwo Naukowe PWN, Warszawa [book in polish].spa
dc.relation.referencesBehera, B., Verma, N., Sonone, A., & Makhija, U. (2008). Antioxidant and antibacterial properties of some cultured lichenes. Bioresour. Technol, 776 - 784.spa
dc.relation.referencesBenzie, I., & Siu-Wai, C. (2014). Antioxidants in Food: Content, Measurement, Significance, Action, Cautions, Caveats, and Research Needs. Adv Food Nutr Res., 1-53. doi:https://doi.org/10.1016/B978-0-12-800270-4.00001-8spa
dc.relation.referencesBerg, C., & Corner, E. (2005.). Flora Malesiana. Series I, Seed plants. , Part 2: Moraceae (Ficus). (Vol. Volumen 17). (C. C. Berg, E. J. Corner, & H. P. Nooteboom, Edits.) Leiden, Netherlands.spa
dc.relation.referencesBoligon, A., & Linde, M. (2014). Importance of HPLC in Analysis of Plants Extracts. Austin Chromatography, 1 - 2.spa
dc.relation.referencesBonkanka, C. (2006). Evolucion farmacologica de terpenos y flavonoides de origen vegetal. Cajacanarias, España.spa
dc.relation.referencesBravo, A.V & Acuña, W.D (2015). Evaluación fitoquímica y determinación de flavonoides en hojas de Ficus benjamina L. Xilema vol. 28, 61 - 67.spa
dc.relation.referencesBristi, N. J., Alam, M., & Rafiquzzaman, M. (2013). “Review on in vivo and in vitro methods evaluation of antioxidant activity”. Saudi. Pharm. J, 143-152.spa
dc.relation.referencesBruun-Lund, S., Clement, W., Kjellberg, F., & Rønsted, N. (2017). First plastid phylogenomic study reveals potential cyto-nuclear discordance in the evolutionary history of Ficus L. (Moraceae). Mol. Phylogenetics Evol, 93 - 104. doi:https://doi.org/10.1016/j.ympev.2016.12.031spa
dc.relation.referencesCalvi, S. (2013). Diversidad y distribucion de la familia moraceae en los bosques de la region madidi, la paz – bolivia. Tesis de Grado presentado como requisito parcial para optar al título de Licenciado en Ciencias Biológicas, Universidad mayor de san andres, facultad de ciencias puras y naturales, la paz. Disponible en: http://www.missouribotanicalgarden.org/Portals/0/Portal/0/Science%20and%20conservation/themadidiproject/publications/Calvi_2013_Thesis.pdfspa
dc.relation.referencesCardona-Peña, V., Fuentes, A., & Cayola, L. (2005). Las Moraceaes de la region de Madidi - Bolivia. Ecología en Bolivia, 212 - 264.spa
dc.relation.referencesCaritá, A., Fonseca-Santos, B., Shultz, J., Michniak-Kohn, B., Chorilli, M., & Leonardi, G. (2020). Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomed. Nanotechnol. Biol. Med, 102-117.spa
dc.relation.referencesCartaya, O., & Reynaldo, I. (2001). Flavonoides: Características químicas y aplicaciones. Disponible en: https://www.redalyc.org/articulo.oa?id=1932/193215009001.spa
dc.relation.referencesChambial, S., Dwivedi, S., Shukla, K., John, P., & Sharma, P. (2013). Vitamin C in disease prevention and cure: An overview. Indian J. Clin. Biochem, 314 - 328.spa
dc.relation.referencesChantarasuwan, B., Berg, C., Kjellberg, F., Ronsted, N., García, M., Baider, C., & Van Welzen, P. (2015). A new classification of Ficus subsection Urostigma (Moreaceae) based on four nuclear DNA markers(ITS,ETS,G3pdh and ncpGS), morfology and leaf anatomy. Journal.pone.0128289.spa
dc.relation.referencesChen, X., Wu, X., Chai, W., Feng, H., Shi, Y., Zhou, H., & Chen, Q. (2013). Optimization of extraction of phenolics from leaves of Ficus virens. J. Zhejiang Univ. Sci. B, 903-915.spa
dc.relation.referencesChen, Y., Xiao, H., Zheng, J., & Liang, G. (2015). Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: An experimental and theoretical evaluation. PLoS ONE, 1-20.spa
dc.relation.referencesChiang, Y. J. (2005). Cytotoxic triterpenes from the aerial roots of Ficus micricarpa. Phytochemistry, 495 - 501.spa
dc.relation.referencesChiuman, L., & Sutanto, N. (2020). a healthier antioxidants-rich food with vitamin c and e. IJGHR, 111-116.spa
dc.relation.referencesClaustrat, B. (2020). Mélatonine : aspects biochimiques, physiologiques et pharmacologiques en relation avec les phénomènes rythmiques et le sommeil. Medicine du sommeil, 1-18. doi:https://doi.org/10.1016/j.msom.2019.12.187spa
dc.relation.referencesClement, W. L., & Weiblen, G. D. (2009). Morphological evolution in the mulberry family (Moraceae). Syst. Bot., 530-552. doi:https://doi.org/10.1600/036364409789271155spa
dc.relation.referencesClement, W., Buuun-Lund, S., Cohen, A., Kjellberg, F., Weiblen, G., & Rønsted, N. (2020). Evolution and classification of figs (Ficus, Moraceae) and their close relatives (Castilleae) united by involucral bracts. Bot. J. Linn. Soc, 1–24. doi:https://doi.org/10.1093/botlinnean/boaa022spa
dc.relation.referencesCook, J., & Rasplus, J.-Y. (2003). Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol. Evol, 241 - 248. doi:https://doi.org/10.1016/S0169-5347(03)00062-4spa
dc.relation.referencesCorrales, L., & Muñoz Ariza, M. (2012). Estrés oxidativo: origen, evolución y consecuencias de la toxicidad del oxígeno. NOVA., 10, 18.spa
dc.relation.referencesCoskun, O. (2016). Separation techniques: Chromatography. North Clin Istanbul, 156–60. doi:doi: 10.14744/nci.2016.32757spa
dc.relation.referencesCosta, P., Lorenz-Lemke, A. P., Furnini, P. R., Honorio Coronado, E. N., Kjellberg, F., & Pereia, R. A. (2017). The phylogeography of two disjunct Neotropical Ficus (Moraceae) speciesreveals contrasted histories between the Amazon and the Atlantic Forests. Botanical Bot. J. Linn. Soc, 272–289. doi:https://doi.org/10.1093/botlinnean/box056spa
dc.relation.referencesCruaud, A., Ronsted, N., CHantarasuwan, B., Chou, L., Clement, W., Couloux, A., . . . Lopez-Vaamonde, C. Y. (2012). An Extreme Case of Plant–Insect Codiversification: Figs and Fig-Pollinating Wasps. Syst. Biol, 1029–1047. doi:https://doi.org/10.1093/sysbio/sys068spa
dc.relation.referencesCruaud, A., Ronsted, N., Chantarasuwan, B., Chou, L., Clement, W., Couloux, A., . . . Yodpintanee, A. (2012b). An extreme case of plant-insect codiversification: Figs and fig-pollinating wasps. Syst. Biol., 1029 - 1047.spa
dc.relation.referencesDamu, A., Kuo, P., Shi, L., Li, C., Su, C., & Wu, T. (2009). Cytotoxic phenanthroindolizidine alkaloids from the roots of Ficus septica. Planta Med. 1152-1156.spa
dc.relation.referencesDatwyler, S., & Weiblen, G. (2004). On the origin of the Fig: Phylogenetic Relationships of Moraceae from ndhF Sequences. Am. J. Bot, 91(5): 767 - 777.spa
dc.relation.referencesDayrat, B. (2005). Towards integrative taxonomy. . Biol. J. Linn. Soc., 407-415.spa
dc.relation.referencesDe la Ossa, T. J. (2017). Estudio químico y evaluación de las actividades antioxidante y antibacteriana del extracto etanólico de la madera de oxandra longipetala (annonaceae),. Montería - Colombia: Universidad de Córdoba, facultad de ciencias básicas, departamento de química.spa
dc.relation.referencesDelgado Olivares, L., Betanzos Cabrera, G., & Sumaya Martínez, M. T. (2010). Importancia de los antioxidantes dietarios en la disminución del estrés oxidative Investigación y Ciencia. Aguascalientes-Méxicospa
dc.relation.referencesEl-Fishawy, A., Zayed, R., & Afifi, S. (2011). Phytochemical and pharmacological studies of Ficus auriculata Lour. J. Nat. Prod, 184-195.spa
dc.relation.referencesFranco, M. (2010). Soroceaxylon entrerriensis gen. et n. sp. nov. (Moraceae) de la formación Ituzaingó (Plioceno-Pleistoceno), Cuenca del río Paraná, Argentina. Rev Mex Cienc Geol, 508 - 519.spa
dc.relation.referencesGarcía, J. (2014). “Estudio químico, actividad antioxidante y bactericida de los extractos y subextractos de las hojas y corteza de Oxandra Xylopioides (Annonaceae)”. Montería .spa
dc.relation.referencesGarcia, K. (2015). Caracterización química de los flavonoides presentes en ficus citrifolia mill. reporte, universidad politécnica salesiana sede quito, ingeniería en biotecnologia de los recursos naturales, Quito, Ecuador.spa
dc.relation.referencesGarcía-Alvarado, K. (2015). Caracterización química de los flavonoides presentes en ficus citrifolia mill. tesis para obtar el titulo de ingeniera en biotecnología de los recursos naturales, universidad politécnica salesiana sede quito, ingeniería en biotecnologia de los recursos naturales, Quito.spa
dc.relation.referencesGentry, A. (1993). A field guide to the familiy and genera of woody plants of Northwest South America with supplementary notes on herbaceous taxa. Washington: Conservation International.spa
dc.relation.referencesghodaro, O., & Akinloye, O. (2017). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med, 1-7. doi:https://doi.org/10.1016/j.ajme.2017.09.001spa
dc.relation.referencesGill, S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance crop plants. Plant Physiol Biochem, 909-930.spa
dc.relation.referencesGinting, C., Lister, I., Girsang, E., Riastawati, D., Kusuma, H., & Widowati, W. (2020). Antioxidant Activities of Ficus elastica Leaves Ethanol Extract and Its Compounds. Mol Cell Biomed Sci., 27-33. doi:10.21705/mcbs.v4i1.86spa
dc.relation.referencesGiraldo, Q., Bernal, L., Robayo, M. A., Lobo, P., & Molano, G. L. (2015). Traditional use of medicinal plants in markets from Bogotá, D.C. NOVA, 73-80.spa
dc.relation.referencesGreenham, J. G. (2007). Intra- and interspecific variations in vacuolar flavonoids among Ficus species from the Budongo Forest, Uganda. Biochem. Syst. Ecol, 81- 90.spa
dc.relation.referencesGrison-Pige, L., Hossaert-McKey, M., Greef, J., & Jean-Marie, B. (2002). Fig volatile compounds—a first comparative study. Phytochemistry, 61–71. doi:https://doi.org/10.1016/S0031-9422(02)00213-3spa
dc.relation.referencesGulcin, I. (2020). Antioxidants and antioxidant methods: an updated overview. Arch. Toxicol, 1-65. doi:https://doi.org/10.1007/s00204-020-02689-3spa
dc.relation.referencesGupta, N., & Jain, U. K. (2010). Prominent wound healing properties of indigenous medicines. Journal of Natural Pharmaceuticals, 2-13.spa
dc.relation.referencesGuzmán, M. (2014). Contribución Al Estudio Químico Y Bioprospección De Organismos Marinos Del Caribe Cordobés. Montería.spa
dc.relation.referencesHarrison, R. (2005). Figs and the Diversity of Tropical Rainforests. BioScience, 1053-1064. doi:https://doi.org/10.1641/0006-3568(2005)055[1053:FATDOT]2.0.CO;2spa
dc.relation.referencesHernandez, O., Zepeda, J., & Negron, A. (2015). Lecturas de Apoyo Para Comprender Mejor La Química. Ciudad de México.: 1st ed. (Muñoz V, ed.). Mexico, Distrito Federal.spa
dc.relation.referencesHerre, E., & Jander, K. (2008). Ecologia evolutiva de los higos y sus asociados: avances recientes y acertijos sobresalientes. Califormia: Machado California.spa
dc.relation.referencesHerre, E., Machado, C., Bermingham, E., Nason, J., Windsor, D., Mccafferty, S., . . . Bachman, K. (1996). Molecular phylogenies of figs and their pollinator wasps. J. Biogeogr, 521-530. doi:https://doi.org/10.1111/j.1365-2699.1996.tb00014.xspa
dc.relation.referencesHerrera, Z., & Moreno, Z. (2019). Caracterización química y actividad antihelmíntica del extracto metanólico de las hojas y del látex de ficus insípida willd frente ascaris lumbricoides. tesis para optar el título profesional de químico farmacéutico, universidad interamericana , facultad de ciencias de la salud, carrera profesional de farmacia y bioquímica., Lima-Perú. Recuperado el 25 de Agosto de 2020, de http://repositorio.unid.edu.pe/bitstream/handle/unid/48/12%20HERRERA%20HURTADO%20y%20MORENO%20FLORES.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesHidalgo, L., Sánchez, I., & Martínez S, I. M. (2018). Oxidative stress reference parameters standardization. Rev. Cuba. de Medicina Mil, 127-132.spa
dc.relation.referencesHonorio Coronado, E., Dexter, K., Poelchau, M., Hollingsworth, P., Phillips, O., & Pennington, R. (2014). Ficus insipida subsp. insipida (Moraceae) reveals the role of ecology in the phylogeography of widespread. J. Biogeogr, 1697–1709. doi:https://doi.org/10.1111/jbi.12326spa
dc.relation.referencesHung, P., & Morita, N. (2008). Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chem, 325–331. doi:https://doi.org/10.1016/j.foodchem.2007.12.060spa
dc.relation.referencesIgnat, I. I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. . Food Chem, 126: 1821-1835.spa
dc.relation.referencesImran, M., Rasool, N., Rizwan, K., Zubair, M., Riaz, M., Zia-Ul-Haq, M., . . . ZE Jaafar, H. (2014). Chemical composition and Biological studies of Ficus benjamina. Chem. Cent. J., 8 - 12. doi:doi:10.1186/1752-153x-8-12spa
dc.relation.referencesIngle, K., Deshmukh, A., Padole, D., Dudhare, M., Moharil, M., & Khelurkar, V. (2017). Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. J. Pharmacogn. Phytochem, 32-36.spa
dc.relation.referencesIvanov, I., Dincheva, I., Badjakov, I., Petkova, N., Denev, P., & Pavlov, A. (2018). GC-MS analysis of unpolar fraction from Ficus carica L. (fig) leaves. Int. Food Res, 282-286.spa
dc.relation.referencesJakubczyk, K., Kaldunska, J., Dec, K., Kawczuga, D., & Janda, K. (2020). Antioxidant properties of small-molecule non-enzymatic compounds. Pol. Med. J, 128–132. Obtenido de http://medpress.com.pl/shopspa
dc.relation.referencesJeong, M., Kim, H., & Cha, J. (2009). Antimicrobial activity of methanol extract from Ficus carica leaves against oral bacteria. J. Bacteriol. Res., 97-102.spa
dc.relation.referencesJimenez, I., Speisky, C., & Noran, C. (2000). Radicales libres y antioxidantes en la prevención de enfermedades: II mecanismo de defensa antioxidantes. ReuChilNutr, 210-9.spa
dc.relation.referencesJohnson, F., & Giulivi, C. (2005). Superoxide dismutases and their impact upon human health. Mol Aspects Med, 340-352.spa
dc.relation.referencesJousselin, E., Rasplus, J.-Y., & Kjellberg, F. (2003). Convergence and Coevolution in a mutualism: Evidence from a molecular phylogeny of Ficus. Evolution.spa
dc.relation.referencesKanaujia, V., Irchhaiya, R., Yadav, R., Jaiswal, M., Bharti, J., Kailasiya, D., & Verma, M. (2012). In vitro and in vivo antioxidant activity on the leaves of Ficus benjamina linn. Int. J. Pharm. Sci. Res, 2029 - 2048.spa
dc.relation.referencesKhadangi, F., & Azzi, A. (2019). Vitamin E–The Next 100 Years. . IUBMB life, 411- 415.spa
dc.relation.referencesKhoddami, A., Wilkes, M., & Roberts, T. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 2328-2375. doi:10.3390/molecules18022328spa
dc.relation.referencesKjellberg, F., Jousselin, E., Bronstein, J., Patel, A., Yokoyama, J., & Rasplus, J.-Y. (2001). Pollination mode in fig wasps: the predictive power of correlated traits. Proc R Soc Lond B: Biological Sciences, 1113 - 1121. doi:https://doi.org/10.1098/rspb.2001.1633spa
dc.relation.referencesLee, J., Giordano, S., & Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J, 523–540.spa
dc.relation.referencesLobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev, 118-126. doi:doi: 10.4103/0973-7847.70902spa
dc.relation.referencesLópez Sánchez, M. T. (2005). Métodos físicos de separación y purificación de sustancias orgánicas. Gran Canaria, España.spa
dc.relation.referencesLopez-Vaamonde, C., Wikstrom, N., Kjer, K., Weiblen, G., Rasplus, J., Machado, C., & Cook, J. (2009). Molecular dating and biogeography of fig-pollinating wasps. Molec. Phyl. Evol., 715 - 727.spa
dc.relation.referencesLopez-Vaamonde, C., Wikstrom, N., Kjer, K., Weiblen, G., Rasplus, J., Machado, C., & Cook, J. (2009). Molecular dating and biogeography of fig-pollinating wasps. Molec. Phyl. Evol., 715 - 727.spa
dc.relation.referencesMachado da Costa, F., Klein, D. E., Philbrick, C. T., & Bove, C. P. (2018). Silica bodies in leaves of Neotropical Podostemaceae: Taxonomic and phylogenteic perspectives. Ann. Bot., 122: 1187-1201.spa
dc.relation.referencesMaizatul, H., Mullen, W., & Crozier, A. (2011). Identification of Proanthocyanidin Dimers and Trimers, Flavone C-Glycosides, and Antioxidants in Ficus deltoidea, a Malaysian Herbal Tea. J Agr Food Chem,1363–1369. doi:https://doi.org/10.1021/jf1032729spa
dc.relation.referencesMakhija, I., Sharma, I., & Khamar, D. (2010). Phytochemistry and Pharmacological properties of Ficus religiosa: an overview . Ann. Biol. Res, 171-180 .spa
dc.relation.referencesMariajancyrani, J., Chandramohan, G., Brindha, P., & Saravanan, P. (2014). GC-MS Analysis of Terpenes from Hexane Extract of Lantana camara Leaves. Int. J. Adv. Pharm., Biol. Chem., 37 - 41.spa
dc.relation.referencesMarquez, M. G. (2011). Capacidad antioxidante y caracterización estructural de las antocianinas de los frutos rojos de Prunus domestica L., Ficus carica L. y Vitisvinifera L. cv" red globe" cultivados en Perú.spa
dc.relation.referencesMartinez, A. (2005). Flavonoides. Medellin, Colombia. Obtenido de Flavonoides. Medellin, Colombia: http://farmacia.udea.edu.co/~ff/flavonoides2001.spa
dc.relation.referencesMbosso, E., Nguedia, J., Meyer, F., Lenta, B., Ngouela, S., Lallemand, B., Wintjens, R. (2012). Ceramide, cerebroside and triterpenoid saponin from the bark of aerial roots of Ficus elastica (Moraceae). Phytochemistry, 95–103.spa
dc.relation.referencesMisbah, H., Aziz, A., & Aminudin, N. (2013). Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complement Alternative Medicine, 118. doi:https://doi.org/10.1186/1472-6882-13-118spa
dc.relation.referencesMittal, A., Sardana, S., & Pandey, A. (2013). Herbal boon for wounds. Int. J. Pharm. Pharm. Sci, 2.spa
dc.relation.referencesMohamed Sharaf, N. S.-G.-A. (2000). Exudate Flavonoids from Ficus altissima. Biochem. Syst. Ecol, 291 - 293.spa
dc.relation.referencesMorley, R. (2000). Origin and evolution of tropical rain forests. Chichester, England.spa
dc.relation.referencesMurugan, R. A. (2012). Antioxidant, anti-inflammatory activity, and phytochemical constituents of ficus (Ficus amplissima Smith) . bark. Food Sci Biotechnol, 21, 59–67.spa
dc.relation.referencesNaidu, M., Sulochanamma, G., Sampathu, S., & Srinivas, P. (2008). Studies on extraction and antioxidant potential of green coffee. Food Chem, 377–384. doi:https://doi.org/10.1016/j.foodchem.2007.08.056spa
dc.relation.referencesNandi, A., Liang-Jun, Y., Jana, C., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev, 1 - 20. doi:https://doi.org/10.1155/2019/9613090spa
dc.relation.referencesNawaz, H., Waheed, R., & Mubashir, N. (2020). Phytochemical Composition, Antioxidant Potential and Medicinal Significance of Ficus. Modern Fruit industry. doi:http://dx.doi.org/10.5772/intechopen.86562spa
dc.relation.referencesNovelli, S., Canuti, L., & Canini, A. (2014). Identification of alkaloid's profile in Ficus benjamina L. extracts with higher antioxidant power. Am. J. Plant Sci, 4029-4039. doi:http://dx.doi.org/10.4236/ajps.2014.526421spa
dc.relation.referencesNowakowska, J., Ciura, K., Kawczak, P., Wielgomas, B., & ˛czek, T. (2018). Reversed-Phase and Normal-Phase Thin-Layer Chromatography and Their Application to the Lipophilicity Prediction of Synthetic Pyrethroids Based on Quantitative Structure–Retention Relationships. Journal of Planar Chromatography, 99 - 104. doi: 10.1556/1006.2018.31.2.1spa
dc.relation.referencesNurviana, V., Tuslinah, L., & Susanti. (2020). Antioxidant Activity of Methanolic Extract of Ficus elastica Leaves. Atlantis Press, 53 - 56. doi: https://doi.org/10.2991/ahsr.k.200523.015spa
dc.relation.referencesNworu, C., Nwuke, H., Akah, P., Okoye, F., & Esimone, C. ,. (2013). Extracts of Ficus exasperata leaf inhibit topical and systemic inflammation in rodents and suppress LPS-induced expression of mediators of inflammation in macrophages. J. Immunotoxicol, 302-310. doi:https://doi.org/10.3109/1547691X.2012.732121spa
dc.relation.referencesObiloma, A., Madu, W., & Osuji, G. (2018). Terpene profile of some selected medicinal plants (Ficus capensis, Morinda lucida and Rauvolfia vomitoria) in South-Eastern Nigeria. IOSR J Pharm Biol Sci, 92-96.spa
dc.relation.referencesOlaniran T. OLADIPO, B. A. (2017). Chemotaxonomic study of six Nigerian Ficus Species (Moraceae). Not Sci Biol. , 9 (2): 250 - 255.spa
dc.relation.referencesPapetti, A., Daglia, M., Aceti, C., Quaglia, C., & Gazzani, G. (2006). Isolation of an in vitro and ex vivo antiradical melanoidin from roasted barley. J. Agric. Food Chem, 1209 - 1216spa
dc.relation.referencesParveen, I., Wang, M., Zhao, J., Chittiboyina, A., Tabanca, N., Ali, A., Pan, Z. (2009). Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E) farnesol and α bisabolene synthases. Plant Mol. Biol, 451 - 462. doi:DOI 10.1007/s11103-015-0381-3spa
dc.relation.referencesPawlak, K., Bylka, W., Jazurek, B., Matlawska, I., Sikorska, M., Manikowski, H., & Bialek-Bylka, G. (2010). Antioxidant activity of flavonoids of different polarity, assayed by modified abts cation radical decolorization and epr technique . Acta Biol Crac Ser Bot, 97–104.spa
dc.relation.referencesPederneiras, L., Gaglioti, A., Romaniuc-Neto, S., & Mansano, V. d. (2018). The role of biogeographic barriers and bridges in determining divergent lieneages in Ficus (Moraceae). Bot. J. Linnean Soc, 594 - 613.spa
dc.relation.referencesPederneiras, L., Romaniuc-Neto, S., & Mansano, V. d. (2015). Molecular Phylogenetics of Ficus Section Pharmacosycea and the Description of Ficus Subsection Carautaea (Moraceae). Syst. Bot, 504-509. doi:https://doi.org/10.1600/036364415X688826spa
dc.relation.referencesPelozo, R., Ferrucci, M., & Demattieis, M. (2005). Las especies de las familias Moraceae y Cecropiaceae del Parque Nacional Mburucuya. 25.spa
dc.relation.referencesPeng, H. Y. (2013). In memory of Wu Zheng-Yi (Wu Cheng-Yih) (1916-2013). Plant Divers. Resour, 533-535.spa
dc.relation.referencesPeraza-Sánchez, S., Chai, H., & Shin, Y. (2002). Constitutens of the leaves and twigs of Ficus hispida. Planta. Med., 186 - 188.spa
dc.relation.referencesPetruccelli, R., Ieri, F., Ciaccheri, L., & Bonett, A. (2018). Polyphenolic profiling and chemometric analysis of leaves from Italian Ficus carica L. varieties. Polyphenol compounds in common fig. Eur. J. Hortic. Sci, 94-103. doi:https://doi.org/10.17660/eJHS.2018/83.2.5spa
dc.relation.referencesPistelli, L., & Giorgi, I. (2012). Antimicrobial Properties of Flavonoids. Dietary Phytochemicals and Microbes. Springer. https://doi.org/10.1007/978-94-007-3926-0_2spa
dc.relation.referencesPortilla Salinas, J. A. (2009). Laboratorio Química.Disponible en: http://wwwprof.uniandes.edu.co/~infquimi/programaspdf/BLabQO-I.pdf.spa
dc.relation.referencesPoumale, H., Kengapa, R., Tchouankeu, J., Keumedjio, F., Laatsch, H., & Ngadju, B. (2008). Pentacyclic Triterpenes and Other Constituents from Ficus cordata (Moraceae). Zeitschrift f fur Naturforschung, 1335 – 1338. doi:https://doi.org/10.1515/znb-2008-1113spa
dc.relation.referencesQing Wen, Z., Li Gen, L., & Wen Cai, Y. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13:20. doi:https://doi.org/10.1186/s13020-018-0177-xspa
dc.relation.referencesQuintanar, M., & Calderón, J. (2009). La capacidad antioxidante total. Bases y aplicaciones. Revista de Educación Bioquímica., 28(3): 89-101.spa
dc.relation.referencesQuiroz-Lobo, Y. (2019). Estudio químico y análisis de las actividades antioxidante, antibacteriana y antifungica en invertebrados marinos recolectados en la bahía de cispatá. Trabajo de grado presentado como requisito parcial para optar al titulo de magister en ciencias químicas. , Universidad de Córdoba, Química., Montería.spa
dc.relation.referencesRajiv, P., & Sivaraj, R. (2012). Screening for phytochemicals and antimicrobial activity of aqueous extract of Ficus religiosa Linn. Int. J. Pharm. Pharm. Sci., 207-209.spa
dc.relation.referencesRalston, L., Subramanian, S., Matsuno, M., & Yu, O. (2005). Partial Reconstruction of Flavonoid and Isoflavonoid Biosynthesis in Yeast Using Soybean Type I and Type II Chalcone Isomerases. Plant Physiol, 1375–1388. doi: https://doi.org/10.1104/pp.104.054502spa
dc.relation.referencesRamawat, K. (2019). Disponible en: https://www.researchgate.net/publication/337153441. doi:DOI: 10.1007/978-3-030-30746-2_1spa
dc.relation.referencesRamírez, D., & López, R. (2010). Familia Moraceae. Proyecto curricular-Ingeniería Forestal., Universidad distrital Francisco José de Caldas., Facultad del Medio Ambiente y Recursos Naturales, Bogotá. Obtenido de http://es.scribd.com/doc/69184012/familia-moraceaespa
dc.relation.referencesRangel-Ch, J. (2012). Colombia Biodiversa Xll, La región Caribe de Colombia. Bogotá: J.O.spa
dc.relation.referencesRasool, R., Ganai, B., Akbar, S., Kamili, A., & Masood, A. (2010). Phytochemical screening of Prunella vulgaris l. - an important medicinal plant of Kashmir. Pak J Pharm Sci., 399-402.spa
dc.relation.referencesRasplus, J.-Y., Rodriguez, L., Sauné, L., Peng, Y.-Q., Bain, A., Kjellberg, F., . . . Cruaud, A. (2020). Exploring systematic biases, rooting methods and morphological evidence to unravel the evolutionary history of the genus Ficus (Moraceae). bioRxiv, 1 - 50. doi:https://doi.org/10.1101/2020.04.15.042259spa
dc.relation.referencesRavaglia, D., Espley, R., Henry-Kirk, R., Andreotti, C., Ziosi, V., Hellens, R., . . . Allan, A. (2013). Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 13:68. Obtenido de http://www.biomedcentral.com/1471-2229/13/68spa
dc.relation.referencesRehana, B., & Nagarajan, N. (2014). TLC and HPTLC fingerprinting of leaf extracts of Wedelia chinensis (Osbeck) Merrill. J. Pharmacogn. Phytochem, 29-33.spa
dc.relation.referencesReichardt, C., & Welton, T. (2011). Solvents and Solvent Effects in Organic Chemistry. Disponible en.: https://books.google.com.co/books/about/Solvents_and_Solvent_Effects_in_Organic.html?hl=es&id=6MzGgfWZAIMC.spa
dc.relation.referencesRønsted, N., Salvo, G., & Savolainen, V. (2007). Biogeographical and phylogenetic origins of African fig species (Ficus section Galoglychia). Mol. Phylogenetics Evol, 190–201. doi:https://doi.org/10.1016/j.ympev.2006.12.010spa
dc.relation.referencesRønsted, N., Weiblen, G., Clement, W., Zerega, N., & Savolainen, V. (2008.). Reconstructing the phylogeny of figs (Ficus, Moraceae) to reveal the history of the fig pollination mutualism. Symbiosis, 45–56.spa
dc.relation.referencesRønsted, N., Weiblen, G., Cook, J., Salamin, N., Machado, C., & Savolainen, V. (2005). 60 million years of co-divergence in the fig-wasp symbiosis. Proc. Roy. Soc. Lond., 593–2599. doi:https://doi.org/10.1098/rspb.2005.3249spa
dc.relation.referencesSalvi, V., Joshi, Y., Dhande, S., & Kadam, V. (2013). A Review on Ficus hispida. J. Pharmacogn. Phytochem, 149-154.spa
dc.relation.referencesSaptarini, N., & Herawati, I. (2015). Comparative Antioxidant Activity on the Ficus benjamina and Annona reticulata Leaves . Int. J. Public Health, 21-26.spa
dc.relation.referencesSarg, T., Abbas, F., El-Sayed, Z., & Mustafa, A. (2011). Two new polyphenolic compounds from Ficus retusa L."variegata" and the biological activity of the different plant extracts. J. Pharmacognosy Phytother, 89-100. doi:https://doi.org/10.5897/JPP.9000053spa
dc.relation.referencesSchantz, M. (2006). Pressurized liquid extraction in environmental analysis. Anal Bioanal Chem, 1043–1047. doi:https://doi.org/10.1007/s00216-006-0648-2spa
dc.relation.referencesShahidi, F. &. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J. Funct. Foods, 18, 820-897.spa
dc.relation.referencesSingh, R. (2016). Chemotaxonomy: A Tool for Plant Classification. Med. Plants Stud, 90-93.spa
dc.relation.referencesSingh, R., & Geetanjali. (2018). Chemotaxonomy of Medicinal Plants: Possibilities and Limitations. Natural Products and Drug Discovery, 119-136. doi: https://doi.org/10.1016/B978-0-08-102081-4.00006-Xspa
dc.relation.referencesSingh. (2010). An Introduction to Biodiversity. Ane Books Pvt, Ltd.spa
dc.relation.referencesSirisha, N., Sreenivasulu, M., Sangeeta, K., & Chetty, C. (2010). Antioxidant Properties of Ficus Species – A Review. Int J Pharmtech Res, 2174-2182.spa
dc.relation.referencesŠpánik, I., & Machyňáková, A. (2017). Recent Applications of GC with high-resolution MS. J. Sep. Sci, 1 - 51.spa
dc.relation.referencesSpiegel, M., Kapusta, K., Kołodziejczyk, W., Saloni, J., bikowska, B., Hill, G., & Sroka, Z. (2020). Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules, 1 - 15.spa
dc.relation.referencesSytsma, K., Morawetz, J., Pires, J., Nepokroeff, M., Conti, E., Zjhra, M., Chase, M. (2002). Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences. Am. J. Bot., 1531–1546.spa
dc.relation.referencesTaviano, M., Rashed, K., Filocamo, A., Cacciola, F., Dugo, P., Mondello, L., Miceli, M. (2018). Phenolic profile and biological properties of the leaves of Ficus vasta Forssk. (Moraceae) growing in Egypt. BMC Complement Altern Med, 1-11. doi:https://doi.org/10.1186/s12906-018-2210-0spa
dc.relation.referencesTeixeira, D., Patao˜, R., Coelho, A., & Teixeira da Costa, C. (2006). Comparison between sample disruption methods and solid–liquid extraction (SLE) to extract phenolic compounds from Ficus carica leaves. J. Chromatogr. A, 22–28. doi:https://doi.org/10.1016/j.chroma.2005.11.047spa
dc.relation.referencesTsimogiannis, D., & Oreopoulou, V. (2019). Chapter 16 - Classification of Phenolic Compounds in Plants. Polyphenols in Plants, 263-284. doi:https://doi.org/10.1016/B978-0-12-813768-0.00026-8spa
dc.relation.referencesUmoh, O. (2020). Chemotaxonomy: The Role of Phytochemicals in Chemotaxonomic Delineation of Taxa. Asian J. Plant Sci, 43-52. doi:10.9734/APRJ/2020/v5i130100spa
dc.relation.referencesValko, M., Leibfritz, D., Moncol, J., Cronin, M., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. J. Int J Biochem Cell Biol, 44 – 84. doi:https://doi.org/10.1016/j.biocel.2006.07.001spa
dc.relation.referencesVan Noort, S. & Rasplus, J.Y. (2020). Figweb: figs and fig wasps of the world. URL: www.figweb.org(Accessed on <06-11-2020>).spa
dc.relation.referencesVaras, D. (2004). Análisis de flavonoides en plantas medicinales del Sur de Chile con técnica HPLC. Valdivia, Chile.spa
dc.relation.referencesVaya, J., & Mahmood, S. (2006). Flavonoid content in leaf extracts of the fig ( Ficus carica L. ), carob ( Ceratonia siliqua L. ) and pistachio ( Pistacia lentiscus L. ). BioFactors (Oxford, England), 169-75.spa
dc.relation.referencesVeberic, R., Colaric, M., & Stampar, F. (2008). Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food. Chem, 153–157. doi:https://doi.org/10.1016/j.foodchem.2007.05.061spa
dc.relation.referencesVejarano, J., & Guerrero, V. T. (2011). Fraccionamiento Fitoquimico del Contenido de Metabolitos Secundarios en Hojas de la Planta Medicinal “OJE” (Ficus insípida). Reporte, Universidad Nacional Agraria de la Selva., Tingo maría, Perú. Obtenido de https://studylib.es/doc/137549/oje”--ficus-insípida-”---universidad-nacional-agraria-de-...spa
dc.relation.referencesVermerris, R. &. (2006). Phenolic compound biochemistry. Springer. West Lafayette.spa
dc.relation.referencesWang, Y., Liang, H., Zhang, Q., Cheng, W., & Yi, S. (2014). Phytochemical and chemotaxonomic study on Ficus tsiangii Merr. ex Corner. Biochem. Syst. Ecol, 210 - 215.spa
dc.relation.referencesWeiblen, W. C. (2009). Evolucion morfologica de la familia de la mora (Moraceae). Botanica sistematica, 530 - 552.spa
dc.relation.referencesWeiblen., G. D. (2000). Phylogenetic Relationships of Functionally Dioecious Ficus (Moraceae) Based on Ribosomal DNA Sequences and Morphology. Am. J. Bot, 1342-1357. doi:https://doi.org/10.2307/2656726spa
dc.relation.referencesWuerges, J., Jin-Won, L., Yang-In, Y., Hyung-Soon, Y., & Sa-Ouk, K. (2004). Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc. Natl. Acad. Sci, 8569–8574.spa
dc.relation.referencesXiang-Qin, Y., Chun-Lei, X., & Peng, H. (2018). Taxonomy in the Kunming Institute of Botany (KIB): Progress during the past decade (2008e2018) and perspectives on future development. Plant Diversity., 1-11.spa
dc.relation.referencesXin-Yu, J., Yong-Mei, W., Jing-Ya, L., Chun, L., & Ai-Jun, H. (2020). Alkaloid Constituents of Ficus hispida and Their Antiinflammatory Activity. Nat. Products Bioprospect, 45–49. doi:https://doi.org/10.1007/s13659-020-00233-5spa
dc.relation.referencesXu, L., Rhett, D., Harrison, Yang, P., & Yang, D.‐R. (2011). New insight into the phylogenetic and biogeographic history of genus Ficus : Vicariance played a relatively minor role compared with ecological opportunity and dispersal. J Syst Evol, 546 - 557. doi:https://doi.org/10.1111/j.1759-6831.2011.00155.xspa
dc.relation.referencesXu, S., Schluter, & Schiestl, F. (2012). Pollinator-driven speciation in sexually deceptive orchids. Internet. J. Ecol.spa
dc.relation.referencesYapa, V., Qazzaz, M., Raja, V., Bradshaw, T., Hwei-San, L., Kae-Shin, S., . . . Kuan-Hon, L. (2016). Fistulopsines A and B antiproliferative septicine-type alkaloids from Ficus fistulosa. Phytochem. Lett, 136 - 141. doi:https://doi.org/10.1016/j.phytol.2015.12.007spa
dc.relation.referencesYi, L., Jin, X., Chun-Ye, C., Yu-Jie, F., Zhang, T., Chang, H., . . . Man-Tian, M. (26 de Agosto de 2011). Chemical Structures of 4-Oxo-Flavonoids in Relation to Inhibition of Oxidized Low-Density Lipoprotein (LDL)-Induced Vascular Endothelial Dysfunction. Int. J. Mol. Sci, 5471-5489. doi:https://doi.org/10.3390/ijms12095471spa
dc.relation.referencesYi, T., Chen, Q., He, X., So, S., Lo, Y., Fan, L., Chen, H. (2013). Chemical quantification and antioxidant assay of four active components in Ficus hirta root using UPLC-PAD-MS fingerprinting combined with cluster analysis. Chem. Cent. J, 1-9.spa
dc.relation.referencesYi-Ming, C., & Yueh-Hsiung, K. (2002). Novel Triterpenoids from the Aerial Roots of Ficus microcarpa. J. Org. Chem., 7656 - 7661. doi:https://doi.org/10.1021/jo020262espa
dc.relation.referencesYi-Ming, Jang-Yan, Ching-Chuan, Chi-Yen, & Yueh-Hsiung. (2005). Cytotoxic triterpenes from the aerial roots of Ficus microcarpa. Phytochemistry, 495–501. doi:https://doi.org/10.1016/j.phytochem.2004.12.026spa
dc.relation.referencesZachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. SCIENCE, 686-693. doi:DOI: 10.1126/science.1059412spa
dc.relation.referencesZelko, I., Mariani, T., & Folz, R. (2002). Superoxide dismutase multigene family: a comparison of the cuzn-sod (sod1), mn-sod (sod2), and ec-sod (sod3) gene structures, evolution, and expression. Free Radic. Biol. Med., 337–349. doi:https://doi.org/10.1016/S0891-5849(02)00905-Xspa
dc.relation.referencesZhang, Q., Onstein, R., Little, S., & Sauquet, H. (2018). Estimating divergence times and ancestral breeding systems in Ficus and Moraceae. Ann. Bot, 1–14. doi:https://doi.org/10.1093/aob/mcy159spa
dc.relation.referencesZhang, S. Y. (2011). Multi-gene analysis provides a well-supported phylogeny of Rosales. Mol. Phylogenetics Evol, 21 - 28. doi:https://doi.org/10.1016/j.ympev.2011.04.008spa
dc.relation.referencesZheng-Feng, S., Chun, L., Bang-Wei, Y., He-Yao, W., & Ai-Jun, H. (2016). New Alkaloids and a-Glucosidase Inhibitory Flavonoids from Ficus hispida. Chem. Biodiversity, 445 - 450. doi:https://doi.org/10.1002/cbdv.201500142spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalQuimiotaxonomíaspa
dc.subject.proposalFlavonoidesspa
dc.subject.proposalGénero Ficusspa
dc.subject.proposalActividad antioxidantespa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dc.description.resumenEn la taxonomía de las plantas angiospermas, los caracteres florales generalmente han sido preferidos sobre los caracteres vegetativos, como se evidencia en muchos de los sistemas de clasificación, sin embargo, estos pueden variar significativamente, dificultando en algunos casos la identificación de especies vegetales. La quimiotaxonomía o quimiosistemática, evalúa la presencia de compuestos químicos en especies vegetales; el aspecto químico de la clasificación de las plantas, se basa en sus constituyentes, es decir, en sus características moleculares; estas, al igual que las características morfológicas, son controladas genéticamente, pero tienen la ventaja sobre las morfológicas, de poder ser descritas exactamente en términos de estructuras definidas y fórmulas químicas configuracionales. En este estudio se propuso determinar la presencia de compuestos fenólicos (Flavonoides) en los extractos etanólicos foliares de las especies Ficus benjamina L; Ficus insípida Willd; Ficus elastica Roxb. ex Hornem y Ficus bullenei I.M. Johnst, con el fin de aplicar el método comparativo de estructuras químicas y la relación taxonómica existente entre las especies investigadas, desde el punto de vista quimiotaxonómico. Por otra parte, se evaluó la actividad antioxidante de los extractos etanólicos foliares de las especies F. benjamina, F. insipida, F. elastica y F. bullenei, empleando los métodos DPPH• (2,2- Difenil-1-picrilhidrazil), ABTS+• (Ácido 2,2'-azino-bis (3-etilbenzotiazolin-6 sulfónico)) y FRAP (Potencial Antioxidante de Reducción Férrica). Para ello se estableció un rango de concentraciones de trabajo entre 1 y 6 mg/L, para todos los extractos. Los valores de IC50 determinados por el método DPPH• fueron de 5.4 mg/L, 4.8 mg/L, 2.4 mg/L y 3.9 mg/L, respectivamente. Para el método ABTS+•, los valores IC50 calculados fueron de 2.9 mg/L, 2.8mg/L, 3.7mg/L y 3.0 mg/L, para cada especie respectivamente. Para estos dos métodos se usó ácido 6-hidroxi-2, 5, 7, 8- tetrametilcromano-2-carboxilico (Trolox) como referencia. El método FRAP se trabajó con un rango de concentraciones entre 1 y 5 mg/L. Todos los extractos etanólicos foliares evaluados presentaron potencial de reducción férrica, siendo el más activo el extracto de la especie Ficus elastica y el de menor potencial frente al complejo TPTZ, fue el extracto EtOH foliar de la especies F. bullenei, comparado con la sustancia de referencia (Ácido gálico).spa
dc.subject.keywordsChemotaxonomyeng
dc.subject.keywordsFlavonoidseng
dc.subject.keywordsGenus Ficuseng
dc.subject.keywordsAntioxidant Activityeng
dc.description.degreelevelPregradospa
dc.description.degreenameBiólogo(a)spa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBiologíaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.description.modalityTrabajos de Investigación y/o Extensión


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2020
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2020