Publicación: Estudio quimiotaxonómico y evaluación de la actividad antioxidante de extractos etanólicos foliares de cuatro especies del género Ficus l. (moraceae), Planeta Rica (Córdoba- Colombia).
dc.contributor.advisor | Arias Ríos, Jorge Enrique | |
dc.contributor.advisor | Montaño Castañeda, Mary Cecilia | |
dc.contributor.author | Furnieles Núñez, Héctor Javier | |
dc.date.accessioned | 2020-11-13T20:54:20Z | spa |
dc.date.available | 2020-11-13T20:54:20Z | spa |
dc.date.issued | 2020-11-13 | spa |
dc.description.abstract | In the taxonomy of angiosperm plants, floral characters have generally been preferred over vegetative characters, as evidenced in many of the classification, systems; however, these can vary significantly, making it difficult in some cases to identify plant species. Chemotaxonomy or chemosystematics, evaluates the presence of chemical compounds in plant species; the chemical aspect of the classification of plants is based on their constituents, that is, on their molecular characteristics; These, like morphological characteristics, are genetically controlled, but have the advantage over morphological ones, of being able to be described exactly in terms of defined structures and configurational chemical formulas. In this study, it was proposed to determine the presence of phenolic compounds (Flavonoids) in the foliar ethanolic extracts of the Ficus benjamina L; Ficus insipid Willd; Ficus elastica Roxb ex Hornem and Ficus bullenei I.M. Johnst species, in order to apply the comparative method of chemical structures and the existing taxonomic relationship between the investigated species, from the chemotaxonomic point of view. On the other hand, the antioxidant activity of the foliar ethanolic extracts of the species F. benjamina, F. insipida, F. elastica and F. bullenei was evaluated, using the methods DPPH• (2,2- Diphenyl-1picrilhidrazil), ABTS+• (Acid 2,2'-azino-bis (3-ethylbenzothiazoline-6 sulphonic)) and FRAP (Iron Reduction Antioxidant Potential). For this, a range of working concentrations between 1 and 6 mg / L was established for all extracts. The IC50 values determined by the DPPH• method were 5.4 mg/L, 4.8 mg/L, 2.4 mg/L and 3.9 mg/L, respectively. For the ABTS+• method, the IC50 values calculated were 2.9 mg/L, 2.8mg/L, 3.7mg/L and 3.0 mg/L, for each species respectively. For these two methods 6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid (Tolox) was used as a reference. The FRAP method was used with a concentration range between 1 and 5 mg/L. All the foliar ethanolic extracts evaluated presented iron reduction potential, the most active being the extract of the Ficus elastica species and the one with the lowest potential against the TPTZ complex, was the foliar EtOH extract of the F. bullenei species, compared to the substance of reference (Gallic acid). | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Biólogo(a) | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.resumen | En la taxonomía de las plantas angiospermas, los caracteres florales generalmente han sido preferidos sobre los caracteres vegetativos, como se evidencia en muchos de los sistemas de clasificación, sin embargo, estos pueden variar significativamente, dificultando en algunos casos la identificación de especies vegetales. La quimiotaxonomía o quimiosistemática, evalúa la presencia de compuestos químicos en especies vegetales; el aspecto químico de la clasificación de las plantas, se basa en sus constituyentes, es decir, en sus características moleculares; estas, al igual que las características morfológicas, son controladas genéticamente, pero tienen la ventaja sobre las morfológicas, de poder ser descritas exactamente en términos de estructuras definidas y fórmulas químicas configuracionales. En este estudio se propuso determinar la presencia de compuestos fenólicos (Flavonoides) en los extractos etanólicos foliares de las especies Ficus benjamina L; Ficus insípida Willd; Ficus elastica Roxb. ex Hornem y Ficus bullenei I.M. Johnst, con el fin de aplicar el método comparativo de estructuras químicas y la relación taxonómica existente entre las especies investigadas, desde el punto de vista quimiotaxonómico. Por otra parte, se evaluó la actividad antioxidante de los extractos etanólicos foliares de las especies F. benjamina, F. insipida, F. elastica y F. bullenei, empleando los métodos DPPH• (2,2- Difenil-1-picrilhidrazil), ABTS+• (Ácido 2,2'-azino-bis (3-etilbenzotiazolin-6 sulfónico)) y FRAP (Potencial Antioxidante de Reducción Férrica). Para ello se estableció un rango de concentraciones de trabajo entre 1 y 6 mg/L, para todos los extractos. Los valores de IC50 determinados por el método DPPH• fueron de 5.4 mg/L, 4.8 mg/L, 2.4 mg/L y 3.9 mg/L, respectivamente. Para el método ABTS+•, los valores IC50 calculados fueron de 2.9 mg/L, 2.8mg/L, 3.7mg/L y 3.0 mg/L, para cada especie respectivamente. Para estos dos métodos se usó ácido 6-hidroxi-2, 5, 7, 8- tetrametilcromano-2-carboxilico (Trolox) como referencia. El método FRAP se trabajó con un rango de concentraciones entre 1 y 5 mg/L. Todos los extractos etanólicos foliares evaluados presentaron potencial de reducción férrica, siendo el más activo el extracto de la especie Ficus elastica y el de menor potencial frente al complejo TPTZ, fue el extracto EtOH foliar de la especies F. bullenei, comparado con la sustancia de referencia (Ácido gálico). | spa |
dc.description.tableofcontents | 1. CAPITULO 1. EVALUACIÓN DEL CONTENIDO DE FLAVONOIDES COMO CRITERIO QUIMIOTAXONÓMICO DE LOS EXTRACTOS ETANÓLICOS FOLIARES DE CUATRO ESPECIES DEL GÉNERO Ficus L. (MORACEAE)...............................................3 | spa |
dc.description.tableofcontents | 1.1. Introducción........................................................................................... 4 | spa |
dc.description.tableofcontents | 1.2. Objetivos........................................................................................... 5 | spa |
dc.description.tableofcontents | 1.2.1. General.................................................................. 5 | spa |
dc.description.tableofcontents | 1.2.2. Específicos............................................................. 5 | spa |
dc.description.tableofcontents | 1.3. Estado de arte........................................................................ 6 | spa |
dc.description.tableofcontents | 1.3.1. Marco referencial.............................................................................. 6 | spa |
dc.description.tableofcontents | 1.3.2. Marco teórico........................................................................ 7 | spa |
dc.description.tableofcontents | 1.3.2.1. Género Ficus L....................................................................... 8 | spa |
dc.description.tableofcontents | Distribución y Filogenia................................................................. 8 | spa |
dc.description.tableofcontents | Biología reproductiva...................................................................... 10 | spa |
dc.description.tableofcontents | Divergencia y Diversificación............................................................................. 11 | spa |
dc.description.tableofcontents | 1.3.2.2. Fitoquímica del género............................................................... 12 | spa |
dc.description.tableofcontents | Flavonoides............................................................................ 12 | spa |
dc.description.tableofcontents | Terpenos y/o esteroles.................................................................... 14 | spa |
dc.description.tableofcontents | Alcaloides.......................................................................... 15 | spa |
dc.description.tableofcontents | 1.3.2.3. Quimiotaxonomía en plantas............................................................................ 15 | spa |
dc.description.tableofcontents | Origen biosintético de los Flavonoides.................................................... 17 | spa |
dc.description.tableofcontents | 1.3.2.4. Técnicas de separación y análisis cromatográfico................................................ 18 | spa |
dc.description.tableofcontents | Cromatografía de capa fina o capa delgada (CCF o CCD, por sus siglas en inglés) y Cromatografía en columna (CC)....... 19 | spa |
dc.description.tableofcontents | Cromatografía de Gases (CG o GC, por sus siglas en inglés).......................................... 20 | spa |
dc.description.tableofcontents | Cromatografía Líquida de Alta Eficiencia (CLAE o HPLC, por sus siglas en inglés).................................. 21 | spa |
dc.description.tableofcontents | 1.4. Materiales y métodos.......................................... 23 | spa |
dc.description.tableofcontents | 1.4.1. Fase de campo....................................... 23 | spa |
dc.description.tableofcontents | 1.4.1.1. Área de estudio................................. 23 | spa |
dc.description.tableofcontents | 1.4.1.2. Recolección del material biológico................................. 24 | spa |
dc.description.tableofcontents | 1.4.2. Fase de laboratorio................................ 25 | spa |
dc.description.tableofcontents | 1.4.2.1. Preparación de los extractos etanólicos foliares...................... 25 | spa |
dc.description.tableofcontents | 1.4.2.2. Tamizaje fitoquímico preliminar.................................... 25 | spa |
dc.description.tableofcontents | Pruebas para alcaloides............................. 26 | spa |
dc.description.tableofcontents | Pruebas para terpenos y/o esteroles............................ 26 | spa |
dc.description.tableofcontents | Pruebas para Flavonoides........................ 27 | spa |
dc.description.tableofcontents | Reacción de la Cianidrina (HCl + Mg)........................... 27 | spa |
dc.description.tableofcontents | Reacción con HCl concentrado.................... 27 | spa |
dc.description.tableofcontents | 1.4.2.3. Fraccionamiento de extractos etanólicos foliares por partición................ 27 | spa |
dc.description.tableofcontents | 1.4.2.4. Fraccionamiento Cromatográfico (Cromatografía en columna)........................ 28 | spa |
dc.description.tableofcontents | 1.5. Resultados y discusión..................................... 29 | spa |
dc.description.tableofcontents | 1.5.1. Obtención de los extractos etanólicos foliares....................... 29 | spa |
dc.description.tableofcontents | 1.5.2. Tamizaje fitoquímico............................... 29 | spa |
dc.description.tableofcontents | 1.5.3. Obtención de subextractos acetato de etilo por partición.......................... 33 | spa |
dc.description.tableofcontents | 1.6. Conclusiones parciales................................. 38 | spa |
dc.description.tableofcontents | 1.7. Recomendaciones................................. 38 | spa |
dc.description.tableofcontents | 2. CAPITULO 2. EVALUACIÓN DE LA ACTIVIDAD ANTIOXIDANTE DE LOS EXTRACTOS ETANÓLICOS FOLIARES DE CUATRO ESPECIES DEL GÉNERO Ficus L. (MORACEAE) RECOLECTADAS EN PLANETA RICA, (CÓRDOBA-COLOMBIA)........... 39 | spa |
dc.description.tableofcontents | 2.1. Introducción............................. 40 | spa |
dc.description.tableofcontents | 2.2. Objetivos........................... 42 | spa |
dc.description.tableofcontents | 2.2.1. General................................. 42 | spa |
dc.description.tableofcontents | 2.2.2. Específicos................................... 42 | spa |
dc.description.tableofcontents | 2.3. Estado de arte...................................... 43 | spa |
dc.description.tableofcontents | 2.3.1. Marco referencial............................... 43 | spa |
dc.description.tableofcontents | 2.3.2. Marco teórico........................................ 45 | spa |
dc.description.tableofcontents | 2.3.2.1 Estrés oxidativo..................................... 45 | spa |
dc.description.tableofcontents | 2.3.2.2. Actividad antioxidante..................................... 46 | spa |
dc.description.tableofcontents | 2.3.2.3. Sistema de defensa antioxidante.............................. 49 | spa |
dc.description.tableofcontents | Sistema de defensa enzimático......................... 50 | spa |
dc.description.tableofcontents | Sistema de defensa no enzimático...................... 51 | spa |
dc.description.tableofcontents | 2.4. Materiales y métodos.................................. 52 | spa |
dc.description.tableofcontents | 2.4.1. Ensayos de actividad antioxidante................................. 52 | spa |
dc.description.tableofcontents | 2.4.2. Preparación y activación de los radicales DPPH• y ABTS+•.......................... 52 | spa |
dc.description.tableofcontents | 2.4.3. Determinación de la actividad antioxidante, métodos DPPH•, ABTS+• y FRAP............. 53 | spa |
dc.description.tableofcontents | 2.4.4. Análisis estadístico................................. 55 | spa |
dc.description.tableofcontents | 2.5. Resultados y discusión........................ 55 | spa |
dc.description.tableofcontents | 2.5.1. Actividad antioxidante........................... 55 | spa |
dc.description.tableofcontents | 2.5.2. Análisis estadísticos................................ 60 | spa |
dc.description.tableofcontents | 2.6. Conclusión.................................. 62 | spa |
dc.description.tableofcontents | 2.7. Recomendaciones............................ 62 | spa |
dc.description.tableofcontents | 2.8. BIBLIOGRAFÍA........................................ 63 | spa |
dc.description.tableofcontents | 2.9. ANEXOS.............................................. 78 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/3611 | spa |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Biología | spa |
dc.relation.references | Ahsan, H., Ahad, A., Iqbal, J., & Siddiqui, W. A. (2014). Pharmacological potential of tocotrienols: a review. Nutrition & metabolism, 11-52. | spa |
dc.relation.references | Aleixandre-Tudo, J.L., & du Toit, W. (2019). The Role of UV-Visible Spectroscopy for Phenolic Compounds Quantification in Winemaking. DOI:http://dx.doi.org/10.5772/intechopen.79550. | spa |
dc.relation.references | Aldana, D. (2007). Detección y cuantificación de flavonoides en Polypodium triseriale Swartz, Phlebodium decumanum (Willd.) J. Sm. y Phlebodium pseudoaureum (Cav.) Lellinger: tres especies de calahuala nativas de Guatemala. | spa |
dc.relation.references | Al-Rubaye, A., Hameed, H., & Kadhim, M. (2017). A Review: Uses of Gas Chromatography-Mass Spectrometry (GC-MS) Technique for Analysis of Bioactive Natural Compounds of Some Plants. Int. J. Pharmacol. Res, 81- 85. | spa |
dc.relation.references | Al-Snafi, A. (2017). Pharmacology of Ficus religiosa- A review. IOSR J. Pharm, 49-60 | spa |
dc.relation.references | Amorati, R., & Valgimigli, L. (2012). Modulation of the antioxidant activity of phenols by non-covalent interactions. Org. Biomol. Chem., 4147–4158. | spa |
dc.relation.references | Anandjiwala, S., Bagul, M. S., Parabia, M., & Rajani, M. (2008). Evaluation of Free Radical Scavenging Activity of an Ayurvedic Formulation, Panchvalkala. Indian J. Pharm. Sci, 31–35. | spa |
dc.relation.references | Andersen, O., & Markham, K. (2006). Flavonoids: chemistry, biochemistry and applications. London: Taylor & Francis. | spa |
dc.relation.references | Ankanna, S., Suhrulatha, D., & Savithramma, N. (2012). Chemotaxonomical studies of some important monocotyledons. BRI, 90-96. | spa |
dc.relation.references | APG, IV. (2016). Distribución de la familia Moraceae. Disponible en: http://www.mobot.org/MOBOT/research/APweb/ | spa |
dc.relation.references | Aswar, M., Urmila, A., Watkar, B., Vyas, M., Wagh, A., & Gujar, K. (2008). Anthelmintic activity of Ficus benghalensis. Int. J. Green Pharm, 170 - 172. | spa |
dc.relation.references | Attia, M., Essa, E., Zaki, R., & Elkordy, A. (2020). An Overview of the Antioxidant Effects of Ascorbic Acid and Alpha Lipoic Acid (in Liposomal Forms) as Adjuvant in Cancer Treatment. Antioxidants, 1 - 15. | spa |
dc.relation.references | Bartosz, G. (2003). Second face of oxygen. Fre radicals in nature. Wydawnictwo Naukowe PWN, Warszawa [book in polish]. | spa |
dc.relation.references | Behera, B., Verma, N., Sonone, A., & Makhija, U. (2008). Antioxidant and antibacterial properties of some cultured lichenes. Bioresour. Technol, 776 - 784. | spa |
dc.relation.references | Benzie, I., & Siu-Wai, C. (2014). Antioxidants in Food: Content, Measurement, Significance, Action, Cautions, Caveats, and Research Needs. Adv Food Nutr Res., 1-53. doi:https://doi.org/10.1016/B978-0-12-800270-4.00001-8 | spa |
dc.relation.references | Berg, C., & Corner, E. (2005.). Flora Malesiana. Series I, Seed plants. , Part 2: Moraceae (Ficus). (Vol. Volumen 17). (C. C. Berg, E. J. Corner, & H. P. Nooteboom, Edits.) Leiden, Netherlands. | spa |
dc.relation.references | Boligon, A., & Linde, M. (2014). Importance of HPLC in Analysis of Plants Extracts. Austin Chromatography, 1 - 2. | spa |
dc.relation.references | Bonkanka, C. (2006). Evolucion farmacologica de terpenos y flavonoides de origen vegetal. Cajacanarias, España. | spa |
dc.relation.references | Bravo, A.V & Acuña, W.D (2015). Evaluación fitoquímica y determinación de flavonoides en hojas de Ficus benjamina L. Xilema vol. 28, 61 - 67. | spa |
dc.relation.references | Bristi, N. J., Alam, M., & Rafiquzzaman, M. (2013). “Review on in vivo and in vitro methods evaluation of antioxidant activity”. Saudi. Pharm. J, 143-152. | spa |
dc.relation.references | Bruun-Lund, S., Clement, W., Kjellberg, F., & Rønsted, N. (2017). First plastid phylogenomic study reveals potential cyto-nuclear discordance in the evolutionary history of Ficus L. (Moraceae). Mol. Phylogenetics Evol, 93 - 104. doi:https://doi.org/10.1016/j.ympev.2016.12.031 | spa |
dc.relation.references | Calvi, S. (2013). Diversidad y distribucion de la familia moraceae en los bosques de la region madidi, la paz – bolivia. Tesis de Grado presentado como requisito parcial para optar al título de Licenciado en Ciencias Biológicas, Universidad mayor de san andres, facultad de ciencias puras y naturales, la paz. Disponible en: http://www.missouribotanicalgarden.org/Portals/0/Portal/0/Science%20and%20conservation/themadidiproject/publications/Calvi_2013_Thesis.pdf | spa |
dc.relation.references | Cardona-Peña, V., Fuentes, A., & Cayola, L. (2005). Las Moraceaes de la region de Madidi - Bolivia. Ecología en Bolivia, 212 - 264. | spa |
dc.relation.references | Caritá, A., Fonseca-Santos, B., Shultz, J., Michniak-Kohn, B., Chorilli, M., & Leonardi, G. (2020). Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomed. Nanotechnol. Biol. Med, 102-117. | spa |
dc.relation.references | Cartaya, O., & Reynaldo, I. (2001). Flavonoides: Características químicas y aplicaciones. Disponible en: https://www.redalyc.org/articulo.oa?id=1932/193215009001. | spa |
dc.relation.references | Chambial, S., Dwivedi, S., Shukla, K., John, P., & Sharma, P. (2013). Vitamin C in disease prevention and cure: An overview. Indian J. Clin. Biochem, 314 - 328. | spa |
dc.relation.references | Chantarasuwan, B., Berg, C., Kjellberg, F., Ronsted, N., García, M., Baider, C., & Van Welzen, P. (2015). A new classification of Ficus subsection Urostigma (Moreaceae) based on four nuclear DNA markers(ITS,ETS,G3pdh and ncpGS), morfology and leaf anatomy. Journal.pone.0128289. | spa |
dc.relation.references | Chen, X., Wu, X., Chai, W., Feng, H., Shi, Y., Zhou, H., & Chen, Q. (2013). Optimization of extraction of phenolics from leaves of Ficus virens. J. Zhejiang Univ. Sci. B, 903-915. | spa |
dc.relation.references | Chen, Y., Xiao, H., Zheng, J., & Liang, G. (2015). Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: An experimental and theoretical evaluation. PLoS ONE, 1-20. | spa |
dc.relation.references | Chiang, Y. J. (2005). Cytotoxic triterpenes from the aerial roots of Ficus micricarpa. Phytochemistry, 495 - 501. | spa |
dc.relation.references | Chiuman, L., & Sutanto, N. (2020). a healthier antioxidants-rich food with vitamin c and e. IJGHR, 111-116. | spa |
dc.relation.references | Claustrat, B. (2020). Mélatonine : aspects biochimiques, physiologiques et pharmacologiques en relation avec les phénomènes rythmiques et le sommeil. Medicine du sommeil, 1-18. doi:https://doi.org/10.1016/j.msom.2019.12.187 | spa |
dc.relation.references | Clement, W. L., & Weiblen, G. D. (2009). Morphological evolution in the mulberry family (Moraceae). Syst. Bot., 530-552. doi:https://doi.org/10.1600/036364409789271155 | spa |
dc.relation.references | Clement, W., Buuun-Lund, S., Cohen, A., Kjellberg, F., Weiblen, G., & Rønsted, N. (2020). Evolution and classification of figs (Ficus, Moraceae) and their close relatives (Castilleae) united by involucral bracts. Bot. J. Linn. Soc, 1–24. doi:https://doi.org/10.1093/botlinnean/boaa022 | spa |
dc.relation.references | Cook, J., & Rasplus, J.-Y. (2003). Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol. Evol, 241 - 248. doi:https://doi.org/10.1016/S0169-5347(03)00062-4 | spa |
dc.relation.references | Corrales, L., & Muñoz Ariza, M. (2012). Estrés oxidativo: origen, evolución y consecuencias de la toxicidad del oxígeno. NOVA., 10, 18. | spa |
dc.relation.references | Coskun, O. (2016). Separation techniques: Chromatography. North Clin Istanbul, 156–60. doi:doi: 10.14744/nci.2016.32757 | spa |
dc.relation.references | Costa, P., Lorenz-Lemke, A. P., Furnini, P. R., Honorio Coronado, E. N., Kjellberg, F., & Pereia, R. A. (2017). The phylogeography of two disjunct Neotropical Ficus (Moraceae) speciesreveals contrasted histories between the Amazon and the Atlantic Forests. Botanical Bot. J. Linn. Soc, 272–289. doi:https://doi.org/10.1093/botlinnean/box056 | spa |
dc.relation.references | Cruaud, A., Ronsted, N., CHantarasuwan, B., Chou, L., Clement, W., Couloux, A., . . . Lopez-Vaamonde, C. Y. (2012). An Extreme Case of Plant–Insect Codiversification: Figs and Fig-Pollinating Wasps. Syst. Biol, 1029–1047. doi:https://doi.org/10.1093/sysbio/sys068 | spa |
dc.relation.references | Cruaud, A., Ronsted, N., Chantarasuwan, B., Chou, L., Clement, W., Couloux, A., . . . Yodpintanee, A. (2012b). An extreme case of plant-insect codiversification: Figs and fig-pollinating wasps. Syst. Biol., 1029 - 1047. | spa |
dc.relation.references | Damu, A., Kuo, P., Shi, L., Li, C., Su, C., & Wu, T. (2009). Cytotoxic phenanthroindolizidine alkaloids from the roots of Ficus septica. Planta Med. 1152-1156. | spa |
dc.relation.references | Datwyler, S., & Weiblen, G. (2004). On the origin of the Fig: Phylogenetic Relationships of Moraceae from ndhF Sequences. Am. J. Bot, 91(5): 767 - 777. | spa |
dc.relation.references | Dayrat, B. (2005). Towards integrative taxonomy. . Biol. J. Linn. Soc., 407-415. | spa |
dc.relation.references | De la Ossa, T. J. (2017). Estudio químico y evaluación de las actividades antioxidante y antibacteriana del extracto etanólico de la madera de oxandra longipetala (annonaceae),. Montería - Colombia: Universidad de Córdoba, facultad de ciencias básicas, departamento de química. | spa |
dc.relation.references | Delgado Olivares, L., Betanzos Cabrera, G., & Sumaya Martínez, M. T. (2010). Importancia de los antioxidantes dietarios en la disminución del estrés oxidative Investigación y Ciencia. Aguascalientes-México | spa |
dc.relation.references | El-Fishawy, A., Zayed, R., & Afifi, S. (2011). Phytochemical and pharmacological studies of Ficus auriculata Lour. J. Nat. Prod, 184-195. | spa |
dc.relation.references | Franco, M. (2010). Soroceaxylon entrerriensis gen. et n. sp. nov. (Moraceae) de la formación Ituzaingó (Plioceno-Pleistoceno), Cuenca del río Paraná, Argentina. Rev Mex Cienc Geol, 508 - 519. | spa |
dc.relation.references | García, J. (2014). “Estudio químico, actividad antioxidante y bactericida de los extractos y subextractos de las hojas y corteza de Oxandra Xylopioides (Annonaceae)”. Montería . | spa |
dc.relation.references | Garcia, K. (2015). Caracterización química de los flavonoides presentes en ficus citrifolia mill. reporte, universidad politécnica salesiana sede quito, ingeniería en biotecnologia de los recursos naturales, Quito, Ecuador. | spa |
dc.relation.references | García-Alvarado, K. (2015). Caracterización química de los flavonoides presentes en ficus citrifolia mill. tesis para obtar el titulo de ingeniera en biotecnología de los recursos naturales, universidad politécnica salesiana sede quito, ingeniería en biotecnologia de los recursos naturales, Quito. | spa |
dc.relation.references | Gentry, A. (1993). A field guide to the familiy and genera of woody plants of Northwest South America with supplementary notes on herbaceous taxa. Washington: Conservation International. | spa |
dc.relation.references | ghodaro, O., & Akinloye, O. (2017). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med, 1-7. doi:https://doi.org/10.1016/j.ajme.2017.09.001 | spa |
dc.relation.references | Gill, S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance crop plants. Plant Physiol Biochem, 909-930. | spa |
dc.relation.references | Ginting, C., Lister, I., Girsang, E., Riastawati, D., Kusuma, H., & Widowati, W. (2020). Antioxidant Activities of Ficus elastica Leaves Ethanol Extract and Its Compounds. Mol Cell Biomed Sci., 27-33. doi:10.21705/mcbs.v4i1.86 | spa |
dc.relation.references | Giraldo, Q., Bernal, L., Robayo, M. A., Lobo, P., & Molano, G. L. (2015). Traditional use of medicinal plants in markets from Bogotá, D.C. NOVA, 73-80. | spa |
dc.relation.references | Greenham, J. G. (2007). Intra- and interspecific variations in vacuolar flavonoids among Ficus species from the Budongo Forest, Uganda. Biochem. Syst. Ecol, 81- 90. | spa |
dc.relation.references | Grison-Pige, L., Hossaert-McKey, M., Greef, J., & Jean-Marie, B. (2002). Fig volatile compounds—a first comparative study. Phytochemistry, 61–71. doi:https://doi.org/10.1016/S0031-9422(02)00213-3 | spa |
dc.relation.references | Gulcin, I. (2020). Antioxidants and antioxidant methods: an updated overview. Arch. Toxicol, 1-65. doi:https://doi.org/10.1007/s00204-020-02689-3 | spa |
dc.relation.references | Gupta, N., & Jain, U. K. (2010). Prominent wound healing properties of indigenous medicines. Journal of Natural Pharmaceuticals, 2-13. | spa |
dc.relation.references | Guzmán, M. (2014). Contribución Al Estudio Químico Y Bioprospección De Organismos Marinos Del Caribe Cordobés. Montería. | spa |
dc.relation.references | Harrison, R. (2005). Figs and the Diversity of Tropical Rainforests. BioScience, 1053-1064. doi:https://doi.org/10.1641/0006-3568(2005)055[1053:FATDOT]2.0.CO;2 | spa |
dc.relation.references | Hernandez, O., Zepeda, J., & Negron, A. (2015). Lecturas de Apoyo Para Comprender Mejor La Química. Ciudad de México.: 1st ed. (Muñoz V, ed.). Mexico, Distrito Federal. | spa |
dc.relation.references | Herre, E., & Jander, K. (2008). Ecologia evolutiva de los higos y sus asociados: avances recientes y acertijos sobresalientes. Califormia: Machado California. | spa |
dc.relation.references | Herre, E., Machado, C., Bermingham, E., Nason, J., Windsor, D., Mccafferty, S., . . . Bachman, K. (1996). Molecular phylogenies of figs and their pollinator wasps. J. Biogeogr, 521-530. doi:https://doi.org/10.1111/j.1365-2699.1996.tb00014.x | spa |
dc.relation.references | Herrera, Z., & Moreno, Z. (2019). Caracterización química y actividad antihelmíntica del extracto metanólico de las hojas y del látex de ficus insípida willd frente ascaris lumbricoides. tesis para optar el título profesional de químico farmacéutico, universidad interamericana , facultad de ciencias de la salud, carrera profesional de farmacia y bioquímica., Lima-Perú. Recuperado el 25 de Agosto de 2020, de http://repositorio.unid.edu.pe/bitstream/handle/unid/48/12%20HERRERA%20HURTADO%20y%20MORENO%20FLORES.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Hidalgo, L., Sánchez, I., & Martínez S, I. M. (2018). Oxidative stress reference parameters standardization. Rev. Cuba. de Medicina Mil, 127-132. | spa |
dc.relation.references | Honorio Coronado, E., Dexter, K., Poelchau, M., Hollingsworth, P., Phillips, O., & Pennington, R. (2014). Ficus insipida subsp. insipida (Moraceae) reveals the role of ecology in the phylogeography of widespread. J. Biogeogr, 1697–1709. doi:https://doi.org/10.1111/jbi.12326 | spa |
dc.relation.references | Hung, P., & Morita, N. (2008). Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chem, 325–331. doi:https://doi.org/10.1016/j.foodchem.2007.12.060 | spa |
dc.relation.references | Ignat, I. I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. . Food Chem, 126: 1821-1835. | spa |
dc.relation.references | Imran, M., Rasool, N., Rizwan, K., Zubair, M., Riaz, M., Zia-Ul-Haq, M., . . . ZE Jaafar, H. (2014). Chemical composition and Biological studies of Ficus benjamina. Chem. Cent. J., 8 - 12. doi:doi:10.1186/1752-153x-8-12 | spa |
dc.relation.references | Ingle, K., Deshmukh, A., Padole, D., Dudhare, M., Moharil, M., & Khelurkar, V. (2017). Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. J. Pharmacogn. Phytochem, 32-36. | spa |
dc.relation.references | Ivanov, I., Dincheva, I., Badjakov, I., Petkova, N., Denev, P., & Pavlov, A. (2018). GC-MS analysis of unpolar fraction from Ficus carica L. (fig) leaves. Int. Food Res, 282-286. | spa |
dc.relation.references | Jakubczyk, K., Kaldunska, J., Dec, K., Kawczuga, D., & Janda, K. (2020). Antioxidant properties of small-molecule non-enzymatic compounds. Pol. Med. J, 128–132. Obtenido de http://medpress.com.pl/shop | spa |
dc.relation.references | Jeong, M., Kim, H., & Cha, J. (2009). Antimicrobial activity of methanol extract from Ficus carica leaves against oral bacteria. J. Bacteriol. Res., 97-102. | spa |
dc.relation.references | Jimenez, I., Speisky, C., & Noran, C. (2000). Radicales libres y antioxidantes en la prevención de enfermedades: II mecanismo de defensa antioxidantes. ReuChilNutr, 210-9. | spa |
dc.relation.references | Johnson, F., & Giulivi, C. (2005). Superoxide dismutases and their impact upon human health. Mol Aspects Med, 340-352. | spa |
dc.relation.references | Jousselin, E., Rasplus, J.-Y., & Kjellberg, F. (2003). Convergence and Coevolution in a mutualism: Evidence from a molecular phylogeny of Ficus. Evolution. | spa |
dc.relation.references | Kanaujia, V., Irchhaiya, R., Yadav, R., Jaiswal, M., Bharti, J., Kailasiya, D., & Verma, M. (2012). In vitro and in vivo antioxidant activity on the leaves of Ficus benjamina linn. Int. J. Pharm. Sci. Res, 2029 - 2048. | spa |
dc.relation.references | Khadangi, F., & Azzi, A. (2019). Vitamin E–The Next 100 Years. . IUBMB life, 411- 415. | spa |
dc.relation.references | Khoddami, A., Wilkes, M., & Roberts, T. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 2328-2375. doi:10.3390/molecules18022328 | spa |
dc.relation.references | Kjellberg, F., Jousselin, E., Bronstein, J., Patel, A., Yokoyama, J., & Rasplus, J.-Y. (2001). Pollination mode in fig wasps: the predictive power of correlated traits. Proc R Soc Lond B: Biological Sciences, 1113 - 1121. doi:https://doi.org/10.1098/rspb.2001.1633 | spa |
dc.relation.references | Lee, J., Giordano, S., & Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J, 523–540. | spa |
dc.relation.references | Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev, 118-126. doi:doi: 10.4103/0973-7847.70902 | spa |
dc.relation.references | López Sánchez, M. T. (2005). Métodos físicos de separación y purificación de sustancias orgánicas. Gran Canaria, España. | spa |
dc.relation.references | Lopez-Vaamonde, C., Wikstrom, N., Kjer, K., Weiblen, G., Rasplus, J., Machado, C., & Cook, J. (2009). Molecular dating and biogeography of fig-pollinating wasps. Molec. Phyl. Evol., 715 - 727. | spa |
dc.relation.references | Lopez-Vaamonde, C., Wikstrom, N., Kjer, K., Weiblen, G., Rasplus, J., Machado, C., & Cook, J. (2009). Molecular dating and biogeography of fig-pollinating wasps. Molec. Phyl. Evol., 715 - 727. | spa |
dc.relation.references | Machado da Costa, F., Klein, D. E., Philbrick, C. T., & Bove, C. P. (2018). Silica bodies in leaves of Neotropical Podostemaceae: Taxonomic and phylogenteic perspectives. Ann. Bot., 122: 1187-1201. | spa |
dc.relation.references | Maizatul, H., Mullen, W., & Crozier, A. (2011). Identification of Proanthocyanidin Dimers and Trimers, Flavone C-Glycosides, and Antioxidants in Ficus deltoidea, a Malaysian Herbal Tea. J Agr Food Chem,1363–1369. doi:https://doi.org/10.1021/jf1032729 | spa |
dc.relation.references | Makhija, I., Sharma, I., & Khamar, D. (2010). Phytochemistry and Pharmacological properties of Ficus religiosa: an overview . Ann. Biol. Res, 171-180 . | spa |
dc.relation.references | Mariajancyrani, J., Chandramohan, G., Brindha, P., & Saravanan, P. (2014). GC-MS Analysis of Terpenes from Hexane Extract of Lantana camara Leaves. Int. J. Adv. Pharm., Biol. Chem., 37 - 41. | spa |
dc.relation.references | Marquez, M. G. (2011). Capacidad antioxidante y caracterización estructural de las antocianinas de los frutos rojos de Prunus domestica L., Ficus carica L. y Vitisvinifera L. cv" red globe" cultivados en Perú. | spa |
dc.relation.references | Martinez, A. (2005). Flavonoides. Medellin, Colombia. Obtenido de Flavonoides. Medellin, Colombia: http://farmacia.udea.edu.co/~ff/flavonoides2001. | spa |
dc.relation.references | Mbosso, E., Nguedia, J., Meyer, F., Lenta, B., Ngouela, S., Lallemand, B., Wintjens, R. (2012). Ceramide, cerebroside and triterpenoid saponin from the bark of aerial roots of Ficus elastica (Moraceae). Phytochemistry, 95–103. | spa |
dc.relation.references | Misbah, H., Aziz, A., & Aminudin, N. (2013). Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complement Alternative Medicine, 118. doi:https://doi.org/10.1186/1472-6882-13-118 | spa |
dc.relation.references | Mittal, A., Sardana, S., & Pandey, A. (2013). Herbal boon for wounds. Int. J. Pharm. Pharm. Sci, 2. | spa |
dc.relation.references | Mohamed Sharaf, N. S.-G.-A. (2000). Exudate Flavonoids from Ficus altissima. Biochem. Syst. Ecol, 291 - 293. | spa |
dc.relation.references | Morley, R. (2000). Origin and evolution of tropical rain forests. Chichester, England. | spa |
dc.relation.references | Murugan, R. A. (2012). Antioxidant, anti-inflammatory activity, and phytochemical constituents of ficus (Ficus amplissima Smith) . bark. Food Sci Biotechnol, 21, 59–67. | spa |
dc.relation.references | Naidu, M., Sulochanamma, G., Sampathu, S., & Srinivas, P. (2008). Studies on extraction and antioxidant potential of green coffee. Food Chem, 377–384. doi:https://doi.org/10.1016/j.foodchem.2007.08.056 | spa |
dc.relation.references | Nandi, A., Liang-Jun, Y., Jana, C., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev, 1 - 20. doi:https://doi.org/10.1155/2019/9613090 | spa |
dc.relation.references | Nawaz, H., Waheed, R., & Mubashir, N. (2020). Phytochemical Composition, Antioxidant Potential and Medicinal Significance of Ficus. Modern Fruit industry. doi:http://dx.doi.org/10.5772/intechopen.86562 | spa |
dc.relation.references | Novelli, S., Canuti, L., & Canini, A. (2014). Identification of alkaloid's profile in Ficus benjamina L. extracts with higher antioxidant power. Am. J. Plant Sci, 4029-4039. doi:http://dx.doi.org/10.4236/ajps.2014.526421 | spa |
dc.relation.references | Nowakowska, J., Ciura, K., Kawczak, P., Wielgomas, B., & ˛czek, T. (2018). Reversed-Phase and Normal-Phase Thin-Layer Chromatography and Their Application to the Lipophilicity Prediction of Synthetic Pyrethroids Based on Quantitative Structure–Retention Relationships. Journal of Planar Chromatography, 99 - 104. doi: 10.1556/1006.2018.31.2.1 | spa |
dc.relation.references | Nurviana, V., Tuslinah, L., & Susanti. (2020). Antioxidant Activity of Methanolic Extract of Ficus elastica Leaves. Atlantis Press, 53 - 56. doi: https://doi.org/10.2991/ahsr.k.200523.015 | spa |
dc.relation.references | Nworu, C., Nwuke, H., Akah, P., Okoye, F., & Esimone, C. ,. (2013). Extracts of Ficus exasperata leaf inhibit topical and systemic inflammation in rodents and suppress LPS-induced expression of mediators of inflammation in macrophages. J. Immunotoxicol, 302-310. doi:https://doi.org/10.3109/1547691X.2012.732121 | spa |
dc.relation.references | Obiloma, A., Madu, W., & Osuji, G. (2018). Terpene profile of some selected medicinal plants (Ficus capensis, Morinda lucida and Rauvolfia vomitoria) in South-Eastern Nigeria. IOSR J Pharm Biol Sci, 92-96. | spa |
dc.relation.references | Olaniran T. OLADIPO, B. A. (2017). Chemotaxonomic study of six Nigerian Ficus Species (Moraceae). Not Sci Biol. , 9 (2): 250 - 255. | spa |
dc.relation.references | Papetti, A., Daglia, M., Aceti, C., Quaglia, C., & Gazzani, G. (2006). Isolation of an in vitro and ex vivo antiradical melanoidin from roasted barley. J. Agric. Food Chem, 1209 - 1216 | spa |
dc.relation.references | Parveen, I., Wang, M., Zhao, J., Chittiboyina, A., Tabanca, N., Ali, A., Pan, Z. (2009). Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E) farnesol and α bisabolene synthases. Plant Mol. Biol, 451 - 462. doi:DOI 10.1007/s11103-015-0381-3 | spa |
dc.relation.references | Pawlak, K., Bylka, W., Jazurek, B., Matlawska, I., Sikorska, M., Manikowski, H., & Bialek-Bylka, G. (2010). Antioxidant activity of flavonoids of different polarity, assayed by modified abts cation radical decolorization and epr technique . Acta Biol Crac Ser Bot, 97–104. | spa |
dc.relation.references | Pederneiras, L., Gaglioti, A., Romaniuc-Neto, S., & Mansano, V. d. (2018). The role of biogeographic barriers and bridges in determining divergent lieneages in Ficus (Moraceae). Bot. J. Linnean Soc, 594 - 613. | spa |
dc.relation.references | Pederneiras, L., Romaniuc-Neto, S., & Mansano, V. d. (2015). Molecular Phylogenetics of Ficus Section Pharmacosycea and the Description of Ficus Subsection Carautaea (Moraceae). Syst. Bot, 504-509. doi:https://doi.org/10.1600/036364415X688826 | spa |
dc.relation.references | Pelozo, R., Ferrucci, M., & Demattieis, M. (2005). Las especies de las familias Moraceae y Cecropiaceae del Parque Nacional Mburucuya. 25. | spa |
dc.relation.references | Peng, H. Y. (2013). In memory of Wu Zheng-Yi (Wu Cheng-Yih) (1916-2013). Plant Divers. Resour, 533-535. | spa |
dc.relation.references | Peraza-Sánchez, S., Chai, H., & Shin, Y. (2002). Constitutens of the leaves and twigs of Ficus hispida. Planta. Med., 186 - 188. | spa |
dc.relation.references | Petruccelli, R., Ieri, F., Ciaccheri, L., & Bonett, A. (2018). Polyphenolic profiling and chemometric analysis of leaves from Italian Ficus carica L. varieties. Polyphenol compounds in common fig. Eur. J. Hortic. Sci, 94-103. doi:https://doi.org/10.17660/eJHS.2018/83.2.5 | spa |
dc.relation.references | Pistelli, L., & Giorgi, I. (2012). Antimicrobial Properties of Flavonoids. Dietary Phytochemicals and Microbes. Springer. https://doi.org/10.1007/978-94-007-3926-0_2 | spa |
dc.relation.references | Portilla Salinas, J. A. (2009). Laboratorio Química.Disponible en: http://wwwprof.uniandes.edu.co/~infquimi/programaspdf/BLabQO-I.pdf. | spa |
dc.relation.references | Poumale, H., Kengapa, R., Tchouankeu, J., Keumedjio, F., Laatsch, H., & Ngadju, B. (2008). Pentacyclic Triterpenes and Other Constituents from Ficus cordata (Moraceae). Zeitschrift f fur Naturforschung, 1335 – 1338. doi:https://doi.org/10.1515/znb-2008-1113 | spa |
dc.relation.references | Qing Wen, Z., Li Gen, L., & Wen Cai, Y. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13:20. doi:https://doi.org/10.1186/s13020-018-0177-x | spa |
dc.relation.references | Quintanar, M., & Calderón, J. (2009). La capacidad antioxidante total. Bases y aplicaciones. Revista de Educación Bioquímica., 28(3): 89-101. | spa |
dc.relation.references | Quiroz-Lobo, Y. (2019). Estudio químico y análisis de las actividades antioxidante, antibacteriana y antifungica en invertebrados marinos recolectados en la bahía de cispatá. Trabajo de grado presentado como requisito parcial para optar al titulo de magister en ciencias químicas. , Universidad de Córdoba, Química., Montería. | spa |
dc.relation.references | Rajiv, P., & Sivaraj, R. (2012). Screening for phytochemicals and antimicrobial activity of aqueous extract of Ficus religiosa Linn. Int. J. Pharm. Pharm. Sci., 207-209. | spa |
dc.relation.references | Ralston, L., Subramanian, S., Matsuno, M., & Yu, O. (2005). Partial Reconstruction of Flavonoid and Isoflavonoid Biosynthesis in Yeast Using Soybean Type I and Type II Chalcone Isomerases. Plant Physiol, 1375–1388. doi: https://doi.org/10.1104/pp.104.054502 | spa |
dc.relation.references | Ramawat, K. (2019). Disponible en: https://www.researchgate.net/publication/337153441. doi:DOI: 10.1007/978-3-030-30746-2_1 | spa |
dc.relation.references | Ramírez, D., & López, R. (2010). Familia Moraceae. Proyecto curricular-Ingeniería Forestal., Universidad distrital Francisco José de Caldas., Facultad del Medio Ambiente y Recursos Naturales, Bogotá. Obtenido de http://es.scribd.com/doc/69184012/familia-moraceae | spa |
dc.relation.references | Rangel-Ch, J. (2012). Colombia Biodiversa Xll, La región Caribe de Colombia. Bogotá: J.O. | spa |
dc.relation.references | Rasool, R., Ganai, B., Akbar, S., Kamili, A., & Masood, A. (2010). Phytochemical screening of Prunella vulgaris l. - an important medicinal plant of Kashmir. Pak J Pharm Sci., 399-402. | spa |
dc.relation.references | Rasplus, J.-Y., Rodriguez, L., Sauné, L., Peng, Y.-Q., Bain, A., Kjellberg, F., . . . Cruaud, A. (2020). Exploring systematic biases, rooting methods and morphological evidence to unravel the evolutionary history of the genus Ficus (Moraceae). bioRxiv, 1 - 50. doi:https://doi.org/10.1101/2020.04.15.042259 | spa |
dc.relation.references | Ravaglia, D., Espley, R., Henry-Kirk, R., Andreotti, C., Ziosi, V., Hellens, R., . . . Allan, A. (2013). Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 13:68. Obtenido de http://www.biomedcentral.com/1471-2229/13/68 | spa |
dc.relation.references | Rehana, B., & Nagarajan, N. (2014). TLC and HPTLC fingerprinting of leaf extracts of Wedelia chinensis (Osbeck) Merrill. J. Pharmacogn. Phytochem, 29-33. | spa |
dc.relation.references | Reichardt, C., & Welton, T. (2011). Solvents and Solvent Effects in Organic Chemistry. Disponible en.: https://books.google.com.co/books/about/Solvents_and_Solvent_Effects_in_Organic.html?hl=es&id=6MzGgfWZAIMC. | spa |
dc.relation.references | Rønsted, N., Salvo, G., & Savolainen, V. (2007). Biogeographical and phylogenetic origins of African fig species (Ficus section Galoglychia). Mol. Phylogenetics Evol, 190–201. doi:https://doi.org/10.1016/j.ympev.2006.12.010 | spa |
dc.relation.references | Rønsted, N., Weiblen, G., Clement, W., Zerega, N., & Savolainen, V. (2008.). Reconstructing the phylogeny of figs (Ficus, Moraceae) to reveal the history of the fig pollination mutualism. Symbiosis, 45–56. | spa |
dc.relation.references | Rønsted, N., Weiblen, G., Cook, J., Salamin, N., Machado, C., & Savolainen, V. (2005). 60 million years of co-divergence in the fig-wasp symbiosis. Proc. Roy. Soc. Lond., 593–2599. doi:https://doi.org/10.1098/rspb.2005.3249 | spa |
dc.relation.references | Salvi, V., Joshi, Y., Dhande, S., & Kadam, V. (2013). A Review on Ficus hispida. J. Pharmacogn. Phytochem, 149-154. | spa |
dc.relation.references | Saptarini, N., & Herawati, I. (2015). Comparative Antioxidant Activity on the Ficus benjamina and Annona reticulata Leaves . Int. J. Public Health, 21-26. | spa |
dc.relation.references | Sarg, T., Abbas, F., El-Sayed, Z., & Mustafa, A. (2011). Two new polyphenolic compounds from Ficus retusa L."variegata" and the biological activity of the different plant extracts. J. Pharmacognosy Phytother, 89-100. doi:https://doi.org/10.5897/JPP.9000053 | spa |
dc.relation.references | Schantz, M. (2006). Pressurized liquid extraction in environmental analysis. Anal Bioanal Chem, 1043–1047. doi:https://doi.org/10.1007/s00216-006-0648-2 | spa |
dc.relation.references | Shahidi, F. &. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J. Funct. Foods, 18, 820-897. | spa |
dc.relation.references | Singh, R. (2016). Chemotaxonomy: A Tool for Plant Classification. Med. Plants Stud, 90-93. | spa |
dc.relation.references | Singh, R., & Geetanjali. (2018). Chemotaxonomy of Medicinal Plants: Possibilities and Limitations. Natural Products and Drug Discovery, 119-136. doi: https://doi.org/10.1016/B978-0-08-102081-4.00006-X | spa |
dc.relation.references | Singh. (2010). An Introduction to Biodiversity. Ane Books Pvt, Ltd. | spa |
dc.relation.references | Sirisha, N., Sreenivasulu, M., Sangeeta, K., & Chetty, C. (2010). Antioxidant Properties of Ficus Species – A Review. Int J Pharmtech Res, 2174-2182. | spa |
dc.relation.references | Špánik, I., & Machyňáková, A. (2017). Recent Applications of GC with high-resolution MS. J. Sep. Sci, 1 - 51. | spa |
dc.relation.references | Spiegel, M., Kapusta, K., Kołodziejczyk, W., Saloni, J., bikowska, B., Hill, G., & Sroka, Z. (2020). Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules, 1 - 15. | spa |
dc.relation.references | Sytsma, K., Morawetz, J., Pires, J., Nepokroeff, M., Conti, E., Zjhra, M., Chase, M. (2002). Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences. Am. J. Bot., 1531–1546. | spa |
dc.relation.references | Taviano, M., Rashed, K., Filocamo, A., Cacciola, F., Dugo, P., Mondello, L., Miceli, M. (2018). Phenolic profile and biological properties of the leaves of Ficus vasta Forssk. (Moraceae) growing in Egypt. BMC Complement Altern Med, 1-11. doi:https://doi.org/10.1186/s12906-018-2210-0 | spa |
dc.relation.references | Teixeira, D., Patao˜, R., Coelho, A., & Teixeira da Costa, C. (2006). Comparison between sample disruption methods and solid–liquid extraction (SLE) to extract phenolic compounds from Ficus carica leaves. J. Chromatogr. A, 22–28. doi:https://doi.org/10.1016/j.chroma.2005.11.047 | spa |
dc.relation.references | Tsimogiannis, D., & Oreopoulou, V. (2019). Chapter 16 - Classification of Phenolic Compounds in Plants. Polyphenols in Plants, 263-284. doi:https://doi.org/10.1016/B978-0-12-813768-0.00026-8 | spa |
dc.relation.references | Umoh, O. (2020). Chemotaxonomy: The Role of Phytochemicals in Chemotaxonomic Delineation of Taxa. Asian J. Plant Sci, 43-52. doi:10.9734/APRJ/2020/v5i130100 | spa |
dc.relation.references | Valko, M., Leibfritz, D., Moncol, J., Cronin, M., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. J. Int J Biochem Cell Biol, 44 – 84. doi:https://doi.org/10.1016/j.biocel.2006.07.001 | spa |
dc.relation.references | Van Noort, S. & Rasplus, J.Y. (2020). Figweb: figs and fig wasps of the world. URL: www.figweb.org(Accessed on <06-11-2020>). | spa |
dc.relation.references | Varas, D. (2004). Análisis de flavonoides en plantas medicinales del Sur de Chile con técnica HPLC. Valdivia, Chile. | spa |
dc.relation.references | Vaya, J., & Mahmood, S. (2006). Flavonoid content in leaf extracts of the fig ( Ficus carica L. ), carob ( Ceratonia siliqua L. ) and pistachio ( Pistacia lentiscus L. ). BioFactors (Oxford, England), 169-75. | spa |
dc.relation.references | Veberic, R., Colaric, M., & Stampar, F. (2008). Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food. Chem, 153–157. doi:https://doi.org/10.1016/j.foodchem.2007.05.061 | spa |
dc.relation.references | Vejarano, J., & Guerrero, V. T. (2011). Fraccionamiento Fitoquimico del Contenido de Metabolitos Secundarios en Hojas de la Planta Medicinal “OJE” (Ficus insípida). Reporte, Universidad Nacional Agraria de la Selva., Tingo maría, Perú. Obtenido de https://studylib.es/doc/137549/oje”--ficus-insípida-”---universidad-nacional-agraria-de-... | spa |
dc.relation.references | Vermerris, R. &. (2006). Phenolic compound biochemistry. Springer. West Lafayette. | spa |
dc.relation.references | Wang, Y., Liang, H., Zhang, Q., Cheng, W., & Yi, S. (2014). Phytochemical and chemotaxonomic study on Ficus tsiangii Merr. ex Corner. Biochem. Syst. Ecol, 210 - 215. | spa |
dc.relation.references | Weiblen, W. C. (2009). Evolucion morfologica de la familia de la mora (Moraceae). Botanica sistematica, 530 - 552. | spa |
dc.relation.references | Weiblen., G. D. (2000). Phylogenetic Relationships of Functionally Dioecious Ficus (Moraceae) Based on Ribosomal DNA Sequences and Morphology. Am. J. Bot, 1342-1357. doi:https://doi.org/10.2307/2656726 | spa |
dc.relation.references | Wuerges, J., Jin-Won, L., Yang-In, Y., Hyung-Soon, Y., & Sa-Ouk, K. (2004). Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc. Natl. Acad. Sci, 8569–8574. | spa |
dc.relation.references | Xiang-Qin, Y., Chun-Lei, X., & Peng, H. (2018). Taxonomy in the Kunming Institute of Botany (KIB): Progress during the past decade (2008e2018) and perspectives on future development. Plant Diversity., 1-11. | spa |
dc.relation.references | Xin-Yu, J., Yong-Mei, W., Jing-Ya, L., Chun, L., & Ai-Jun, H. (2020). Alkaloid Constituents of Ficus hispida and Their Antiinflammatory Activity. Nat. Products Bioprospect, 45–49. doi:https://doi.org/10.1007/s13659-020-00233-5 | spa |
dc.relation.references | Xu, L., Rhett, D., Harrison, Yang, P., & Yang, D.‐R. (2011). New insight into the phylogenetic and biogeographic history of genus Ficus : Vicariance played a relatively minor role compared with ecological opportunity and dispersal. J Syst Evol, 546 - 557. doi:https://doi.org/10.1111/j.1759-6831.2011.00155.x | spa |
dc.relation.references | Xu, S., Schluter, & Schiestl, F. (2012). Pollinator-driven speciation in sexually deceptive orchids. Internet. J. Ecol. | spa |
dc.relation.references | Yapa, V., Qazzaz, M., Raja, V., Bradshaw, T., Hwei-San, L., Kae-Shin, S., . . . Kuan-Hon, L. (2016). Fistulopsines A and B antiproliferative septicine-type alkaloids from Ficus fistulosa. Phytochem. Lett, 136 - 141. doi:https://doi.org/10.1016/j.phytol.2015.12.007 | spa |
dc.relation.references | Yi, L., Jin, X., Chun-Ye, C., Yu-Jie, F., Zhang, T., Chang, H., . . . Man-Tian, M. (26 de Agosto de 2011). Chemical Structures of 4-Oxo-Flavonoids in Relation to Inhibition of Oxidized Low-Density Lipoprotein (LDL)-Induced Vascular Endothelial Dysfunction. Int. J. Mol. Sci, 5471-5489. doi:https://doi.org/10.3390/ijms12095471 | spa |
dc.relation.references | Yi, T., Chen, Q., He, X., So, S., Lo, Y., Fan, L., Chen, H. (2013). Chemical quantification and antioxidant assay of four active components in Ficus hirta root using UPLC-PAD-MS fingerprinting combined with cluster analysis. Chem. Cent. J, 1-9. | spa |
dc.relation.references | Yi-Ming, C., & Yueh-Hsiung, K. (2002). Novel Triterpenoids from the Aerial Roots of Ficus microcarpa. J. Org. Chem., 7656 - 7661. doi:https://doi.org/10.1021/jo020262e | spa |
dc.relation.references | Yi-Ming, Jang-Yan, Ching-Chuan, Chi-Yen, & Yueh-Hsiung. (2005). Cytotoxic triterpenes from the aerial roots of Ficus microcarpa. Phytochemistry, 495–501. doi:https://doi.org/10.1016/j.phytochem.2004.12.026 | spa |
dc.relation.references | Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. SCIENCE, 686-693. doi:DOI: 10.1126/science.1059412 | spa |
dc.relation.references | Zelko, I., Mariani, T., & Folz, R. (2002). Superoxide dismutase multigene family: a comparison of the cuzn-sod (sod1), mn-sod (sod2), and ec-sod (sod3) gene structures, evolution, and expression. Free Radic. Biol. Med., 337–349. doi:https://doi.org/10.1016/S0891-5849(02)00905-X | spa |
dc.relation.references | Zhang, Q., Onstein, R., Little, S., & Sauquet, H. (2018). Estimating divergence times and ancestral breeding systems in Ficus and Moraceae. Ann. Bot, 1–14. doi:https://doi.org/10.1093/aob/mcy159 | spa |
dc.relation.references | Zhang, S. Y. (2011). Multi-gene analysis provides a well-supported phylogeny of Rosales. Mol. Phylogenetics Evol, 21 - 28. doi:https://doi.org/10.1016/j.ympev.2011.04.008 | spa |
dc.relation.references | Zheng-Feng, S., Chun, L., Bang-Wei, Y., He-Yao, W., & Ai-Jun, H. (2016). New Alkaloids and a-Glucosidase Inhibitory Flavonoids from Ficus hispida. Chem. Biodiversity, 445 - 450. doi:https://doi.org/10.1002/cbdv.201500142 | spa |
dc.rights | Copyright Universidad de Córdoba, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Chemotaxonomy | eng |
dc.subject.keywords | Flavonoids | eng |
dc.subject.keywords | Genus Ficus | eng |
dc.subject.keywords | Antioxidant Activity | eng |
dc.subject.proposal | Quimiotaxonomía | spa |
dc.subject.proposal | Flavonoides | spa |
dc.subject.proposal | Género Ficus | spa |
dc.subject.proposal | Actividad antioxidante | spa |
dc.title | Estudio quimiotaxonómico y evaluación de la actividad antioxidante de extractos etanólicos foliares de cuatro especies del género Ficus l. (moraceae), Planeta Rica (Córdoba- Colombia). | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: