Show simple item record

dc.contributor.advisorMarrugo Negrete, José Luis
dc.contributor.authorDíaz Fernández, Luis Javier
dc.date.accessioned2020-11-13T14:45:37Zspa
dc.date.available2021-11-12spa
dc.date.available2020-11-13T14:45:37Zspa
dc.date.issued2020spa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3592spa
dc.description.abstractEste estudio se llevó a cabo en invernadero y en campo, sembrando semillas de frijol caupi impregnadas con selenio de la variedad criolla y comerciales (L-019, L-042, L-047) en sedimentos dragados depositados a orillas de Caño Mosquito y Pasifuere, también se realizó la siembra de las mismas en suelos mineros, todos estos fueron transportados hasta la sede de la universidad de Córdoba, donde se analizó la influencia del selenio sobre la absorción de metales pesados y su acumulación en semillas de frijol caupi cosechadas, obteniendo diferencias significativas (p<0.05) en la acumulación de Ni, Cr, entre las semillas tratadas y no tratadas con Se y entre variedades, mientras que para Pb, Cd y Hg no se encontraron diferencias significativas, como también se encontraron diferencias entre las características agronómicas de las semillas y en la productividad. Nuestros resultados muestran el cultivo de caupí V. unguiculata como una buena alternativa alimenticia rico en proteínas para las poblaciones que viven cerca de los sitios de extracción de oro.spa
dc.description.tableofcontents1. INTRODUCCIÓN........................................................................................................................................... 11spa
dc.description.tableofcontents2. OBJETIVOS............................................................................................................................................ 13spa
dc.description.tableofcontents2.1 OBJETIVO GENERAL............................................................................................................... 13spa
dc.description.tableofcontents2.2 OBJETIVOS ESPECÍFICOS............................................................................................................ 13spa
dc.description.tableofcontents3 ANTECEDENTES Y MARCO TEÓRICO........................................................................................... 14spa
dc.description.tableofcontents3.1 ANTECEDENTES................................................................................................................................. 14spa
dc.description.tableofcontents4. MARCO TEÓRICO.............................................................................................................................. 17spa
dc.description.tableofcontents4.1 SUELO........................................................................................................................................................ 17spa
dc.description.tableofcontents4.1.1 Minería...................................................................................................................................................... 17spa
dc.description.tableofcontents4.1.2 pH. ......................................................................................................................................................................18spa
dc.description.tableofcontents4.1.3 Dragado.......................................................................................................................................... 18spa
dc.description.tableofcontents4.2 METALES PESADOS ..............................................................................................................................19spa
dc.description.tableofcontents4.3 SELENIO..................................................................................................................................................... 20spa
dc.description.tableofcontents4.4 IMPREGNACIÓN..........................................................................................................................................20spa
dc.description.tableofcontents4.5 SELENIO EN LAS PLANTAS......................................................................................................... 21spa
dc.description.tableofcontents5. METODOLOGÍA............................................................................................................................................... 23spa
dc.description.tableofcontents5.1 ÁREA DE ESTUDIO................................................................................................................................ 23spa
dc.description.tableofcontents5.2 TOMA DE MUESTRA......................................................................................................................... 24spa
dc.description.tableofcontents5.3 CARACTERIZACIÓN DE SUELO................................................................................................ 24spa
dc.description.tableofcontents5.4 MATERIAL GENÉTICO......................................................................................................................... 25spa
dc.description.tableofcontents5.5 IMPREGNACIÓN DE SEMILLAS............................................................................................... 25spa
dc.description.tableofcontents5.6 IMPLEMENTACIÓN Y SEGUIMIENTO DEL CULTIVO EN INVERNADERO.... 26spa
dc.description.tableofcontents5.7 IMPLEMENTACIÓN Y SEGUIMIENTO DEL CULTIVO EN CAMPO........... 27spa
dc.description.tableofcontents5.8 DISEÑO EXPERIMENTAL............................................................................................................. 28spa
dc.description.tableofcontents5.9 VARIABLES DE RESPUESTA........................................................................................................ 28spa
dc.description.tableofcontents5.10 DETERMINACIÓN DE METALES PESADOS EN SEMILLAS Y SUELOS................. 29spa
dc.description.tableofcontents5.11 ANÁLISIS ESTADÍSTICO........................................................................................................................ 29spa
dc.description.tableofcontents6. RESULTADOS Y DISCUSIÓN................................................................................................................. 30spa
dc.description.tableofcontents6.1 LAS CARACTERÍSTICAS FISICOQUÍMICAS............................................................................... 30spa
dc.description.tableofcontents6.2 MATERIAL GENÉTICO E IMPREGNACIÓN................................................................................. 31spa
dc.description.tableofcontents6.3 METALES PESADOS EN SEMILLAS.................................................................................................. 32spa
dc.description.tableofcontents6.4 CARACTERÍSTICAS AGRONÓMICAS...................................................................................... 39spa
dc.description.tableofcontents6.4.1 Longitud de las vainas (LV)........................................................................................................ 39spa
dc.description.tableofcontents6.4.2 Largo y ancho de las semillas (LS y AS)......................................................................... 40spa
dc.description.tableofcontents6.4.3 Numero de vainas por plantas.............................................................................................. 41spa
dc.description.tableofcontents6.4.4 Numero de semillas por vainas............................................................................................ 42spa
dc.description.tableofcontents6.4.5 Rendimiento................................................................................................................................... 43spa
dc.description.tableofcontents6.5 CULTIVO EN CAMPO.............................................................................................................................. 44spa
dc.description.tableofcontents6.5.1 Caracterización de suelo...................................................................................................................... 44spa
dc.description.tableofcontents6.6 CARACTERÍSTICAS AGRONÓMICAS............................................................................................ 45spa
dc.description.tableofcontents7. CONCLUSIONES....................................................................................................................................... 49spa
dc.description.tableofcontents8. REFERENCIAS BIBLIOGRÁFICAS............................................................................................. 51spa
dc.description.tableofcontents9. ANEXOS........................................................................................................................................................ 59spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleCultivo de frijol caupí (vigna unguiculata l. walp) impregnado con selenio en suelos y sedimentos contaminados con metales pesados (cr, ni, cd, pb, hg)spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.relation.referencesAzeh Engwa, G., Udoka Ferdinand, P., Nweke Nwalo, F., & N. Unachukwu, M. (2019). Mechanism and Health Effects of Heavy Metal Toxicity in Humans. Poisoning in the Modern World - New Tricks for an Old Dog? doi:10.5772/intechopen.82511spa
dc.relation.referencesEEA, 2018. Mercury in Europe's environment. European Environment Agency. EEA Report No 11 (/2018).spa
dc.relation.referencesRahimzadeh MR, Rahimzadeh MR, Kazemi S, Moghadamnia A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine. 8(3):135-145.spa
dc.relation.referencesAcosta M. 2007. Determinación de metales pesados en suelos agrícolas del Valle de Mezquital, Hgo. Tesis licenciatura en biología. Instituto de ciencias básicas e ingeniería. Universidad autónoma del estado de Hidalgospa
dc.relation.referencesAraméndiz-Tatis H., Cardona-Ayala C.E., Combatt-Caballero E. M. 2016. Contenido Nutricional de Líneas de Fríjol Caupí (Vigna unguiculata L. Walp.) Seleccionadas de una Población Criolla. Información Tecnológica. Vol. 27(2):53-60.spa
dc.relation.referencesAraméndiz-Tatis H., Espitia-Camacho M., Sierra C. M. 2011. Comportamiento agronómico de líneas promisorias de fríjol Caupí Vigna Unguiculata L. Walp en el Valle del Sinú. Temas Agrarios - Vol. 16:2 9 - 17.spa
dc.relation.referencesBasra, S.M.A., Farooq, M., Tabassam, R., et al., 2005. Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). Seed Sci. Technol. 33:623–628.spa
dc.relation.referencesBezerril M. N., Oliveira M., Gomes-Rochette N., de Menezes A., Gonçalves A., Barreto F., Costa J., Sá Borges S., Ferreira R., Fernandes D. 2017. Effect of lead on physiological and antioxidant responses in two Vigna unguiculata cultivars differing in Pb-accumulation. Chemosphere.176:397-404.spa
dc.relation.referencesBoghdady M. S., Desoky E. M., Azoz S. N., and Nassar Dalia M.A. (2017). Effect of Selenium on Growth, Physiological Aspects and Productivity of Faba Bean (Vicia faba L.) Egypt.J.Agron. Vol.39, No.1, pp.83- 97.spa
dc.relation.referencesCamara A. Y., Wana Y., Yua Y., Wanga Q., Lia H. 2018. Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.) Ecotoxicology and Environmental Safety. 148:869–875spa
dc.relation.referencesCardona-Ayala, C., Araméndiz-Tatis, H., Jarma-Orozco, A. 2013. Variabilidad genética en líneas de fríjol caupí (Vigna unguiculata L. Walp). Revista Agronomía. 21(2):7-18.spa
dc.relation.referencesChang, C., Yin, R., Zhang, H., & Yao, L. 2019. Bioaccumulation and Health Risk Assessment of Heavy Metals in the Soil–Rice System in a Typical Seleniferous Area in Central China. Environmental toxicology and chemistry, 38(7), 1577-1584.spa
dc.relation.referencesChapman, E. E. V., Moore, C., & Campbell, L. M. 2019. Native Plants for Revegetation of Mercury-and Arsenic-Contaminated Historical Mining Waste—Can a Low-Dose Selenium Additive Improve Seedling Growth and Decrease Contaminant Bioaccumulation? Water, Air, & Soil Pollution, 230(9), 225.spa
dc.relation.referencesFeng, R., Wei, C., Tu, S., 2013. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 87:58–68.spa
dc.relation.referencesFreire Filho, F.R., Lima, J.A.A. & Ribeiro, V.Q. 2005. Feijão-caupi: avanços tecnológicos. Embrapa Informação Tecnológica, Brasília.spa
dc.relation.referencesHasanuzzaman, M., Hossain, M.A., Teixeira da Silva, J.A., Fujita, M., 2012a. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateshwarulu, B., Shanker, A.K., Shanker, C., Mandapaka, M. (Eds.), Crop stress and its management: perspectives and strategies. Springer, Berlin, pp. 261-316.spa
dc.relation.referencesHe, P., Lv, X., & Wang, G. 2004. Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environment International, 30(2), 167–172. doi:10.1016/s0160-4120(03)00167-3spa
dc.relation.referencesIsmael, M. A., Elyamine, A. M., Zhao, Y. Y., Moussa, M. G., Rana, M. S., Afzal, J., ... & Hu, C. X. (2018). Can selenium and molybdenum restrain cadmium toxicity to pollen grains in Brassica napus? International journal of molecular sciences, 19(8), 2163.spa
dc.relation.referencesKopittke P. M., Asher C. J., Kopittke R. A., Menzies N. W. 2007 Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata) Environmental Pollution 150 280-287.spa
dc.relation.referencesKopittke, P.M., Menzies N. W. 2006. Effect of Cu toxicity on growth of Cowpea (Vigna unguiculata). Plant Soil 279:287-296.spa
dc.relation.referencesKopittke P.M., Dart P.J., and Menzies N.W. 2007. Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata). Environmental Pollution. 145, 309-315.spa
dc.relation.referencesLandaeta, C. J. 2015. Potenciales impactos ambientales generados por el dragado y la descarga del material dragado. Instituto nacional de canalizaciones. Dirección de proyectos e investigación, caracas – Venezuelaspa
dc.relation.referencesLi, Y., Li, H., Li, Y. F., Zhao, J., Guo, J., Wang, R., ... & Gao, Y. 2018. Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa L.): A combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques. Journal of Trace Elements in Medicine and Biology, 50, 435-440.spa
dc.relation.referencesLiao J., Wen Z., Ru X., Chen J., Wu H., Wei C. 2016. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China. Ecotoxicology and Environmental Safety 124:460–469.spa
dc.relation.referencesLin, L., Zhou, W., Dai, H., Cao, F. 2012. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J. Hazard. Mater. 235, 343–351.spa
dc.relation.referencesMalik J. A., Goel S., Kaur N., Sharm S., Singh I., Nayyar H. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms Environmental and Experimental Botany 77 (2012) 242– 248spa
dc.relation.referencesMetals and alloys used in food contact materials and articles can be ordered from: www.edqm.eu/store ISBN: 978-92-871-7703-2spa
dc.relation.referencesMalik, J. A., Kumar, S., Thakur, P., Sharma, S., Kaur, N., Kaur, R., … Nayyar, H. (2010). Promotion of Growth in Mungbean (Phaseolus aureus Roxb.) by Selenium is Associated with Stimulation of Carbohydrate Metabolism. Biological Trace Element Research, 143(1), 530–539. doi:10.1007/s12011-010-8872-1spa
dc.relation.referencesMarrugo-Negrete, J., Benitez, L. N., & Olivero-Verbel, J. (2008). Distribution of Mercury in Several Environmental Compartments in an Aquatic Ecosystem Impacted by Gold Mining in Northern Colombia. Archives of Environmental Contamination and Toxicology, 55(2), 305–316. doi:10.1007/s00244-007-9129-7spa
dc.relation.referencesMergler, D., Anderson, H.A., Chan, L.H.M., Mahaffey, K.R., Murray, M., Sakamoto, M., Stern, A.H., 2007.Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36 (1),3–11.spa
dc.relation.referencesMiranda D., Carranza C., Rojas C.A., Jerez C.M., Fischer G., Zurita J., (2008) Acumulación de metals pesados en suelo y plantas de cuatro cultivos hortícolas, regados con agua del río Bogotá. Revista Colombiana de Ciencias Hortícolas. 2 (2): 180–191spa
dc.relation.referencesMoulick, D., Ghosh, D., Santra, S.C., 2016. Evaluation of effectiveness of seed priming with selenium in rice during germination under As stress. Plant Physiol. Biochem. 109, 571–578. 10.1016/j.plaphy.2016.11.004.spa
dc.relation.referencesMoulick, D., Ghosh, D., Santra, S.C. 2017. Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa Lc.v. IET-4094). Ecotoxicology and Environmental Safety 145 449–456spa
dc.relation.referencesMoulick, D., Ghosh, D., Santra, S.C. 2018a. Rice seed priming with Se: A novel approach to mitigate As induced adverse consequences on growth, yield and As load in brown rice. Journal of Hazardous Materials. Journal of Hazardous Materials 355 187–196spa
dc.relation.referencesMoulick, D., Ghosh, D., Santra, S.C. 2018b. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain Ecotoxicology and Environmental Safetyspa
dc.relation.referencesNila Maria Bezerril Fontenele, Maria de Lourdes Oliveira Otoch, Neuza Felix Gomes-Rochette, Alana Cecília de Menezes Sobreira, Adolph Annderson Gonçalves Costa Barreto, Francisco Dalton Barreto de Oliveira, Jose Helio Costa, Simone da Silveira S Borges, Ronaldo Ferreira do Nascimento, Dirce Fernandes de Melo. 2017. Effect of lead on physiological and antioxidant responses in two Vigna unguiculata cultivars differing in Pb-accumulation. Chemosphere 176: 397e404.spa
dc.relation.referencesNonnoi F., Chinnaswamy A., García de la Torre V. S., Coba de la Peña T., Lucas M. M., Pueyo J. J. 2012. Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Applied Soil Ecology 61:49– 59.spa
dc.relation.referencesOmid Sadeghipour. 2016. Pretreatment with nitric oxide reduces lead toxicity in cowpea (vigna unguiculata [l.] walp.) Arch. Biol. Sci., Belgrade, 68(1):165-175, DOI:10.2298/ABS150325139Sspa
dc.relation.referencesPandey, C., Gupta, M. 2015. Selenium and auxin mitigate arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J. Hazard. Mater. 287, 384–391.spa
dc.relation.referencesParadelo, R. 2013. Utilización de materiales compostados en la rehabilitación potencial de espacios afectados por residuos mineros y suelos de mina. Boletín Geológico y Minero, ISSN: 0366-0176, 124 (3): 405-419spa
dc.relation.referencesPeng Wang a, Neal W. Menzies , Enzo Lombi , Brigid A. McKenna , Martin D. de Jonge , Erica Donner F. Pax C. Blamey , Chris G. Ryan , David J. Paterson , Daryl L. Howard , Simon A. James , Peter M. Kopittke . 2013. Quantitative determination of metal and metalloid spatial distribution in hydrated and fresh roots of cowpea using synchrotron-based X-ray fluorescence microscopy. Science of the Total Environment 463-464 131–139.spa
dc.relation.referencesPrieto Méndez J; González Ramírez C. A.; Román Gutiérrez A. D.; Prieto García, F. 2009. Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems vol. 10, núm. 1, pp. 29-44spa
dc.relation.referencesSemu E., Singh, B. R., Selmer-Olsen A. R., and K. Steenberg. 1985. Uptake of Hg from 203Hg-labeled mercury compounds by wheat and beans grown on an oxisol. Plant and Soil 87,347-355.spa
dc.relation.referencesSong B., Lei M., Chen T., Zheng Y., Xie Y., LI X., Gao D. 2009. Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China Journal of Environmental Sciences 21 1702-1709.spa
dc.relation.referencesSun Z., Chen J., Wang X., Lv C. 2016. Heavy metal accumulation in native plants at a metallurgy waste sitein rural areas of Northern China. Ecol. Eng. 86 60–68.spa
dc.relation.referencesTran, T. A. T., Zhou, F., Yang, W., Wang, M., Dinh, Q. T., Wang, D., & Liang, D. (2018). Detoxification of mercury in soil by selenite and related mechanisms. Ecotoxicology and environmental safety, 159, 77-84.spa
dc.relation.referencesTóth G., Hermann T., Da Silva M.R., Montanarella L. 2016. Heavy metals in agricultural soils of the European Union with implicationsfor food safety. Environment International 88 299–309.spa
dc.relation.referencesTofiño-Rivera, A. P., Rozo Leguizamón, Y., Gómez-Latorre, D. A., GómezRamírez, L. F., & Tamayo-Molano, P. J. (2018). Modelo productivo de frijoles para el Caribe húmedo colombiano. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA).spa
dc.relation.referencesDurango, J. V. V., Negrete, J. L. M., Colorado, B. J., & Castro, L. M. P. (2010). Remediación de suelos contaminados con mercurio utilizando guarumo (Cecropia peltata). Ingeniería y desarrollo, (27), 113-129.spa
dc.relation.referencesVijayarengan P., Deepthy M., 2014. Changes in growth, pigments and phytoremediating capability of four plant species under copper stress. Int J Environ Biol. 4(2): 119-126.spa
dc.relation.referencesWan, Y., Camara, A. Y., Huang, Q., Yu, Y., Wang, Q., & Li, H. (2018). Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management. Ecotoxicology and environmental safety, 156, 67-74.spa
dc.relation.referencesWilfred E. Rauser and Erwin B. Dumbroff. 1981.Effects of excess cobalt, nickel and zinc on the wáter relations of phaseolus vulgaris. Enviromental and Experimental Botary. Vol. 21. N°2, pp. 249-255.spa
dc.relation.referencesXue, T., Hartikainen, H., Piironen, V., 2001. Antioxidative and growth-promoting Effect selenium on senescing lettuce. Plant Soil 237, 55–61.spa
dc.relation.referencesZhao, Y., Hu, C., Wang, X., Qing, X., Wang, P., Zhang, Y., ... & Zhao, X. 2019. Selenium alleviated chromium stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) by regulating root morphology and metal element uptake. Ecotoxicology and environmental safety, 173, 314-321.spa
dc.relation.referencesZhang, H., Feng, X., Zhu, J., et al., 2012. Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ. Sci. Technol. 46, 10040–10046. DOI: 10.1021/es302245r.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalSeleniospa
dc.subject.proposalMetales pesadosspa
dc.subject.proposalImpregnaciónspa
dc.subject.proposalCowpea beansspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dc.subject.keywordsSeleniumeng
dc.subject.keywordsHeavy metalseng
dc.subject.keywordsImpregnationeng
dc.subject.keywordsCowpea beanseng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Ambientalesspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Ciencias Ambientalesspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2020
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2020