Publicación: Cultivo de frijol caupí (vigna unguiculata l. walp) impregnado con selenio en suelos y sedimentos contaminados con metales pesados (cr, ni, cd, pb, hg)
dc.contributor.advisor | Marrugo Negrete, José Luis | |
dc.contributor.author | Díaz Fernández, Luis Javier | |
dc.date.accessioned | 2020-11-13T14:45:37Z | spa |
dc.date.available | 2021-11-12 | spa |
dc.date.available | 2020-11-13T14:45:37Z | spa |
dc.date.issued | 2020 | spa |
dc.description.abstract | Este estudio se llevó a cabo en invernadero y en campo, sembrando semillas de frijol caupi impregnadas con selenio de la variedad criolla y comerciales (L-019, L-042, L-047) en sedimentos dragados depositados a orillas de Caño Mosquito y Pasifuere, también se realizó la siembra de las mismas en suelos mineros, todos estos fueron transportados hasta la sede de la universidad de Córdoba, donde se analizó la influencia del selenio sobre la absorción de metales pesados y su acumulación en semillas de frijol caupi cosechadas, obteniendo diferencias significativas (p<0.05) en la acumulación de Ni, Cr, entre las semillas tratadas y no tratadas con Se y entre variedades, mientras que para Pb, Cd y Hg no se encontraron diferencias significativas, como también se encontraron diferencias entre las características agronómicas de las semillas y en la productividad. Nuestros resultados muestran el cultivo de caupí V. unguiculata como una buena alternativa alimenticia rico en proteínas para las poblaciones que viven cerca de los sitios de extracción de oro. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Ambientales | spa |
dc.description.modality | Trabajo de Investigación/Extensión | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ................................................................................................... 11 | spa |
dc.description.tableofcontents | 2. OBJETIVOS ............................................................................................................ 13 | spa |
dc.description.tableofcontents | 2.1 OBJETIVO GENERAL ........................................................................................... 13 | spa |
dc.description.tableofcontents | 2.2 OBJETIVOS ESPECÍFICOS .................................................................................... 13 | spa |
dc.description.tableofcontents | 3 ANTECEDENTES Y MARCO TEÓRICO ................................................................... 14 | spa |
dc.description.tableofcontents | 3.1 ANTECEDENTES .................................................................................................. 14 | spa |
dc.description.tableofcontents | 4. MARCO TEÓRICO ................................................................................................. 17 | spa |
dc.description.tableofcontents | 4.1 SUELO .................................................................................................................. 17 | spa |
dc.description.tableofcontents | 4.1.1 Minería ............................................................................................................. 17 | spa |
dc.description.tableofcontents | 4.1.2 pH. ..................................................................................................................... 18 | spa |
dc.description.tableofcontents | 4.1.3 Dragado ........................................................................................................... 18 | spa |
dc.description.tableofcontents | 4.2 METALES PESADOS ............................................................................................. 19 | spa |
dc.description.tableofcontents | 4.3 SELENIO ............................................................................................................... 20 | spa |
dc.description.tableofcontents | 4.4 IMPREGNACIÓN .................................................................................................. 20 | spa |
dc.description.tableofcontents | 4.5 SELENIO EN LAS PLANTAS ................................................................................. 21 | spa |
dc.description.tableofcontents | 5. METODOLOGÍA .................................................................................................... 23 | spa |
dc.description.tableofcontents | 5.1 ÁREA DE ESTUDIO .............................................................................................. 23 | spa |
dc.description.tableofcontents | 5.2 TOMA DE MUESTRA .......................................................................................... 24 | spa |
dc.description.tableofcontents | 5.3 CARACTERIZACIÓN DE SUELO ......................................................................... 24 | spa |
dc.description.tableofcontents | 5.4 MATERIAL GENÉTICO ......................................................................................... 25 | spa |
dc.description.tableofcontents | 5.5 IMPREGNACIÓN DE SEMILLAS .......................................................................... 25 | spa |
dc.description.tableofcontents | 5.6 IMPLEMENTACIÓN Y SEGUIMIENTO DEL CULTIVO EN INVERNADERO ...... 26 | spa |
dc.description.tableofcontents | 5.7 IMPLEMENTACIÓN Y SEGUIMIENTO DEL CULTIVO EN CAMPO ................... 27 | spa |
dc.description.tableofcontents | 5.8 DISEÑO EXPERIMENTAL ..................................................................................... 28 | spa |
dc.description.tableofcontents | 5.9 VARIABLES DE RESPUESTA ................................................................................ 28 | spa |
dc.description.tableofcontents | 5.10 DETERMINACIÓN DE METALES PESADOS EN SEMILLAS Y SUELOS .......... 29 | spa |
dc.description.tableofcontents | 5.11 ANÁLISIS ESTADÍSTICO ................................................................................... 29 | spa |
dc.description.tableofcontents | 6. RESULTADOS Y DISCUSIÓN ............................................................................... 30 | spa |
dc.description.tableofcontents | 6.1 LAS CARACTERÍSTICAS FISICOQUÍMICAS ....................................................... 30 | spa |
dc.description.tableofcontents | 6.2 MATERIAL GENÉTICO E IMPREGNACIÓN ....................................................... 31 | spa |
dc.description.tableofcontents | 6.3 METALES PESADOS EN SEMILLA ...................................................................... 32 | spa |
dc.description.tableofcontents | 6.4 CARACTERÍSTICAS AGRONÓMICAS .................................................................. 39 | spa |
dc.description.tableofcontents | 6.4.1 Longitud de las vainas (LV) ............................................................................. 39 | spa |
dc.description.tableofcontents | 6.4.2 Largo y ancho de las semillas (LS y AS) ......................................................... 40 | spa |
dc.description.tableofcontents | 6.4.3 Numero de vainas por plantas ...................................................................... 41 | spa |
dc.description.tableofcontents | 6.4.4 Numero de semillas por vainas ..................................................................... 42 | spa |
dc.description.tableofcontents | 6.4.5 Rendimiento ..................................................................................................... 43 | spa |
dc.description.tableofcontents | 6.5 CULTIVO EN CAMPO .......................................................................................... 44 | spa |
dc.description.tableofcontents | 6.5.1 Caracterización de suelo .................................................................................. 44 | spa |
dc.description.tableofcontents | 6.6 CARACTERÍSTICAS AGRONÓMICAS .................................................................... 45 | spa |
dc.description.tableofcontents | 7. CONCLUSIONES ...................................................................................................... 49 | spa |
dc.description.tableofcontents | 8. REFERENCIAS BIBLIOGRÁFICAS ............................................................................. 51 | spa |
dc.description.tableofcontents | 9. ANEXOS .................................................................................................................... 59 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/3592 | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ciencias Ambientales | spa |
dc.relation.references | Azeh Engwa, G., Udoka Ferdinand, P., Nweke Nwalo, F., & N. Unachukwu, M. (2019). Mechanism and Health Effects of Heavy Metal Toxicity in Humans. Poisoning in the Modern World - New Tricks for an Old Dog? doi:10.5772/intechopen.82511 | spa |
dc.relation.references | EEA, 2018. Mercury in Europe's environment. European Environment Agency. EEA Report No 11 (/2018). | spa |
dc.relation.references | Rahimzadeh MR, Rahimzadeh MR, Kazemi S, Moghadamnia A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine. 8(3):135-145. | spa |
dc.relation.references | Acosta M. 2007. Determinación de metales pesados en suelos agrícolas del Valle de Mezquital, Hgo. Tesis licenciatura en biología. Instituto de ciencias básicas e ingeniería. Universidad autónoma del estado de Hidalgo | spa |
dc.relation.references | Araméndiz-Tatis H., Cardona-Ayala C.E., Combatt-Caballero E. M. 2016. Contenido Nutricional de Líneas de Fríjol Caupí (Vigna unguiculata L. Walp.) Seleccionadas de una Población Criolla. Información Tecnológica. Vol. 27(2):53-60. | spa |
dc.relation.references | Araméndiz-Tatis H., Espitia-Camacho M., Sierra C. M. 2011. Comportamiento agronómico de líneas promisorias de fríjol Caupí Vigna Unguiculata L. Walp en el Valle del Sinú. Temas Agrarios - Vol. 16:2 9 - 17. | spa |
dc.relation.references | Basra, S.M.A., Farooq, M., Tabassam, R., et al., 2005. Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). Seed Sci. Technol. 33:623–628. | spa |
dc.relation.references | Bezerril M. N., Oliveira M., Gomes-Rochette N., de Menezes A., Gonçalves A., Barreto F., Costa J., Sá Borges S., Ferreira R., Fernandes D. 2017. Effect of lead on physiological and antioxidant responses in two Vigna unguiculata cultivars differing in Pb-accumulation. Chemosphere.176:397-404. | spa |
dc.relation.references | Boghdady M. S., Desoky E. M., Azoz S. N., and Nassar Dalia M.A. (2017). Effect of Selenium on Growth, Physiological Aspects and Productivity of Faba Bean (Vicia faba L.) Egypt.J.Agron. Vol.39, No.1, pp.83- 97. | spa |
dc.relation.references | Camara A. Y., Wana Y., Yua Y., Wanga Q., Lia H. 2018. Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.) Ecotoxicology and Environmental Safety. 148:869–875 | spa |
dc.relation.references | Cardona-Ayala, C., Araméndiz-Tatis, H., Jarma-Orozco, A. 2013. Variabilidad genética en líneas de fríjol caupí (Vigna unguiculata L. Walp). Revista Agronomía. 21(2):7-18. | spa |
dc.relation.references | Chang, C., Yin, R., Zhang, H., & Yao, L. 2019. Bioaccumulation and Health Risk Assessment of Heavy Metals in the Soil–Rice System in a Typical Seleniferous Area in Central China. Environmental toxicology and chemistry, 38(7), 1577-1584. | spa |
dc.relation.references | Chapman, E. E. V., Moore, C., & Campbell, L. M. 2019. Native Plants for Revegetation of Mercury-and Arsenic-Contaminated Historical Mining Waste—Can a Low-Dose Selenium Additive Improve Seedling Growth and Decrease Contaminant Bioaccumulation? Water, Air, & Soil Pollution, 230(9), 225. | spa |
dc.relation.references | Feng, R., Wei, C., Tu, S., 2013. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 87:58–68. | spa |
dc.relation.references | Freire Filho, F.R., Lima, J.A.A. & Ribeiro, V.Q. 2005. Feijão-caupi: avanços tecnológicos. Embrapa Informação Tecnológica, Brasília. | spa |
dc.relation.references | Hasanuzzaman, M., Hossain, M.A., Teixeira da Silva, J.A., Fujita, M., 2012a. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateshwarulu, B., Shanker, A.K., Shanker, C., Mandapaka, M. (Eds.), Crop stress and its management: perspectives and strategies. Springer, Berlin, pp. 261-316. | spa |
dc.relation.references | He, P., Lv, X., & Wang, G. 2004. Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environment International, 30(2), 167–172. doi:10.1016/s0160-4120(03)00167-3 | spa |
dc.relation.references | Ismael, M. A., Elyamine, A. M., Zhao, Y. Y., Moussa, M. G., Rana, M. S., Afzal, J., ... & Hu, C. X. (2018). Can selenium and molybdenum restrain cadmium toxicity to pollen grains in Brassica napus? International journal of molecular sciences, 19(8), 2163. | spa |
dc.relation.references | Kopittke P. M., Asher C. J., Kopittke R. A., Menzies N. W. 2007 Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata) Environmental Pollution 150 280-287. | spa |
dc.relation.references | Kopittke, P.M., Menzies N. W. 2006. Effect of Cu toxicity on growth of Cowpea (Vigna unguiculata). Plant Soil 279:287-296. | spa |
dc.relation.references | Kopittke P.M., Dart P.J., and Menzies N.W. 2007. Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata). Environmental Pollution. 145, 309-315. | spa |
dc.relation.references | Landaeta, C. J. 2015. Potenciales impactos ambientales generados por el dragado y la descarga del material dragado. Instituto nacional de canalizaciones. Dirección de proyectos e investigación, caracas – Venezuela | spa |
dc.relation.references | Li, Y., Li, H., Li, Y. F., Zhao, J., Guo, J., Wang, R., ... & Gao, Y. 2018. Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa L.): A combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques. Journal of Trace Elements in Medicine and Biology, 50, 435-440. | spa |
dc.relation.references | Liao J., Wen Z., Ru X., Chen J., Wu H., Wei C. 2016. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China. Ecotoxicology and Environmental Safety 124:460–469. | spa |
dc.relation.references | Lin, L., Zhou, W., Dai, H., Cao, F. 2012. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J. Hazard. Mater. 235, 343–351. | spa |
dc.relation.references | Malik J. A., Goel S., Kaur N., Sharm S., Singh I., Nayyar H. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms Environmental and Experimental Botany 77 (2012) 242– 248 | spa |
dc.relation.references | Metals and alloys used in food contact materials and articles can be ordered from: www.edqm.eu/store ISBN: 978-92-871-7703-2 | spa |
dc.relation.references | Malik, J. A., Kumar, S., Thakur, P., Sharma, S., Kaur, N., Kaur, R., … Nayyar, H. (2010). Promotion of Growth in Mungbean (Phaseolus aureus Roxb.) by Selenium is Associated with Stimulation of Carbohydrate Metabolism. Biological Trace Element Research, 143(1), 530–539. doi:10.1007/s12011-010-8872-1 | spa |
dc.relation.references | Marrugo-Negrete, J., Benitez, L. N., & Olivero-Verbel, J. (2008). Distribution of Mercury in Several Environmental Compartments in an Aquatic Ecosystem Impacted by Gold Mining in Northern Colombia. Archives of Environmental Contamination and Toxicology, 55(2), 305–316. doi:10.1007/s00244-007-9129-7 | spa |
dc.relation.references | Mergler, D., Anderson, H.A., Chan, L.H.M., Mahaffey, K.R., Murray, M., Sakamoto, M., Stern, A.H., 2007.Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36 (1),3–11. | spa |
dc.relation.references | Miranda D., Carranza C., Rojas C.A., Jerez C.M., Fischer G., Zurita J., (2008) Acumulación de metals pesados en suelo y plantas de cuatro cultivos hortícolas, regados con agua del río Bogotá. Revista Colombiana de Ciencias Hortícolas. 2 (2): 180–191 | spa |
dc.relation.references | Moulick, D., Ghosh, D., Santra, S.C., 2016. Evaluation of effectiveness of seed priming with selenium in rice during germination under As stress. Plant Physiol. Biochem. 109, 571–578. 10.1016/j.plaphy.2016.11.004. | spa |
dc.relation.references | Moulick, D., Ghosh, D., Santra, S.C. 2017. Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa Lc.v. IET-4094). Ecotoxicology and Environmental Safety 145 449–456 | spa |
dc.relation.references | Moulick, D., Ghosh, D., Santra, S.C. 2018a. Rice seed priming with Se: A novel approach to mitigate As induced adverse consequences on growth, yield and As load in brown rice. Journal of Hazardous Materials. Journal of Hazardous Materials 355 187–196 | spa |
dc.relation.references | Moulick, D., Ghosh, D., Santra, S.C. 2018b. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain Ecotoxicology and Environmental Safety | spa |
dc.relation.references | Nila Maria Bezerril Fontenele, Maria de Lourdes Oliveira Otoch, Neuza Felix Gomes-Rochette, Alana Cecília de Menezes Sobreira, Adolph Annderson Gonçalves Costa Barreto, Francisco Dalton Barreto de Oliveira, Jose Helio Costa, Simone da Silveira S Borges, Ronaldo Ferreira do Nascimento, Dirce Fernandes de Melo. 2017. Effect of lead on physiological and antioxidant responses in two Vigna unguiculata cultivars differing in Pb-accumulation. Chemosphere 176: 397e404. | spa |
dc.relation.references | Nonnoi F., Chinnaswamy A., García de la Torre V. S., Coba de la Peña T., Lucas M. M., Pueyo J. J. 2012. Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Applied Soil Ecology 61:49– 59. | spa |
dc.relation.references | Omid Sadeghipour. 2016. Pretreatment with nitric oxide reduces lead toxicity in cowpea (vigna unguiculata [l.] walp.) Arch. Biol. Sci., Belgrade, 68(1):165-175, DOI:10.2298/ABS150325139S | spa |
dc.relation.references | Pandey, C., Gupta, M. 2015. Selenium and auxin mitigate arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J. Hazard. Mater. 287, 384–391. | spa |
dc.relation.references | Paradelo, R. 2013. Utilización de materiales compostados en la rehabilitación potencial de espacios afectados por residuos mineros y suelos de mina. Boletín Geológico y Minero, ISSN: 0366-0176, 124 (3): 405-419 | spa |
dc.relation.references | Peng Wang a, Neal W. Menzies , Enzo Lombi , Brigid A. McKenna , Martin D. de Jonge , Erica Donner F. Pax C. Blamey , Chris G. Ryan , David J. Paterson , Daryl L. Howard , Simon A. James , Peter M. Kopittke . 2013. Quantitative determination of metal and metalloid spatial distribution in hydrated and fresh roots of cowpea using synchrotron-based X-ray fluorescence microscopy. Science of the Total Environment 463-464 131–139. | spa |
dc.relation.references | Prieto Méndez J; González Ramírez C. A.; Román Gutiérrez A. D.; Prieto García, F. 2009. Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems vol. 10, núm. 1, pp. 29-44 | spa |
dc.relation.references | Semu E., Singh, B. R., Selmer-Olsen A. R., and K. Steenberg. 1985. Uptake of Hg from 203Hg-labeled mercury compounds by wheat and beans grown on an oxisol. Plant and Soil 87,347-355. | spa |
dc.relation.references | Song B., Lei M., Chen T., Zheng Y., Xie Y., LI X., Gao D. 2009. Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China Journal of Environmental Sciences 21 1702-1709. | spa |
dc.relation.references | Sun Z., Chen J., Wang X., Lv C. 2016. Heavy metal accumulation in native plants at a metallurgy waste sitein rural areas of Northern China. Ecol. Eng. 86 60–68. | spa |
dc.relation.references | Tran, T. A. T., Zhou, F., Yang, W., Wang, M., Dinh, Q. T., Wang, D., & Liang, D. (2018). Detoxification of mercury in soil by selenite and related mechanisms. Ecotoxicology and environmental safety, 159, 77-84. | spa |
dc.relation.references | Tóth G., Hermann T., Da Silva M.R., Montanarella L. 2016. Heavy metals in agricultural soils of the European Union with implicationsfor food safety. Environment International 88 299–309. | spa |
dc.relation.references | Tofiño-Rivera, A. P., Rozo Leguizamón, Y., Gómez-Latorre, D. A., GómezRamírez, L. F., & Tamayo-Molano, P. J. (2018). Modelo productivo de frijoles para el Caribe húmedo colombiano. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA). | spa |
dc.relation.references | Durango, J. V. V., Negrete, J. L. M., Colorado, B. J., & Castro, L. M. P. (2010). Remediación de suelos contaminados con mercurio utilizando guarumo (Cecropia peltata). Ingeniería y desarrollo, (27), 113-129. | spa |
dc.relation.references | Vijayarengan P., Deepthy M., 2014. Changes in growth, pigments and phytoremediating capability of four plant species under copper stress. Int J Environ Biol. 4(2): 119-126. | spa |
dc.relation.references | Wan, Y., Camara, A. Y., Huang, Q., Yu, Y., Wang, Q., & Li, H. (2018). Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management. Ecotoxicology and environmental safety, 156, 67-74. | spa |
dc.relation.references | Wilfred E. Rauser and Erwin B. Dumbroff. 1981.Effects of excess cobalt, nickel and zinc on the wáter relations of phaseolus vulgaris. Enviromental and Experimental Botary. Vol. 21. N°2, pp. 249-255. | spa |
dc.relation.references | Xue, T., Hartikainen, H., Piironen, V., 2001. Antioxidative and growth-promoting Effect selenium on senescing lettuce. Plant Soil 237, 55–61. | spa |
dc.relation.references | Zhao, Y., Hu, C., Wang, X., Qing, X., Wang, P., Zhang, Y., ... & Zhao, X. 2019. Selenium alleviated chromium stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) by regulating root morphology and metal element uptake. Ecotoxicology and environmental safety, 173, 314-321. | spa |
dc.relation.references | Zhang, H., Feng, X., Zhu, J., et al., 2012. Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ. Sci. Technol. 46, 10040–10046. DOI: 10.1021/es302245r. | spa |
dc.rights | Copyright Universidad de Córdoba, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Selenium | eng |
dc.subject.keywords | Heavy metals | eng |
dc.subject.keywords | Impregnation | eng |
dc.subject.keywords | Cowpea beans | eng |
dc.subject.proposal | Selenio | spa |
dc.subject.proposal | Metales pesados | spa |
dc.subject.proposal | Impregnación | spa |
dc.subject.proposal | Cowpea beans | spa |
dc.title | Cultivo de frijol caupí (vigna unguiculata l. walp) impregnado con selenio en suelos y sedimentos contaminados con metales pesados (cr, ni, cd, pb, hg) | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- Informe final MCA_LUIS DÍAZ.pdf
- Tamaño:
- 2.12 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Documento final completo
No hay miniatura disponible
- Nombre:
- Formato de Autorización Luís..pdf
- Tamaño:
- 1.18 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Formato de autorización autores
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: