Show simple item record

dc.contributor.authorHernández Fernández, Israel Antoniospa
dc.coverage.spatialMontería, Córdobaspa
dc.date.accessioned2020-06-04T17:18:39Zspa
dc.date.available2020-06-04T17:18:39Zspa
dc.date.issued2020-05spa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/2771spa
dc.description.abstractSe estimó el área foliar con parámetros biométricos de las hojas de cuatro genotipos de Stevia (Stevia rebaudiana (Bertoni) Bertoni) en el Sinú medio, utilizando medidas morfométricas para expresar modelos matemáticos potenciales, lineales con intercepto y modificado, en función del largo (L), ancho (W) y/o el producto de ambas (LW). El experimento fue establecido entre noviembre de 2018 y abril de 2019 en el área experimental de la Facultad de Ciencias Agricolas de la Universidad de Córdoba, Colombia ubicado en las coordenadas geográficas 8° 47’ 31,5” de latitud norte y 75° 51’ 36,2” de longitud oeste. Se realizó un muestreo aleatorio simple de 1.500 hojas seleccionadas de 30 plantas por cada genotipo. Para la construcción de los modelos se utilizaron 1.000 hojas por cada genotipo generando en total 36 ecuaciones en función de L, W y LW; las 500 hojas restantes se utilizaron para comprobar la precisión de los modelos particulares. Adicionalmente, se generó un modelo general combinado utilizando 4.000 hojas que incluye a todos los genotipos y fue comparado estadisticamente con los modelos particulares de mejor ajuste. Los criterios estadísticos utilizados indicaron que los mejores modelos para todos los genotipos fueron el potencial y lineal con intercepto en función de W y LW, respectivamente; sin embargo, el modelo lineal presentó mayor estabilidad y precisión de los coeficientes estimados, por lo que se sugiriere utilizar este modelo para estimar el área foliar en su respectivo genotipo. Las ecuaciones para cada genotipo fueron: Y = 0,2629 + 0,6589 LW + εi, Y = 0,1607 + 0,6714 LW + εi, Y = 0,2957 + 0,5918 LW + εi y Y = 0,6245 + 0,5871 LW + εi para los genotipos C04, C16, C18 y MII, respectivamente. Sin embargo, los análisis de varianza demostraron que los coeficientes estimados del modelo general y particular difieren estadísticamente por lo que no fue posible agrupar los cuatro genotipos de Stevia.spa
dc.description.tableofcontentsINTRODUCCIÓN .................................................................................................. 16spa
dc.description.tableofcontents1. DEFINICIÓN DEL PROBLEMA .................................................................. 17spa
dc.description.tableofcontents2. JUSTIFICACIÓN ........................................................................................ 19spa
dc.description.tableofcontents3. REVISIÓN DE LITERATURA ..................................................................... 20spa
dc.description.tableofcontents3.1 CONDICIONES AGROECOLÓGICAS DE LA STEVIA .................................20spa
dc.description.tableofcontents3.2 IMPORTANCIA Y BENEFICIOS DE LA STEVIA ....................................20spa
dc.description.tableofcontents3.3 ESTADISTICAS DE ÁREA Y PRODUCCIÓN DE STEVIA ......................................22spa
dc.description.tableofcontents3.4 EL ÁREA FOLIAR Y SU APLICACIÓN .......................................................................................24spa
dc.description.tableofcontents3.4.1 La hoja de las plantas. ..........................................................................................24spa
dc.description.tableofcontents3.4.2 El área foliar. ................................................25spa
dc.description.tableofcontents3.4.3 Análisis de crecimiento. ...........................................................................................25spa
dc.description.tableofcontents3.5 MÉTODOS UTILIZADOS PARA DETERMINAR EL ÁREA FOLIAR ......... 25spa
dc.description.tableofcontents3.5.1 Métodos directos. ............................................................................................26spa
dc.description.tableofcontents3.5.2 Métodos indirectos. .............................................................................................27spa
dc.description.tableofcontents3.5.3 Métodos de estimación. ...........................................................................................28spa
dc.description.tableofcontents3.5.4 Métodos comparativos. ...........................................................................................29spa
dc.description.tableofcontents3.5.5 Métodos basados en el análisis de imágenes. ..........................................................................................30spa
dc.description.tableofcontents3.6 ANTECEDENTES DE LA INVESTIGACIÓN .........................................................................................31spa
dc.description.tableofcontents3.6.1 Modelos para estimar área foliar en diferentes cultivos. ........................................................................................32spa
dc.description.tableofcontents4. OBJETIVOS .......................................................39spa
dc.description.tableofcontents4.1 OBJETIVO GENERAL .........................................................................................39spa
dc.description.tableofcontents4.2 OBJETIVOS ESPECIFICOS.....................39spa
dc.description.tableofcontents5. HIPÓTESIS ...........................................................40spa
dc.description.tableofcontents6. METODOLOGÍA ...................................................41spa
dc.description.tableofcontents6.1 LOCALIZACIÓN ...................................................41spa
dc.description.tableofcontents6.2 MATERIAL EXPERIMENTAL ..................................................................................................41spa
dc.description.tableofcontents6.3 VARIABLE RESPUESTA ...................................................................................................41spa
dc.description.tableofcontents6.4 DISEÑO DE MUESTREO ...................................................................................................41spa
dc.description.tableofcontents6.5 MANEJO AGRONÓMICO ..................................................................................................42spa
dc.description.tableofcontents6.6 PROCEDIMIENTO ...............................................42spa
dc.description.tableofcontents6.7 ANALISIS DE DATOS ..................................................................................................44spa
dc.description.tableofcontents7. RESULTADOS Y DISCUSIÓN ...................................................................................................46spa
dc.description.tableofcontents7.1 RESULTADOS .................................................................................................46spa
dc.description.tableofcontents7.1.1 Perfil general de las hojas muestreadas ................................................................................................46spa
dc.description.tableofcontents7.1.2 Análisis de los genotipos de stevia (S. rebaudiana) ................................................................................................48spa
dc.description.tableofcontents7.2 DISCUSIÓN ..............................................................72spa
dc.description.tableofcontents8. CONCLUSIONES ......................................................76spa
dc.description.tableofcontentsREFERENCIAS .....................................................................................................77spa
dc.description.tableofcontentsANEXOS ................................................................................95spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsCopyright Universidad de Córdoba, 2019spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleEstimación del área foliar con parámetros biométricos de las hojas de cuatro genotipos de stevia (Stevia rebaudiana (Bertoni) Bertoni) en el Sinú Mediospa
dc.typeTrabajo de grado - Pregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.relation.referencesAchten, W., Maes, W., Reubens, B., Mathijs, E., Singh, V., Verchot, L. y Muys, B. (2010). Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass Bioenerg, 34, 667–676.spa
dc.relation.referencesAckley, W., Crandall, P. y Russell, T. (1958). The use of linear measurements in estimating leaf areas. Proc. Amer. Soc. Hort. Sci. 72, 326-330.spa
dc.relation.referencesAcosta, N. (2015). Las potencialidades de la Stevia nacional en el mercado mundial. Observatorio de Economía Internacional.spa
dc.relation.referencesAcosta, J. y Adams, M. (1991). Plant traits and yield stability of dry bean (Phaseolus vulgaris) cultivars under drought stress. J. Agric. Sci. 117:213–219.spa
dc.relation.referencesAgronet. (2016). Estadísticas Agrícola; Área, producción, rendimiento y participación. http://www.agronet.gov.co/estadistica/Paginas/default.aspx.spa
dc.relation.referencesAkaike H. (1974). A new look at the statistical model identification. Transac Autom Control, 19, 716–723.spa
dc.relation.referencesAlekseenko, L. (1965). Vesovoy method opredeleniya listovoy poverkhnosti lugovykh rasteny I lugovykh soobshchestv (Method of determining leaf surface of meadow plans and meadow communities by weighing). Bot. Sh., 50, 205-208.spa
dc.relation.referencesAli, M., Al-Ani, A., Eamus, D. y Tan, D. (2012). A New image-processing-based technique for measuring leaf dimensions. American-Eurasian J. Agric. Environ. Sci. 12: 1588-1594.spa
dc.relation.referencesÁlvarez, J. (2004). Stevia rebaudiana Bertoni. Universidad EAFIT. Departamento de Negocios Internacionales. Secretaria de Agricultura y Desarrollo Rural de Antioquia, Medellín.spa
dc.relation.referencesAlvarez, Y., Alvarez, E., Cano, J. y Suescún, D. (2012). Modelo Matemático para estimar área foliar en árboles Del bosque tropical seco en el Caribe Colombiano. Revista del Instituto de Investigaciones Tropicales. 7:69-79.spa
dc.relation.referencesAnikiev, V. y Kutuzov, F. (1961). Novy sposob opredeleniya ploshchadi listovoy poverkhnosti u zlakov. (A new method for determining leaf surface area of cereals). Fiziol. Rast., 8, 375-377.spa
dc.relation.referencesAntunes, C., Pompelli, M., Carretero, D. y DaMatta, F. (2008). Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Annals of Applied Biology, 153(1), 33–40. doi:10.1111/j.1744-7348.2008.00235.xspa
dc.relation.referencesAquino, L., Santos, V., Santos, J. y Moreira, M. (2011). Estimación del área foliar de girasol por métodos no destructivos. Bragantia, 70 (4), 832-836. http://www.redalyc.org/articulo.oa?id=90821058015spa
dc.relation.referencesAshley, D., Doss, B. y Bennett, O. (1963). A method of determining leaf area in cotton. Agron. J., 55, 584-585.spa
dc.relation.referencesAstegiano, E. y Favaro, J. (1987). Desarrollo del área foliar en tres cultivares de tomate. Resúmenes de la XVIII Reunión Nacional de Fisiología Vegetal. Corrientes. Argentina.spa
dc.relation.referencesAstegiano, E., Favaro, J. y Bouzo, C. (2001). Estimación del área foliar en distintos cultivares de tomate (Lycopersicon esculentum Mill.) utilizando medidas foliares lineales. Invest. Agr.: Prod. Prot. Veg., Vol 16 (2), 249-256.spa
dc.relation.referencesBaker, B., Olszyk, D. y Tingey, D. (1996). Digital image analysis to estimate leaf area. J. Plant Physiol., vol 148, 530-535.spa
dc.relation.referencesBalakrishnan, K., Sundaram, K., Ajunan, A. y Matarajatnam, N. (1992). A simple method for estimating leaf area in tomato. Madras Agric. J., 79 (3), 162-163.spa
dc.relation.referencesBange, M., Graeme, L., Milroy, S. y Kenneth, G. (2000). Improving estimates of individual leaf area of sunflower. Agron. J., 92, 761-765spa
dc.relation.referencesBatyuk, V., Ryblako, E. y Okanenko, A. (1959). A photoelectric planimeter for measuring leaf area. Biol. Plant, 1, 167-175.spa
dc.relation.referencesBeerling, D. y Fray, J. (1990). A comparison of the accurate variability and speed of five different methods for estimating leaf area. Ann. Bot. 65:483-488.spa
dc.relation.referencesBhan, V. y Pande, H. (1966). Measurement of leaf area of rice. Agron. J., 58, 454.spa
dc.relation.referencesBiscoe, P. y Jagaard, K. (1985). Measuring plant growth and structure. En: Marshall, B., Woodward, F.I. (Eds.), Instrumentation for Environmental Physiology. Cambridge University Press. Sidney. 215-228.spa
dc.relation.referencesBlanco, F. y Folegatti, M. (2005). Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Sci Agr, 62, 305–309.spa
dc.relation.referencesBoisbunon, A., Canu, S., Fourdrinier, D., Strawderman, W. y Wells, M. (2014). Akaike's information criterion, Cp and estimators of loss for elliptically symmetric distributions. Int Stat Rev, 82, 422–439.spa
dc.relation.referencesBonilla, C., Sánchez, M. y Perlaza, D. (2007). Evaluación de métodos de propagación, fertilización nitrogenada y fenología de Stevia en condiciones del Valle del Cauca. Acta Agronómica. 56(3):131-134.spa
dc.relation.referencesBrougham, R. (1956). Effect of intensity of defoliation on re-growth of pasture. Austral. J. Agric. Res., 7, 377- 387.spa
dc.relation.referencesBrown, H. y Escombe, F. (1905). Researches on some of the physiological processes of green leaves. Proc. Roy. Soc., B 76, 29-111.spa
dc.relation.referencesBurgos, A., Avanza, M., Balbi, C., Prause, J. y Argüello, J. (2010). Modelos para la estimación no destructiva del área foliar de dos cultivares de mandioca (Manihot esculenta Crantz) en la Argentina. Agriscientia, 27(1), 55-61. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1668-298X2010000100007&lng=es&tlng=pt.spa
dc.relation.referencesBusato, C., Fontes, P., Braun, H. y Busato, C. (2010). Estimativa da área foliar da batateira, cultivar Atlantic, utilizando dimensões lineares. Rev Cienc Agron 41: 702-708.spa
dc.relation.referencesButtaro, D., Rouphael, Y., Rivera, C., Colla, G. y Connella, M. (2015). Simple and accurate allometric model for leaf area estimation in Vitis vinifera L. genotypes. Photosynthetica 53, 342–348. http://dx.doi.org/10.1007/s11099-015-0134-1.spa
dc.relation.referencesBylesjö, M., Segura, R. Soolanayakanahally, Y., Rae, A., Trygg, J., Gustafsson, P., Jansson, S. y Street, N. (2008). LAMINA: A tool for rapid quantification of leaf size and shape parameters. BMC Plant. Biol. 8: 82.spa
dc.relation.referencesCabezas, M. y Peña, F. (2012). Estimación del área foliar del arándano (Vaccinium corymbosum) por medio de un método no destructivo. Rev. U.D.C.A Act. y Div. Cient. 15(12): 373 – 379.spa
dc.relation.referencesCarakostas, M., Curry, L., Boileau, A. y Brusick, D. (2008). Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food and Chemical Toxicology. 46 (Suppl. 7), 1-10.spa
dc.relation.referencesCarbonneau, A. (1976). Principes et méthodes de mesure de la surface foliare. Essai de caractérisation destypes de feuilles dans le genre Vitis. Ann. Amélior. Plantes, 26 (2), 327-343.spa
dc.relation.referencesCárcel, S., Intrigliolo, D. y Castel, J. (2005). Área foliar y radiación interceptada en tempranillo: Efecto del riego y de la carga de cosecha. XX Reunión Experimentación Viticultura y Enología.spa
dc.relation.referencesCardona, C., Araméndiz, H. y Barrera, C. (2009). Estimación del área foliar de papaya (Carica papaya L.) basada en muestreo no destructivo. Revista UDCA de Actualidad y Divulgación Científica. 12. 131 - 139.spa
dc.relation.referencesCardona, C., Araméndiz, H. y Barrera, C. (2009). Modelo para Estimación de Área Foliar en Berenjena (Solanum melongena L) Basado en Muestreo no Destructivo. Temas Agrarios, 14(2), 14-22. https://doi.org/10.21897/rta.v14i2.675spa
dc.relation.referencesCardozo, N., Parreira, M., Amaral C., Alves, P. y Bianco, S. (2011). Estimativa da área foliar de Crotalaria juncea L. a partir de dimensões lineares do limbo foliar. Biosci J 27: 902-907.spa
dc.relation.referencesCargnelutti Filho, A., Toebe, M., Burin, C., Alves, B. y Neu, I. (2015). Number of leaves needed to model leaf area in jack bean plants using leaf dimensions. Bioscience Journal, 31(6). https://doi.org/10.14393/BJ-v31n6a2015-26135spa
dc.relation.referencesCarleton, A. y Foote, W. (1965). A comparison of methods for estimating total leaf area of barley plants. Crop Science, 602-603.spa
dc.relation.referencesCarvalho, D., Toebe, M., Tartaglia, L., Bandeira, T. y Tambara, L. (2017). Leaf area estimation from linear measurements in different ages of Crotalaria juncea plants. Anais Da Academia Brasileira de Ciências, 89(3), 1851–1868. https://doi.org/10.1590/0001-3765201720170077spa
dc.relation.referencesCasierra, F., Zapata, V. y Cutler, J. (2017). Comparación de métodos directos e indirectos para la estimación del área foliar en duraznero (Prunus persica) y ciruelo (Prunus salicina). Revista Colombiana De Ciencias Hortícolas, 11(1), 30-38. https://doi.org/10.17584/rcch.2017v11i1.6143spa
dc.relation.referencesChatterjee, S. y Hadi, A. (2006). Regression análisis by example. Hoboken: John Wiley and Sons.spa
dc.relation.referencesChaudhary, P., Godara, S. Cheeran, A. y Chaudhari, A. (2012). Fast and accurate method for leaf area measurement. Int. J. Comput. Appl. 49: 22-25.spa
dc.relation.referencesCho, Y., Oh, S., Oh, M. y Son, J. (2007). Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Scientia Horticulturae, 111(4), 330–334. https://doi.org/10.1016/j.scienta.2006.12.028spa
dc.relation.referencesClements, F. y Goldsmith, W. (1924). The phytometer method in ecology. Carnegie Inst. of Washington Publ., 356.spa
dc.relation.referencesCogliatti, D., Cataldi, M. y Iglesias. F. (2010). Estimación del área de las hojas en plantas de trigo bajo diferentes tipos de estrés abiótico. AgriScientia 27: 43-53.spa
dc.relation.referencesColorado F, Rodríguez D, y Cortés J. (2010). Análisis de crecimiento de rúcula (Eruca sativa Mill.) en la sabana de Bogotá, bajo dos condiciones ambientales Rev. U.D.C.A Act. y Div. Cient. 13 (1): 105-113.spa
dc.relation.referencesCompañía Nacional De Stevia S.A.S. (2013). Cartilla cultivo de stevia. Medellín – Colombia. https://es.scribd.com/document/238197663/Cartilla-Stevia-CNS.spa
dc.relation.referencesConibear, D. y Furmidge, C. (1960). A simple photo-electric device for measuring the area of detached leaves. Ann. Rept. Agric. Res. Sta., Long Ashton, 66-68.spa
dc.relation.referencesCorney, D., Tang, H., Clark, J., Hu, Y. y Jin, J. (2012). Automating digital leaf measurement: The tooth, the whole tooth, and nothing but the tooth. PLOS ONE 7. https://doi.org/10.1371/journal.pone.0042112spa
dc.relation.referencesCumming, G., Fidler, F. y Vaux, D. (2007). Error bars in experimental biology. Journal of Cell Biology 177(1), 7-11. https://doi.org/10.1083/jcb.200611141spa
dc.relation.referencesCraig Macfarlane, C., Hoffman, M., Eamus, D., Kerp, N., Higginson, S., Mcmurtrie, R. y Adams, M. (2007). Estimation of leaf area index in eucalypt forest using digital photography. Agric. Forest. Meteorol. 143:176–188.spa
dc.relation.referencesCristofori, V., Rouphael, Y., Gyves, M. y Bignami, C. (2007). A simple model for estimating leaf area of hazelnut from linear measurements. Scientia Horticulturae, 113(2), 221–225. https://doi.org/10.1016/j.scienta.2007.02.006spa
dc.relation.referencesDarrow, G. (1932). Methods of measuring strawberry leaf areas. Plant Physiol., 7, 745-747.spa
dc.relation.referencesDaughtry, C. (1990). Direct measurements of canopy structure. Remote Sensing Rewiews, 5, 45-60.spa
dc.relation.referencesDe Lima, F. y Malavolta, E. (2004). Estimativa da area foliar em estevia (Stevia rebaudiana Bertoni). http:// www.lni.unipi.it/stevia/stevia/ estimativadearea.htm.spa
dc.relation.referencesDornbusch, T. y Andrieu, B. (2010). Lamina Shape An image processing tool for an explicit description of lamina shape tested on winter wheat (Triticum aestivum L.). Comput. Electron. Agr. 70: 217-224.spa
dc.relation.referencesDumas, Y. (1990). Interrelation on linear measurements and total leaf area or dry matter production in young tomato plants. Adv. Hortic. Sci., 4, 172-176.spa
dc.relation.referencesDurbin, J y Watson, G. (1950) Testing for serial correlation in least squares regression I. Biometrika, 37, 409–428.spa
dc.relation.referencesEscuela de Administración y Finanzas [Eafit]. (2004). Inteligencia de mercados internacionales de S. rebaudiana. Departamento de Negocios Internacionales, Medellín, Colombia.spa
dc.relation.referencesEaslon, H. M., y Bloom, A. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant. Sci. 2: 1400033. https://doi.org/10.3732/apps.1400033spa
dc.relation.referencesElings, A. (2000). Estimation of leaf area in tropical maize. Agronomy Journal 92: 436-444.spa
dc.relation.referencesElsner, E. y Jubb, G. (1988). Leaf area estimation of Concord grape leaves from simple linear measurements. Am. J. Enol. Vitic. 39 (1), 95-97.spa
dc.relation.referencesEpstein, E. y Robinson, R. (1965). A rapid method for determining leaf area of potato plants. Agron. J., 57, 515-516.spa
dc.relation.referencesEriksson, H., Eklundh, L., Hall, K, y Lindroth, A. (2005). Estimating LAI in deciduous forest stands. Agric. Forest Meteorol. 129:27-37.spa
dc.relation.referencesErkucuk, A., Akgun, I. y Yesil-Celiktas, O. (2009). Supercritical CO2 extraction of glycosides from Stevia rebaudiana leaves: Identification and optimization. J. Supercrit. Fluids 51, 29-35.spa
dc.relation.referencesEspitia, M., Montoya, R. y Atencio, L. (2009). Rendimiento de Stevia rebaudiana bert. bajo tres arreglos poblacionales en el Sinú medio. Revista U.D.C.A Actualidad y Divulgación Científica, 12(1), 151-161. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262009000100016&lng=en&tlng=esspa
dc.relation.referencesEspitia, M., Montoya, R. y Jarma, A. (2008). Stevia en el Caribe Colombiano. Montería – Córdoba, Colombia: Gráficas del Caribe Ltda.spa
dc.relation.referencesEspitia, M., Montoya, R., Robles, J., Barbosa, C. y Vergara, C. (2006). Modelo estadístico para estimación del área foliar en Stevia rebaudiana Bertoni en el Sinú medio. Revista Temas Agrarios, volumen 11(2). http://revistas.unicordoba.edu.co/revistas/index.php/temasagrarios/article/view/644spa
dc.relation.referencesFallovo, C., Cristofori, V., Mendoza, E., Rivera, C., Rea, R., Fanasca, S., Bignami, C., Sassine, Y., y Rouphael, Y. (2008). Modelo de estimación del área foliar para frutos pequeños a partir de mediciones lineales, HortScience horts, 43 (7), 2263-2267. https://journals.ashs.org/hortsci/view/journals/hortsci/43/7/article-p2263.xmlspa
dc.relation.referencesFargo, W., Bonjour, E. y Wagner, T. (1986). An estimation equation for squash leaf area using leaf measurements. Can. J. Plant Sci., 66, 677-682.spa
dc.relation.referencesFavaro, F. y Vinícius, M. (2003). Um novo método para estimar o índice de área foliar de plantas de pepino e tomate. Horticultura Brasileira. 21 (4):spa
dc.relation.referencesFont Quer, P. (1985). Diccionario de Botánica. Barcelona, España: Editorial Labor, S.A.spa
dc.relation.referencesFrear, D. (1935). Photoelectric apparatus for measuring leaf areas. Plant Physiol., 10, 569-574.spa
dc.relation.referencesFreeman, G. y Bolas, B. (1956). A method for the rapid determination of leaf areas in the field. Ann. Rep. Est Malling Res. Station, 104-107.spa
dc.relation.referencesGamiely, S., Randle, W., Mills, H. y Smittle, D. (1991). A rapid and non-destructive method for estimating leaf area of onions. HortScience, 26 (2), 206.spa
dc.relation.referencesGavrilov, N. y Eremenko, L. (1959). Pribor dlya izmereniya ploshchadi listev. (An instrument for measuring leaf areas.) Fiziol. Rast., 6, 508-512.spa
dc.relation.referencesGerdel, R. y Salter, R. (1928). Measurement of leaf area using the photoelectric cell. J. Am. Soc. Agron., 20, 635-642.spa
dc.relation.referencesGiovanardi, R. (1972). Stima dell’area fogliare mediante misru biometriche ed applicazioni allo studio della dinamica di accrescimento del mais. Riv. Agron., 6 (4), 243-247.spa
dc.relation.referencesGoodall, D. (1947). Diurnal changes in the area of cacao leaves. Ann. Bot. N.S., 11, 449-451.spa
dc.relation.referencesGreen, J., Appel, H., Rehrig, E., Harnsomburana, J., Chang, J., BalintKurti, P. y Shyu, C. (2012). PhenoPhyte: A flexible affordable method to quantify 2D phenotypes from imagery. Plant Method 8: 45.spa
dc.relation.referencesGregersen, S., Jeppesen, P., Holst, J. y Hermansen, K. (2004). Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism. 53(1), 73-76.spa
dc.relation.referencesHatfield, J., Stanley, C. y Carlson, R. (1976). Evaluation of an electronic foliometer to measure leaf area in corn and soybeans. Agron. J., 68, 434-436.spa
dc.relation.referencesHay, R. y Porter, J. (2006). The physiology of crop yield (2nd ed.). Oxford: Blackwell Publishing.spa
dc.relation.referencesHibbard, R., Grisby, B. y Keck, W. (1937). A low light intensity photoelectric device for the measuring of leaf areas. Michigan Academy of Science.23, 141-147.spa
dc.relation.referencesHill, S., Prokosch, M., Morin, A. y Rodeheffer, C. (2014). The effect of non-caloric sweeteners on cognition, choice, and post-consumption satisfaction. Appetite 83: 82-88.spa
dc.relation.referencesHoffman, G. (1971). Estimating leaf area from length measurements for hybrid granex onion. Agron. J. 63, 948- 949.spa
dc.relation.referencesHsieh, M., Chan, P., Sue, Y., Liu, J., Liang, T., Huang, T., Tomlinson, B., Chow, M., Kao, P. y Chen Y. (2003). Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: a two-year, randomized, placebo-controlled study. Clinical Therapeutics 25(11), 2797-2808.spa
dc.relation.referencesHumphries, E. y French, S. (1963). The accuracy of the rating method for determining leaf area. Ann. appl. Biol. 52, 193-198.spa
dc.relation.referencesHumphries, E. y French, S. (1964). Determination of leaf area by rating in comparison with geometric shapes. Ann. appl. Biol. 54, 281-284.spa
dc.relation.referencesHurd, R. y Rees, A. (1966). Transmission error in the photometric estimation of leaf area. Plant Physiol., 41, 905-906.spa
dc.relation.referencesIbnu, E., Bin, A. y Mimi, A. (2014). Evaluación de la tolerancia a los metales pesados en hojas, tallos y flores de la Stevia rebaudiana Planta. Ciencias Ambientales 20: 386-393.spa
dc.relation.referencesIntagri (2017). El Índice de Área Foliar (IAF) y su Relación con el Rendimiento del Cultivo de Maíz. https://www. intagri.com/articulos/cereales/el-indice-de-area-foliar-iafspa
dc.relation.referencesIzco, J., Barreno, E., Burgués, M., Costa, M., Devesa, J., Fernández, F., Gallardo, T., Lilimona, X., Salvo, E., Talavera, S. y Valdés, B. (1997). Botánica. Madrid, España: McGraw-Hill Interamericana de España.spa
dc.relation.referencesJarma, A. (2003). Stevia rebaudiana Bert., alternativa de sustitución de cultivos ilícitos en Colombia. (Informe Final de Proyecto). U. de Córdoba, Fac. Ciencias Agrícolas. Montería.spa
dc.relation.referencesJarma, A., Rengifo, T. y Araméndiz, H. (2005). Aspectos fisiológicos de Stevia (Stevia rebaudiana Bertoni) en el Caribe colombiano: I. Efecto de la radiación incidente sobre el área foliar y la distribución de biomasa. Agr. Col. 23(2):207-216. http://www.revistas.unal.edu.co/index.php/agrocol/article/view/19943spa
dc.relation.referencesJarma, A., Rengifo, T. y Araméndiz, H. (2006). Fisiología de Stevia (Stevia rebaudiana Bertoni) en función de la radiación en el Caribe colombiano. II. Análisis de crecimiento. Agr. Col. 24(1):38-47.spa
dc.relation.referencesJenkins, H. (1959). An airflow planimeter for measuring the area of detached leaves. Plant Physiol., 34, 532- 536.spa
dc.relation.referencesJeppesen, P., Gregersen, S., Poulsen, R. y Hermansen, K. (2000). Stevioside acts directly on pancreatic 13 cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metabolism 149(2), 208-214.spa
dc.relation.referencesJeppesen, P., Gregersen, S., Alstrup, K. y Hermansen, K. (2002). Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto- Kakizaki (GK) rats. Phytomed. 9, 9-14.spa
dc.relation.referencesJerez, E., Martín, R. y Díaz, Y. (2014). Estimación de la superficie foliar en dos variedades de papa (Solanum tuberosum L.) por métodos no destructivos. Cultivos Tropicales, 35(1), 57-61. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362014000100008&lng=es&tlng=es.spa
dc.relation.referencesJohnson, R. (1967). Comparison of methods for estimating cotton leaf area. Agron. J., 59, 493-494.spa
dc.relation.referencesJonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P. and Baret, F. (2004). Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agric. Forest Meteorol. 121:19–35.spa
dc.relation.referencesKandiannan, K., Kailasam, C., Chandaragiri, K. and Sankaran, N. (2002). Allometric model for leaf area estimation in black pepper (Piper nigrum L.). J. Agron. Crop Sci., 188, 138-140spa
dc.relation.referencesKandiannan, K., Parthasarathy, U., Krishnamurthy, K., Thankamani, C. y Srinivasan, V. (2009). Modeling individual leaf area of ginger (Zingiber officinale Roscoe) using leaf length and width. Scientia Horticulturae, 120(4), 532–537. https://doi.org/10.1016/j.scienta.2008.11.037spa
dc.relation.referencesKeramatlou, I., Sharifani, M., Sabouri, H., Alizadeh, M., y Kamkar, B. (2015). A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Scientia Horticulturae, 184, 36–39. https://doi. org/10.1016/j.scienta.2014.12.017spa
dc.relation.referencesKishor, M., Senthil, R., Sankar, V., Sakthivel, T., Karunakaran, G. y Tripathi, P. (2017). Non-destructive estimation of leaf area of durian ( Durio zibethinus ) An artificial neural network approach. Scientia Horticulturae, 219, 319–325. https://doi.org/10.1016/j.scienta.2017.03.028spa
dc.relation.referencesKoller, H. (1972). Leaf area-Leaf weight relationships in the soybean canopy. Crop Sci., 12, 180-183.spa
dc.relation.referencesKorva, J. y Forbes, G. (1997). A simple and low-cost method for leaf area measurement of detached leaves. Expl. Agric., 33, 65-72.spa
dc.relation.referencesKramer, P. (1937). An improved photoelectric device for measuring leaf areas. Am. J. Bot., 24, 375-376.spa
dc.relation.referencesKrishnamurthy, K., Jagannath, M., Rajashekara, B. y Raghunatha, G. (1973). Estimation of leaf area in grain sorghum for single leaf measurements. Agron. J., 66 (4), 544-545.spa
dc.relation.referencesKujur, R., Singh, V., Ram, M., Yadava, H., Singh, K., Kumari, S. y Roy, B. (2010). Antidiabetic activity and phytochemical screening of crude extract of Stevia rebaudiana in alloxan-induced diabetic rats. Pharmacognosy Res 2: 258-263.spa
dc.relation.referencesKuntal, D. (2013). Wound healing potential of aqueous crude extract of Stevia rebaudiana in mice. Brazilian Journal of Pharmacognosy 23: 351-357.spa
dc.relation.referencesKvet, J. y Marshall, J. ( 1971). Assessment of leaf area and other assimilating plant surfaces. En: Sestak, Z., Catsky, J., Jarvis, P.G. (eds.) Plant photosynthetic production Manual of methods. Junk, N.V. Pubs. La Haya.517-555.spa
dc.relation.referencesKvet, J., Necas, J. y Kubin, S. (1966). Mereni listové plochy. (Measurements of leaf area). En: Sestak, Z., Catsky, J. (Eds.): Metody Studia Fotosynthetické Produkce Rostlin. (Methods of Studing Photosynthetic Production of Plants). Academia, Praga. 315-331.spa
dc.relation.referencesLahlou, S., Tahraoui, A., Israili, Z. y Lyoussi, B. (2006). Diuretic activity of the aqueous extracts of Carum carvi and Tanacetum vulgare in normal rats. Journal of Ethnopharmacology 110: 458–463.spa
dc.relation.referencesLailerd, N., Saengsirisuwan, V., Sloniger, J., Toskulkao, C. y Henriksen, E. (2004). Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle. Metabolism 53: 101−107.spa
dc.relation.referencesLal, K. y Subba Rao, M. (1951). A rapid method of leaf area determination. Nature, 167, 72.spa
dc.relation.referencesLanger, R. (1956). Measurement of leaf growth in grasses. En: Milthorpe, F.L. (ed). The growth of leaves. Butterworths Scientific publications, Londres. 197-198.spa
dc.relation.referencesLarcher, W. (2003). Physiology plant ecology: Ecophysiology and stress physiology of functional groups (4th ed.). Berlín, Alemania: Springer.spa
dc.relation.referencesLarsen, D. y Kershaw, J. (1990). The measurement of leaf area. En: Lassoie, J., Hinckley, T. (Eds.), Techniques and Approaches in Forest Tree Physiology. CRC Press, Inc., Boca Raton, Fl. 465-475.spa
dc.relation.referencesLemus, R., Vega, A., Zura, L. y Ah-Hen K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry 132: 1121–1132.spa
dc.relation.referencesLiebig, H. (1978). Einflüsse endogner und exogener faktoren auf die ertragsbildung von salatgurken (Cucumis sativus L.) unter besonderer berücksichtigung von ertragsrhytmik, bestandesdichte und schnittmabnahmen. Dissertation, Univ. Hannover.spa
dc.relation.referencesLima, C., Oliveira, F., Medeiros, J., Oliveira, M. y Oliveira, F. (2008). Modelos matemáticos para estimativa de área foliar de feijão caupi. Rev Caatinga 21: 120-127.spa
dc.relation.referencesLiu, J., Jin-wei, L. y Jian, T. (2010). Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food Bioprod. Process. 88(2-3), 215-221spa
dc.relation.referencesLu, H. Lu, C., Wei, M. y Chan, L. (2004). Comparison of different models for nondestructive leaf area estimation in taro. Agron. J., 96, 448-453.spa
dc.relation.referencesLyon, C. (1948). A factor method for the area of tomato leaves. Plant Physiol., 23, 634-635.spa
dc.relation.referencesMaldaner, I., Heldwein, A., Loose, L., Lucas, D., Guse, F. y Bortoluzzi, M. (2009). Modelos de determinação não-destrutiva da área foliar em girassol. Ciência Rural, 39(5), 1356-1361. https://dx.doi.org/10.1590/S0103-84782009000500008spa
dc.relation.referencesMaloof, J., Nozue, K., Mumbach, M. y Palmer, C. (2013). LeafJ: An ImageJ plugin for semi-automated leaf shape measurement. J. Vis. Exp. 71: e50028. doi:10.3791/50028.spa
dc.relation.referencesManivel, L. y Weaver, R. (1974). Biometric correlations between leaf area and length measurements of Grenache grape leaves. HortScience, 9 (1), 27-28.spa
dc.relation.referencesMarshall, J. (1968). Methods for leaf area measurement of large and small leaf samples. Photosynthetica, 2(1), 41-47.spa
dc.relation.referencesMartín, M., Soto, F., Rivera, R. y Rentería, M. (2006). Estimación de la superficie foliar de la Canavalia ensiformis a partir de las medidas lineales de sus hojas. Cultivos Tropicales, Instituto Nacional de Ciencias Agrícolas. La Habana, Cuba. vol. 27, núm. 4, 77-80.spa
dc.relation.referencesMcKee, G. (1964). A coefficient for computing leaf area in hybrid corn. Agron. J., 56, 240-241.spa
dc.relation.referencesMiller, E. (1938). Plant Physiology. McGraw-Hill Co., Nueva York.spa
dc.relation.referencesMilthorpe, F. (1942). A simplified photoelectric cell method for measuring leaf areas. J. Austr. Inst. Agric. Sci., 8, 27.spa
dc.relation.referencesMilthorpe, F. (1956). The growth of leaves. Butterworths Scientific publications. Londres.spa
dc.relation.referencesMinisterio de Agricultura y Ganadería y Dirección General de Economia Agropecuaria [MAG-DGEA]. (2014). Síntesis Estadísticas del Sector de Stevia. Asunción.spa
dc.relation.referencesMinisterio de Industria y Comercio y Red de Inversión y Exportación [MIC-REDIEX]. (2011). Boletín de la Mesa Sectorial de Stevia. http://www.rediex.gov.py/beta/userfiles/file/Boletin_Mesa_Stevia_1_2011.pdf.spa
dc.relation.referencesMitchell, J. (1936). Measurement of the area of attached and detached leaves. Science, 83, 334-336.spa
dc.relation.referencesMonselise, S. y Heymann L. (1953). Influence of exposure and age on dry matter content, area and mineral composition of shamouti orange leaves. Am. Soc. Hort. Sci. Proc., 62, 67-74.spa
dc.relation.referencesMontero, F., De Juan, J., Cuesta, A. y Brasa, A. (2000). Non destructive methods to estimate leaf area in Vitis vinifera L. Hortscience, 35 (4), 696-698.spa
dc.relation.referencesMurata, Y. (1967). On a new automatic leaf area meter. Jap. Agr. Res. Quart, 2, 35.spa
dc.relation.referencesNegash, M., Starr, M., Kanninen, M. y Berhe, L. (2013). Allometric equations for estimating aboveground biomass of Coffea arabica L. grown in the Rift Valley escarpment of Ethiopia. Agrofor Syst, 87, 953–966spa
dc.relation.referencesNegisi, K., Satoo, T. y Yagi, K. (1957). A method for the rapid measuring of leaf areas. Jour. Jap. Forest Soc., 39, 380-384.spa
dc.relation.referencesNuñez, E. (2011). Stevia rebaudiana Bertoni, un sustituto del azúcar. Área Ciencia de las Plantas y Recursos Naturales Maestría en Producción Vegetal – Ciclo de Seminarios.spa
dc.relation.referencesNyakwende, E., Paull, C. y Atherton, J. (1997). Non-destructive determination of leaf area in tomato plants using image processing. Journal of Horticultural Science, 72 (2), 255-262.spa
dc.relation.referencesOllat, N., Fermaud, M., Tandonnet, J. y Neveux, M. (1998). Evaluation of an indirect method for leaf area index determination in the vineyard: combined effects of cultivar, year and training system. Vitis, 37 (2), 73- 78.spa
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura y el Instituto Interamericano de Cooperación para la Agricultura [FAO-IICA]. (2017). Gestión integral del riesgo de desastres en el sector agrícola y la seguridad alimentaria en los países del CAS. Análisis de capacidades técnicas e institucionales – Paraguay.spa
dc.relation.referencesPalaniswamy, K. y Gomez, K. (1974). Length-width meted for estimating leaf area of rice. Agron. J., 66, 430-433.spa
dc.relation.referencesPalencia, G., Mercado, T. y Combatt, E. (2006). Estudio Agroclimático del Departamento de Córdoba. Universidad de Córdoba. Montería, Colombia: Editorial Gráficas del Caribe Ltda.spa
dc.relation.referencesPaquin, R. y Coulombe, L. (1959). A simple method for measuring the area of leaves of potted plants. Can. J. Bot., 37, 167spa
dc.relation.referencesPayne, W., Wendt, C., Hossner, L. y Gates, C. (1991). Estimating pearl millet leaf area and specific leaf area. Agron. J., 83, 937-941.spa
dc.relation.referencesPeksen, E. (2007). Non-destructive leaf area estimation model for faba bean (Vicia faba L.), Scientia Horticulturae, Volume 113 (4): 322-328, ISSN 0304-4238, https://doi.org/10.1016/j.scienta.2007.04.003.spa
dc.relation.referencesPersaud, N., Gandah, M., Ouattara, M. y Mokete, N. (1993). Estimating leaf area of pearl millet from linear measurements. Agron. J., 85, 10-12.spa
dc.relation.referencesPico, A. (2018) Caracterización morfoagronómica de 25 clones de estevia (Stevia rebaudiana Bert.) en condiciones del valle del Sinú medio (Tesis de pregrado). Universidad de Córdoba, Montería.spa
dc.relation.referencesPoletti, A. (2016). La Stevia rebaudiana/Ka’a he’ẽ: de la prohibición al auge en el comercio exterior. Universidad Columbia del Paraguay. https://www.columbia.edu.py/institucional/investigacion/articulos-de-revision/208-la-stevia-rebaudiana-en-el-comercio-internacionalspa
dc.relation.referencesPompelli, M., Ferreira, D. y Cavalcante, P. (2010) Environmental influence on the physico-chemical and physiological properties of Jatropha curcas L. seeds. Aust J Bot 58: 421–427.spa
dc.relation.referencesPompelli, M., Antunes, W., Ferreira, D., Cavalcante, P., Wanderley-Filho, H., y Endres, L. (2012). Allometric models for non-destructive leaf area estimation of Jatropha curcas. Biomass and Bioenergy, 36, 77–85. https://doi.org/10.1016/j.biombioe.2011.10.010spa
dc.relation.referencesPompelli, M., Figueiroa, J. y Lozano, I. (2018). Allometric models for non-destructive leaf area estimation in Eugenia uniflora (L.). Journal of Agronomy. 2. http://dx.doi.org/10.21704/pja.v2i2.1133spa
dc.relation.referencesPompelli, M., Santos, J. y Santos, M. (2019). Estimating leaf area of Jatropha nana through non-destructive allometric models. AIMS Environmental Science, 6(2): 59-76. doi: 10.3934/environsci.2019.2.59spa
dc.relation.referencesPompelli, M., Santos, M., Jarma, A., Lozano, F., Santos, J., Rivera, J., Espitia, C., Castillejo, A. y Jarma, B. (2018). Leaf area estimation in Jatropha curcas (L.): an update. AIMS Environmental Science. 5. 353-371. doi:10.3934/environsci.2018.5.353.spa
dc.relation.referencesPrice, C., Symonova, O., Mileyko, Y., Hilley, T. y Weitz, S. (2011). Leaf extraction and analysis framework graphical user interface: Segmenting and analyzing the structure of leaf veins and areoles. Plant Physiol. 155: 236-245.spa
dc.relation.referencesQuintero F. y Casanova E. (2000). Evaluación del crecimiento del cultivar de sorgo Chaguaramas III bajo diversos niveles de fertilización con nitrógeno y fósforo en el estado Guarico, Venezuela. Agronomía Tropical 50: 285-302.spa
dc.relation.referencesRamesh, K., Singh, V. y Ramawat, N. (2007). Leaf área distribution and non-destructive estimation methods of leaf área for Stevia rebaudiana (Bert.) Bertoni. Asian Journal.spa
dc.relation.referencesRao, J. (1978). Leaf area determination in cabbage. Curr. Sci., 47 (9), 312-313.spa
dc.relation.referencesRay, R. y Sing, R. (1989). Leaf area estimation in capsicum (Capsicum annuum L.). Sci. Hortic., 39, 181-188.spa
dc.relation.referencesReddy, V., Acock, B., Baker, D. y Acock, M. (1989). Seasonal leaf area-leaf weight relationships in the cotton canopy. Agron. J. 81, 1-4.spa
dc.relation.referencesReyes, A. y Taylor, S. (1999). Diuretics in cardiovascular therapy: the new clinicopharmacological bases that matter. Cardiovascular Drugs and Therapy 13: 371-398.spa
dc.relation.referencesReziwanggu, A., Jeppesen, P., Rolfsen, S. Xiao, J. y Hermansen, K. (2004). Rebaudioside A potently stimulates insulin secretion from isolated mouse islets: studies on the dose-, glucose-, and calcium-dependency. Metabolism 53(10), 1378-1381.spa
dc.relation.referencesRhoads, F. y Bloodworth, M. (1964). Area measurement of cotton leaves by dry-weight method. Agr. J., 56, 520-522.spa
dc.relation.referencesRiccardi, M., Mele, G., Pulvento, C. Lavini, A. d’Andria, R. y Jacobsen, S. (2014). Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosynth. Res. 120: 263-272.spa
dc.relation.referencesRobbins, N. y Pharr, D. (1987). Leaf area prediction models for cucumber from linear measurements. Sci. Hortic., 22, 1264-1266.spa
dc.relation.referencesRobison, C. y Massengale, M. (1967). Use of area-weight relationship to estimate leaf area in alfalfa (Medicago sativa L., cultivar Moapa). Crop Sci., 7, 394-395.spa
dc.relation.referencesRodríguez, J., Raffaillac, J. y Alcon C. (2005). Uso del Programa Sigma Scan Pro 5 para la Determinación del Área Foliar. La Paz, Bolivia.spa
dc.relation.referencesRomero, J., Nahas, S., Roberti, J., Rodriguez, J. y Romero, E. (2015). Estimacion no destructiva del área foliar por planta en sorgo bioenergeticos. Rev. Agron. Noroeste Argent. 35 (1): 51-53spa
dc.relation.referencesRouphael, Y., Colla, G., Fanasca, S. y Karam, F. (2007). Leaf area estimation of sunflower leaves from simple linear measurements. Photosynthetica, 45(2), 306–308. https://doi.org/10.1007/s11099-007-0051-zspa
dc.relation.referencesRuck, H. y Bolas, B. (1955). Studies in the comparative physiology of apple rootstocks. I. The effect of nitrogen on the growth and assimilation of Malling Apple Rootstocks. Ann. Bot. N.S., 20, 57-58.spa
dc.relation.referencesSauceda A., Lugo G., Villaseñor M., Partida R. y Reyes O. (2015). Un método preciso para medir severidad de roya de la hoja (Puccinia triticina Eriksson) en trigo. Rev. Fitotec. Mex. 38: 427-434.spa
dc.relation.referencesSchneider, C., Rasband, W. y Eliceiri, K. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Method. 9: 671-675.spa
dc.relation.referencesSchultz, H. (1992). An empirical model for the simulation of leaf appearance and leaf development of primary shoots of several grapevine (Vitis vinifera L.). Sciencia Horticulturae, 52, 179-200.spa
dc.relation.referencesSchwab, N., Streck, N., Rehbein, A., Ribeiro, B., Ulhmann, L., Langner, J. y Becker, C. (2014). Dimensões lineares da folha e seu uso na determinação do perfil vertical foliar de gladíolo. Bragantia 73: 97-105.spa
dc.relation.referencesSchwarz, D. y Kläring, H. (2001). Allometry to estimate leaf area of tomato. J. Plant Nut., 24 (8), 1291-1309.spa
dc.relation.referencesSecretaría de Agricultura de Antioquia. (2000). Informe preliminar sobre adaptación de la especie Stevia rebaudiana en la región tropical. Gobernación de Antioquia, Medellín (Colombia).spa
dc.relation.referencesSepúlveda, G. y Kliewer, M. (1983). Estimation of leaf area of two grapevine cultivars (Vitis vinifera L.) using laminae linear measurements and fresh weight. Am. J. Enol. Vitic. 4 (4), 221-226.spa
dc.relation.referencesShivanna, N., Mahadev, N., Farhath, K. y Vijay K. (2013). Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. Journal of Diabetes and Its Complications 27: 103–113.spa
dc.relation.referencesSmith, R. y Kliewer, W. (1984). Estimation of Thompson Seedless grapevine leaf area. Am. J. Enol. Vitic. 35, 16-22.spa
dc.relation.referencesSpencer, R. (1962). A rapid method for estimating leaf area of cassava (Mahinot utilissima Pohl) using linear measurements. Trop. Agr., 39 (2), 147-152.spa
dc.relation.referencesSteel, M. y Penny, D. (2000). Parsimony, likelihood, and the role of models in molecular phylogenetics. Molecular Biology and Evolution, 17(6), 839-850. https://doi.org/10.1093/oxfordjournals.molbev.a026364spa
dc.relation.referencesStickler, F., Wearden, C. y Pauli, A. (1961). Leaf area determination in grain sorghum. Agr. J. 53: 187-188.spa
dc.relation.referencesSuárez, I. y Salgado, J. (2008). Propagación In Vitro de Stevia rebaudiana Bert. (Asteraceae Eupatorieae) a través de organogénesis. Rev. Temas Agrarios. 13(1):40-48.spa
dc.relation.referencesSuggs, C., Beeman, J. y Splinter, W. (1960). Physical properties of green Virginia-type tobacco leaves. Parte III. Relation of leaf length and width to leaf area. Tobacco Science, 4, 194-197.spa
dc.relation.referencesTarbell, K. y Reid, J. (1991). A computer vision system for characterizing corn growth and development. Transactions of the ASAE, vol 34 (5), 2245-2255.spa
dc.relation.referencesTejawani, K., Ramakrishna, C., Kurup, O. y Ven Kataraman, K. (1957). Measurements of leaf área of tobacco. Indian J. Agron., 2, 36-39.spa
dc.relation.referencesThoday, D. (1909). Experimental researches on vegetable assimilation and respiration. V. A critical examination of Sachs’ method for using increase of dry weight as a measure of carbon dioxide assimilation in leaves. Proc. Roy. Soc., B 82, 1-55.spa
dc.relation.referencesThorne, G. y Watson, D. (1955). The effect on yield and leaf area of wheat of applying nitrogen as a topdressing in April or in sprays at ear emergence. J. Agric. Sci., 46, 449-456.spa
dc.relation.referencesToebe, M., Rodrigues, R., Chuquel, A., Segatto P. y Castanha, A. (2019). Leaf area estimation of squash ‘Brasileirinha’ by leaf dimensions. Ciência Rural, 49(4), e20180932. https://doi.org/10.1590/0103-8478cr20180932spa
dc.relation.referencesToebe, M., Brum, B., Lopes, S., Cargnelutti, A. y Silveira, T. (2010). Estimativa da área foliar de Crambe abyssinica por discos foliares e por fotos digitais. Cienc Rural 40: 475-478spa
dc.relation.referencesVarma, V., y A. M. Osuri. 2013. Black Spot: A platform for automated and rapid estimation of leaf area from scanned images. Plant Ecol. 214: 1529-1534.spa
dc.relation.referencesVillagran, J., Huayamave, C., Lara, J. y Maluk, O. (2009). Stevia: producción y procesamiento de un endulzante alternativo. Facultad de Economía y Negocios. Escuela Superior Politécnica del Litoral. https://www.dspace.espol.edu.ec/bitstream/123456789/7861/1/D-38559.pdfspa
dc.relation.referencesVyvyan, M. y Evans, H. (1932). The leaf relations of fruit trees. 1. A morphological analysis of the distribution of leaf surface on two nine-year old apple trees (Laxton superb). J. Pomology, 10, 228-270.spa
dc.relation.referencesWalther, B. y Moore, J. (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28, 815–829.spa
dc.relation.referencesWang, Y., Wang, D., Shi, P. y Omasa, K. (2014). Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Method. 10: 36.spa
dc.relation.referencesWarman, L., Moles, A. y Edwards, W. (2011). Not so simple after all: Searching for ecological advantages of compound leaves. Oikos 120: 813-821.spa
dc.relation.referencesWatson, D. (1947). Comparative physiological studies on the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann. of Bot. N.S. 41-76.spa
dc.relation.referencesWendt, C. (1967). Use of relationship between leaf length and leaf area to estimate the leaf area of cotton (Gossypium hirsutum L.), castors (Ricinus comunis L.), and sorghum (Sorghum vulgare L.). Agron. J., 59, 484-486.spa
dc.relation.referencesWiersma, J. y Bailey, T. (1975). Estimation of leaflet, trifoliate, and total leaf areas of soybean. Agron. J., 67, 26-30.spa
dc.relation.referencesWilliams, L. y Martinson, T. (2003). Nondestructive leaf area estimation of Niagara and DeChaunac grapevines. Scientia horticulturae 98:493-498.spa
dc.relation.referencesWilliams, R. (1954). Estimation of leaf area for agronomical and plant physiological studies. Aust. J. Agron. Res. 5, 235-236.spa
dc.relation.referencesWilliams, R., Evans, L. y Ludwing, L. (1964). Estimation of leaf area for clover and Lucerne. Austr. J. Agric. Res., 15, 231-233.spa
dc.relation.referencesWinter, E. y Whiting, J. (2004). Using leaf area to crop weight to determine vine balance. Australian Viticulture, 1, 70-73.spa
dc.relation.referencesWinter, E., Salter, P., Stanhill, G. y Bleasdale, J. (1956). Some methods of measuring leaf area. En: Milthorpe, F.L. (ed). The growth of leaves. Londres. Butterworths Scientific publications 151-167.spa
dc.relation.referencesWithrow, R. (1935). A photoelectric device for the rapid measurement of leaf area. J. Agric. Res., 50, 637-643.spa
dc.relation.referencesYadav, S., Mishra, Y. y Singh, R. (2007). Total leaf area estimation of Flemingia semialata Roxb. by linear regression. Agricultural Science Digest 27(1), 44-46.spa
dc.relation.referencesZuur, A., Elena, N. y Elphick, C. (2010). A protocol for data exploration to avoid common statistical problems. Method Ecol Evol, 1, 3–14.spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalSteviaspa
dc.subject.proposalÁrea foliarspa
dc.subject.proposalAlometríaspa
dc.subject.proposalMorfología foliarspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.subject.keywordsSteviaspa
dc.subject.keywordsLeaf areaspa
dc.subject.keywordsAllometryspa
dc.subject.keywordsLeaf morphologyspa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Agronómico(a)spa
dc.publisher.facultyFacultad de Ciencias Agrícolasspa
dc.publisher.programIngeniería Agronómicaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2019
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2019