Publicación: Estimación del área foliar con parámetros biométricos de las hojas de cuatro genotipos de stevia (Stevia rebaudiana (Bertoni) Bertoni) en el Sinú Medio
dc.contributor.author | Hernández Fernández, Israel Antonio | spa |
dc.coverage.spatial | Montería, Córdoba | spa |
dc.date.accessioned | 2020-06-04T17:18:39Z | spa |
dc.date.available | 2020-06-04T17:18:39Z | spa |
dc.date.issued | 2020-05 | spa |
dc.description.abstract | Se estimó el área foliar con parámetros biométricos de las hojas de cuatro genotipos de Stevia (Stevia rebaudiana (Bertoni) Bertoni) en el Sinú medio, utilizando medidas morfométricas para expresar modelos matemáticos potenciales, lineales con intercepto y modificado, en función del largo (L), ancho (W) y/o el producto de ambas (LW). El experimento fue establecido entre noviembre de 2018 y abril de 2019 en el área experimental de la Facultad de Ciencias Agricolas de la Universidad de Córdoba, Colombia ubicado en las coordenadas geográficas 8° 47’ 31,5” de latitud norte y 75° 51’ 36,2” de longitud oeste. Se realizó un muestreo aleatorio simple de 1.500 hojas seleccionadas de 30 plantas por cada genotipo. Para la construcción de los modelos se utilizaron 1.000 hojas por cada genotipo generando en total 36 ecuaciones en función de L, W y LW; las 500 hojas restantes se utilizaron para comprobar la precisión de los modelos particulares. Adicionalmente, se generó un modelo general combinado utilizando 4.000 hojas que incluye a todos los genotipos y fue comparado estadisticamente con los modelos particulares de mejor ajuste. Los criterios estadísticos utilizados indicaron que los mejores modelos para todos los genotipos fueron el potencial y lineal con intercepto en función de W y LW, respectivamente; sin embargo, el modelo lineal presentó mayor estabilidad y precisión de los coeficientes estimados, por lo que se sugiriere utilizar este modelo para estimar el área foliar en su respectivo genotipo. Las ecuaciones para cada genotipo fueron: Y = 0,2629 + 0,6589 LW + εi, Y = 0,1607 + 0,6714 LW + εi, Y = 0,2957 + 0,5918 LW + εi y Y = 0,6245 + 0,5871 LW + εi para los genotipos C04, C16, C18 y MII, respectivamente. Sin embargo, los análisis de varianza demostraron que los coeficientes estimados del modelo general y particular difieren estadísticamente por lo que no fue posible agrupar los cuatro genotipos de Stevia. | spa |
dc.description.abstract | It was proposed to estimate the leaf area with biometric parameters of the leaves of four genotypes of stevia (Stevia rebaudiana (Bertoni ) Bertoni) in the mid Sinu valley using morphometric measures to express power mathematical models, linear with intercept and modified depending on the length (L), width (W) and/or product of both (LW). The experiment was established between November 2018 and April 2019 in the experimental area of the Faculty of Agricultural Sciences of the University of Córdoba, Colombia located at the geographic coordinates of latitude 8° 47’ 31,5” north latitude and 75° 51’ 36,2” west longitude. Performing a simple random sampling of 1.500 selected leaves of 30 plants for each genotype For the construction of the models 1.000 leaves were used for each genotype generating in total 36 equations depending on L, W and LW; the remaining 500 leaves were used to check the accuracy of the particular models. In addition, a combined general model was generated using 4,000 leaves that includes all genotypes and was statistically compared with the particular models of best fit. The statistical criteria used indicated that the best models for all genotypes were the power and linear with intercept as a function of W and LW, respectively; however, the linear model presented greater stability and precision of the estimated coefficients, so it is suggested to use this model to estimate the leaf area in their respective genotype. The equations for each genotype were: Y = 0,2629 + 0,6589 LW + εi , Y = 0,1607 + 0,6714 LW + εi , Y = 0,2957 + 0,5918 LW + εi and Y = 0,6245 + 0,5871 LW + εi for the genotypes C04, C16, C18 and MII respectively. However, variance analyses showed that the estimated coefficients of the general and particular model differ statistically so it was not possible to group the four genotypes of stevia. | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Agronómico(a) | spa |
dc.description.tableofcontents | INTRODUCCIÓN ........................................................................................................ 16 | spa |
dc.description.tableofcontents | 1. DEFINICIÓN DEL PROBLEMA .............................................................................. 17 | spa |
dc.description.tableofcontents | 2. JUSTIFICACIÓN ..................................................................................................... 19 | spa |
dc.description.tableofcontents | 3. REVISIÓN DE LITERATURA .................................................................................. 20 | spa |
dc.description.tableofcontents | 3.1 CONDICIONES AGROECOLÓGICAS DE LA STEVIA ......................................... 20 | spa |
dc.description.tableofcontents | 3.2 IMPORTANCIA Y BENEFICIOS DE LA STEVIA .................................................. 20 | spa |
dc.description.tableofcontents | 3.3 ESTADISTICAS DE ÁREA Y PRODUCCIÓN DE STEVIA ..................................... 22 | spa |
dc.description.tableofcontents | 3.4 EL ÁREA FOLIAR Y SU APLICACIÓN .................................................................. 24 | spa |
dc.description.tableofcontents | 3.4.1 La hoja de las plantas .................................................................................... 24 | spa |
dc.description.tableofcontents | 3.4.2 El área foliar .................................................................................................... 25 | spa |
dc.description.tableofcontents | 3.4.3 Análisis de crecimiento ................................................................................. 25 | spa |
dc.description.tableofcontents | 3.5 MÉTODOS UTILIZADOS PARA DETERMINAR EL ÁREA FOLIAR .................... 25 | spa |
dc.description.tableofcontents | 3.5.1 Métodos directos .......................................................................................... 26 | spa |
dc.description.tableofcontents | 3.5.2 Métodos indirectos ....................................................................................... 27 | spa |
dc.description.tableofcontents | 3.5.3 Métodos de estimación ................................................................................ 28 | spa |
dc.description.tableofcontents | 3.5.4 Métodos comparativos ................................................................................. 29 | spa |
dc.description.tableofcontents | 3.5.5 Métodos basados en el análisis de imágenes ............................................ 30 | spa |
dc.description.tableofcontents | 3.6 ANTECEDENTES DE LA INVESTIGACIÓN ......................................................... 31 | spa |
dc.description.tableofcontents | 3.6.1 Modelos para estimar área foliar en diferentes cultivos .......................... 32 | spa |
dc.description.tableofcontents | 4. OBJETIVOS ............................................................................................................. 39 | spa |
dc.description.tableofcontents | 4.1 OBJETIVO GENERAL ........................................................................................... 39 | spa |
dc.description.tableofcontents | 4.2 OBJETIVOS ESPECIFICOS ................................................................................... 39 | spa |
dc.description.tableofcontents | 5. HIPÓTESIS ............................................................................................................. 40 | spa |
dc.description.tableofcontents | 6. METODOLOGÍA .................................................................................................... 41 | spa |
dc.description.tableofcontents | 6.1 LOCALIZACIÓN ................................................................................................... 41 | spa |
dc.description.tableofcontents | 6.2 MATERIAL EXPERIMENTAL ................................................................................ 41 | spa |
dc.description.tableofcontents | 6.3 VARIABLE RESPUESTA ....................................................................................... 41 | spa |
dc.description.tableofcontents | 6.4 DISEÑO DE MUESTREO ..................................................................................... 41 | spa |
dc.description.tableofcontents | 6.5 MANEJO AGRONÓMICO .................................................................................... 42 | spa |
dc.description.tableofcontents | 6.6 PROCEDIMIENTO ............................................................................................... 42 | spa |
dc.description.tableofcontents | 6.7 ANALISIS DE DATOS ........................................................................................... 44 | spa |
dc.description.tableofcontents | 7. RESULTADOS Y DISCUSIÓN ................................................................................. 46 | spa |
dc.description.tableofcontents | 7.1 RESULTADOS ....................................................................................................... 46 | spa |
dc.description.tableofcontents | 7.1.1 Perfil general de las hojas muestreadas ...................................................... 46 | spa |
dc.description.tableofcontents | 7.1.2 Análisis de los genotipos de stevia (S. rebaudiana) ................................... 48 | spa |
dc.description.tableofcontents | 7.2 DISCUSIÓN .......................................................................................................... 72 | spa |
dc.description.tableofcontents | 8. CONCLUSIONES ................................................................................................... 76 | spa |
dc.description.tableofcontents | REFERENCIAS ........................................................................................................... 77 | spa |
dc.description.tableofcontents | ANEXOS .................................................................................................................... 95 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/2771 | spa |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Agrícolas | spa |
dc.publisher.program | Ingeniería Agronómica | spa |
dc.relation.references | Achten, W., Maes, W., Reubens, B., Mathijs, E., Singh, V., Verchot, L. y Muys, B. (2010). Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass Bioenerg, 34, 667–676. | spa |
dc.relation.references | Ackley, W., Crandall, P. y Russell, T. (1958). The use of linear measurements in estimating leaf areas. Proc. Amer. Soc. Hort. Sci. 72, 326-330. | spa |
dc.relation.references | Acosta, N. (2015). Las potencialidades de la Stevia nacional en el mercado mundial. Observatorio de Economía Internacional. | spa |
dc.relation.references | Acosta, J. y Adams, M. (1991). Plant traits and yield stability of dry bean (Phaseolus vulgaris) cultivars under drought stress. J. Agric. Sci. 117:213–219. | spa |
dc.relation.references | Agronet. (2016). Estadísticas Agrícola; Área, producción, rendimiento y participación. http://www.agronet.gov.co/estadistica/Paginas/default.aspx. | spa |
dc.relation.references | Akaike H. (1974). A new look at the statistical model identification. Transac Autom Control, 19, 716–723. | spa |
dc.relation.references | Alekseenko, L. (1965). Vesovoy method opredeleniya listovoy poverkhnosti lugovykh rasteny I lugovykh soobshchestv (Method of determining leaf surface of meadow plans and meadow communities by weighing). Bot. Sh., 50, 205-208. | spa |
dc.relation.references | Ali, M., Al-Ani, A., Eamus, D. y Tan, D. (2012). A New image-processing-based technique for measuring leaf dimensions. American-Eurasian J. Agric. Environ. Sci. 12: 1588-1594. | spa |
dc.relation.references | Álvarez, J. (2004). Stevia rebaudiana Bertoni. Universidad EAFIT. Departamento de Negocios Internacionales. Secretaria de Agricultura y Desarrollo Rural de Antioquia, Medellín. | spa |
dc.relation.references | Alvarez, Y., Alvarez, E., Cano, J. y Suescún, D. (2012). Modelo Matemático para estimar área foliar en árboles Del bosque tropical seco en el Caribe Colombiano. Revista del Instituto de Investigaciones Tropicales. 7:69-79. | spa |
dc.relation.references | Anikiev, V. y Kutuzov, F. (1961). Novy sposob opredeleniya ploshchadi listovoy poverkhnosti u zlakov. (A new method for determining leaf surface area of cereals). Fiziol. Rast., 8, 375-377. | spa |
dc.relation.references | Antunes, C., Pompelli, M., Carretero, D. y DaMatta, F. (2008). Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Annals of Applied Biology, 153(1), 33–40. doi:10.1111/j.1744-7348.2008.00235.x | spa |
dc.relation.references | Aquino, L., Santos, V., Santos, J. y Moreira, M. (2011). Estimación del área foliar de girasol por métodos no destructivos. Bragantia, 70 (4), 832-836. http://www.redalyc.org/articulo.oa?id=90821058015 | spa |
dc.relation.references | Ashley, D., Doss, B. y Bennett, O. (1963). A method of determining leaf area in cotton. Agron. J., 55, 584-585. | spa |
dc.relation.references | Astegiano, E. y Favaro, J. (1987). Desarrollo del área foliar en tres cultivares de tomate. Resúmenes de la XVIII Reunión Nacional de Fisiología Vegetal. Corrientes. Argentina. | spa |
dc.relation.references | Astegiano, E., Favaro, J. y Bouzo, C. (2001). Estimación del área foliar en distintos cultivares de tomate (Lycopersicon esculentum Mill.) utilizando medidas foliares lineales. Invest. Agr.: Prod. Prot. Veg., Vol 16 (2), 249-256. | spa |
dc.relation.references | Baker, B., Olszyk, D. y Tingey, D. (1996). Digital image analysis to estimate leaf area. J. Plant Physiol., vol 148, 530-535. | spa |
dc.relation.references | Balakrishnan, K., Sundaram, K., Ajunan, A. y Matarajatnam, N. (1992). A simple method for estimating leaf area in tomato. Madras Agric. J., 79 (3), 162-163. | spa |
dc.relation.references | Bange, M., Graeme, L., Milroy, S. y Kenneth, G. (2000). Improving estimates of individual leaf area of sunflower. Agron. J., 92, 761-765 | spa |
dc.relation.references | Batyuk, V., Ryblako, E. y Okanenko, A. (1959). A photoelectric planimeter for measuring leaf area. Biol. Plant, 1, 167-175. | spa |
dc.relation.references | Beerling, D. y Fray, J. (1990). A comparison of the accurate variability and speed of five different methods for estimating leaf area. Ann. Bot. 65:483-488. | spa |
dc.relation.references | Bhan, V. y Pande, H. (1966). Measurement of leaf area of rice. Agron. J., 58, 454. | spa |
dc.relation.references | Biscoe, P. y Jagaard, K. (1985). Measuring plant growth and structure. En: Marshall, B., Woodward, F.I. (Eds.), Instrumentation for Environmental Physiology. Cambridge University Press. Sidney. 215-228. | spa |
dc.relation.references | Blanco, F. y Folegatti, M. (2005). Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Sci Agr, 62, 305–309. | spa |
dc.relation.references | Boisbunon, A., Canu, S., Fourdrinier, D., Strawderman, W. y Wells, M. (2014). Akaike's information criterion, Cp and estimators of loss for elliptically symmetric distributions. Int Stat Rev, 82, 422–439. | spa |
dc.relation.references | Bonilla, C., Sánchez, M. y Perlaza, D. (2007). Evaluación de métodos de propagación, fertilización nitrogenada y fenología de Stevia en condiciones del Valle del Cauca. Acta Agronómica. 56(3):131-134. | spa |
dc.relation.references | Brougham, R. (1956). Effect of intensity of defoliation on re-growth of pasture. Austral. J. Agric. Res., 7, 377- 387. | spa |
dc.relation.references | Brown, H. y Escombe, F. (1905). Researches on some of the physiological processes of green leaves. Proc. Roy. Soc., B 76, 29-111. | spa |
dc.relation.references | Burgos, A., Avanza, M., Balbi, C., Prause, J. y Argüello, J. (2010). Modelos para la estimación no destructiva del área foliar de dos cultivares de mandioca (Manihot esculenta Crantz) en la Argentina. Agriscientia, 27(1), 55-61. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1668-298X2010000100007&lng=es&tlng=pt. | spa |
dc.relation.references | Busato, C., Fontes, P., Braun, H. y Busato, C. (2010). Estimativa da área foliar da batateira, cultivar Atlantic, utilizando dimensões lineares. Rev Cienc Agron 41: 702-708. | spa |
dc.relation.references | Buttaro, D., Rouphael, Y., Rivera, C., Colla, G. y Connella, M. (2015). Simple and accurate allometric model for leaf area estimation in Vitis vinifera L. genotypes. Photosynthetica 53, 342–348. http://dx.doi.org/10.1007/s11099-015-0134-1. | spa |
dc.relation.references | Bylesjö, M., Segura, R. Soolanayakanahally, Y., Rae, A., Trygg, J., Gustafsson, P., Jansson, S. y Street, N. (2008). LAMINA: A tool for rapid quantification of leaf size and shape parameters. BMC Plant. Biol. 8: 82. | spa |
dc.relation.references | Cabezas, M. y Peña, F. (2012). Estimación del área foliar del arándano (Vaccinium corymbosum) por medio de un método no destructivo. Rev. U.D.C.A Act. y Div. Cient. 15(12): 373 – 379. | spa |
dc.relation.references | Carakostas, M., Curry, L., Boileau, A. y Brusick, D. (2008). Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food and Chemical Toxicology. 46 (Suppl. 7), 1-10. | spa |
dc.relation.references | Carbonneau, A. (1976). Principes et méthodes de mesure de la surface foliare. Essai de caractérisation destypes de feuilles dans le genre Vitis. Ann. Amélior. Plantes, 26 (2), 327-343. | spa |
dc.relation.references | Cárcel, S., Intrigliolo, D. y Castel, J. (2005). Área foliar y radiación interceptada en tempranillo: Efecto del riego y de la carga de cosecha. XX Reunión Experimentación Viticultura y Enología. | spa |
dc.relation.references | Cardona, C., Araméndiz, H. y Barrera, C. (2009). Estimación del área foliar de papaya (Carica papaya L.) basada en muestreo no destructivo. Revista UDCA de Actualidad y Divulgación Científica. 12. 131 - 139. | spa |
dc.relation.references | Cardona, C., Araméndiz, H. y Barrera, C. (2009). Modelo para Estimación de Área Foliar en Berenjena (Solanum melongena L) Basado en Muestreo no Destructivo. Temas Agrarios, 14(2), 14-22. https://doi.org/10.21897/rta.v14i2.675 | spa |
dc.relation.references | Cardozo, N., Parreira, M., Amaral C., Alves, P. y Bianco, S. (2011). Estimativa da área foliar de Crotalaria juncea L. a partir de dimensões lineares do limbo foliar. Biosci J 27: 902-907. | spa |
dc.relation.references | Cargnelutti Filho, A., Toebe, M., Burin, C., Alves, B. y Neu, I. (2015). Number of leaves needed to model leaf area in jack bean plants using leaf dimensions. Bioscience Journal, 31(6). https://doi.org/10.14393/BJ-v31n6a2015-26135 | spa |
dc.relation.references | Carleton, A. y Foote, W. (1965). A comparison of methods for estimating total leaf area of barley plants. Crop Science, 602-603. | spa |
dc.relation.references | Carvalho, D., Toebe, M., Tartaglia, L., Bandeira, T. y Tambara, L. (2017). Leaf area estimation from linear measurements in different ages of Crotalaria juncea plants. Anais Da Academia Brasileira de Ciências, 89(3), 1851–1868. https://doi.org/10.1590/0001-3765201720170077 | spa |
dc.relation.references | Casierra, F., Zapata, V. y Cutler, J. (2017). Comparación de métodos directos e indirectos para la estimación del área foliar en duraznero (Prunus persica) y ciruelo (Prunus salicina). Revista Colombiana De Ciencias Hortícolas, 11(1), 30-38. https://doi.org/10.17584/rcch.2017v11i1.6143 | spa |
dc.relation.references | Chatterjee, S. y Hadi, A. (2006). Regression análisis by example. Hoboken: John Wiley and Sons. | spa |
dc.relation.references | Chaudhary, P., Godara, S. Cheeran, A. y Chaudhari, A. (2012). Fast and accurate method for leaf area measurement. Int. J. Comput. Appl. 49: 22-25. | spa |
dc.relation.references | Cho, Y., Oh, S., Oh, M. y Son, J. (2007). Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Scientia Horticulturae, 111(4), 330–334. https://doi.org/10.1016/j.scienta.2006.12.028 | spa |
dc.relation.references | Clements, F. y Goldsmith, W. (1924). The phytometer method in ecology. Carnegie Inst. of Washington Publ., 356. | spa |
dc.relation.references | Cogliatti, D., Cataldi, M. y Iglesias. F. (2010). Estimación del área de las hojas en plantas de trigo bajo diferentes tipos de estrés abiótico. AgriScientia 27: 43-53. | spa |
dc.relation.references | Colorado F, Rodríguez D, y Cortés J. (2010). Análisis de crecimiento de rúcula (Eruca sativa Mill.) en la sabana de Bogotá, bajo dos condiciones ambientales Rev. U.D.C.A Act. y Div. Cient. 13 (1): 105-113. | spa |
dc.relation.references | Compañía Nacional De Stevia S.A.S. (2013). Cartilla cultivo de stevia. Medellín – Colombia. https://es.scribd.com/document/238197663/Cartilla-Stevia-CNS. | spa |
dc.relation.references | Conibear, D. y Furmidge, C. (1960). A simple photo-electric device for measuring the area of detached leaves. Ann. Rept. Agric. Res. Sta., Long Ashton, 66-68. | spa |
dc.relation.references | Corney, D., Tang, H., Clark, J., Hu, Y. y Jin, J. (2012). Automating digital leaf measurement: The tooth, the whole tooth, and nothing but the tooth. PLOS ONE 7. https://doi.org/10.1371/journal.pone.0042112 | spa |
dc.relation.references | Cumming, G., Fidler, F. y Vaux, D. (2007). Error bars in experimental biology. Journal of Cell Biology 177(1), 7-11. https://doi.org/10.1083/jcb.200611141 | spa |
dc.relation.references | Craig Macfarlane, C., Hoffman, M., Eamus, D., Kerp, N., Higginson, S., Mcmurtrie, R. y Adams, M. (2007). Estimation of leaf area index in eucalypt forest using digital photography. Agric. Forest. Meteorol. 143:176–188. | spa |
dc.relation.references | Cristofori, V., Rouphael, Y., Gyves, M. y Bignami, C. (2007). A simple model for estimating leaf area of hazelnut from linear measurements. Scientia Horticulturae, 113(2), 221–225. https://doi.org/10.1016/j.scienta.2007.02.006 | spa |
dc.relation.references | Darrow, G. (1932). Methods of measuring strawberry leaf areas. Plant Physiol., 7, 745-747. | spa |
dc.relation.references | Daughtry, C. (1990). Direct measurements of canopy structure. Remote Sensing Rewiews, 5, 45-60. | spa |
dc.relation.references | De Lima, F. y Malavolta, E. (2004). Estimativa da area foliar em estevia (Stevia rebaudiana Bertoni). http:// www.lni.unipi.it/stevia/stevia/ estimativadearea.htm. | spa |
dc.relation.references | Dornbusch, T. y Andrieu, B. (2010). Lamina Shape An image processing tool for an explicit description of lamina shape tested on winter wheat (Triticum aestivum L.). Comput. Electron. Agr. 70: 217-224. | spa |
dc.relation.references | Dumas, Y. (1990). Interrelation on linear measurements and total leaf area or dry matter production in young tomato plants. Adv. Hortic. Sci., 4, 172-176. | spa |
dc.relation.references | Durbin, J y Watson, G. (1950) Testing for serial correlation in least squares regression I. Biometrika, 37, 409–428. | spa |
dc.relation.references | Escuela de Administración y Finanzas [Eafit]. (2004). Inteligencia de mercados internacionales de S. rebaudiana. Departamento de Negocios Internacionales, Medellín, Colombia. | spa |
dc.relation.references | Easlon, H. M., y Bloom, A. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant. Sci. 2: 1400033. https://doi.org/10.3732/apps.1400033 | spa |
dc.relation.references | Elings, A. (2000). Estimation of leaf area in tropical maize. Agronomy Journal 92: 436-444. | spa |
dc.relation.references | Elsner, E. y Jubb, G. (1988). Leaf area estimation of Concord grape leaves from simple linear measurements. Am. J. Enol. Vitic. 39 (1), 95-97. | spa |
dc.relation.references | Epstein, E. y Robinson, R. (1965). A rapid method for determining leaf area of potato plants. Agron. J., 57, 515-516. | spa |
dc.relation.references | Eriksson, H., Eklundh, L., Hall, K, y Lindroth, A. (2005). Estimating LAI in deciduous forest stands. Agric. Forest Meteorol. 129:27-37. | spa |
dc.relation.references | Erkucuk, A., Akgun, I. y Yesil-Celiktas, O. (2009). Supercritical CO2 extraction of glycosides from Stevia rebaudiana leaves: Identification and optimization. J. Supercrit. Fluids 51, 29-35. | spa |
dc.relation.references | Espitia, M., Montoya, R. y Atencio, L. (2009). Rendimiento de Stevia rebaudiana bert. bajo tres arreglos poblacionales en el Sinú medio. Revista U.D.C.A Actualidad y Divulgación Científica, 12(1), 151-161. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262009000100016&lng=en&tlng=es | spa |
dc.relation.references | Espitia, M., Montoya, R. y Jarma, A. (2008). Stevia en el Caribe Colombiano. Montería – Córdoba, Colombia: Gráficas del Caribe Ltda. | spa |
dc.relation.references | Espitia, M., Montoya, R., Robles, J., Barbosa, C. y Vergara, C. (2006). Modelo estadístico para estimación del área foliar en Stevia rebaudiana Bertoni en el Sinú medio. Revista Temas Agrarios, volumen 11(2). http://revistas.unicordoba.edu.co/revistas/index.php/temasagrarios/article/view/644 | spa |
dc.relation.references | Fallovo, C., Cristofori, V., Mendoza, E., Rivera, C., Rea, R., Fanasca, S., Bignami, C., Sassine, Y., y Rouphael, Y. (2008). Modelo de estimación del área foliar para frutos pequeños a partir de mediciones lineales, HortScience horts, 43 (7), 2263-2267. https://journals.ashs.org/hortsci/view/journals/hortsci/43/7/article-p2263.xml | spa |
dc.relation.references | Fargo, W., Bonjour, E. y Wagner, T. (1986). An estimation equation for squash leaf area using leaf measurements. Can. J. Plant Sci., 66, 677-682. | spa |
dc.relation.references | Favaro, F. y Vinícius, M. (2003). Um novo método para estimar o índice de área foliar de plantas de pepino e tomate. Horticultura Brasileira. 21 (4): | spa |
dc.relation.references | Font Quer, P. (1985). Diccionario de Botánica. Barcelona, España: Editorial Labor, S.A. | spa |
dc.relation.references | Frear, D. (1935). Photoelectric apparatus for measuring leaf areas. Plant Physiol., 10, 569-574. | spa |
dc.relation.references | Freeman, G. y Bolas, B. (1956). A method for the rapid determination of leaf areas in the field. Ann. Rep. Est Malling Res. Station, 104-107. | spa |
dc.relation.references | Gamiely, S., Randle, W., Mills, H. y Smittle, D. (1991). A rapid and non-destructive method for estimating leaf area of onions. HortScience, 26 (2), 206. | spa |
dc.relation.references | Gavrilov, N. y Eremenko, L. (1959). Pribor dlya izmereniya ploshchadi listev. (An instrument for measuring leaf areas.) Fiziol. Rast., 6, 508-512. | spa |
dc.relation.references | Gerdel, R. y Salter, R. (1928). Measurement of leaf area using the photoelectric cell. J. Am. Soc. Agron., 20, 635-642. | spa |
dc.relation.references | Giovanardi, R. (1972). Stima dell’area fogliare mediante misru biometriche ed applicazioni allo studio della dinamica di accrescimento del mais. Riv. Agron., 6 (4), 243-247. | spa |
dc.relation.references | Goodall, D. (1947). Diurnal changes in the area of cacao leaves. Ann. Bot. N.S., 11, 449-451. | spa |
dc.relation.references | Green, J., Appel, H., Rehrig, E., Harnsomburana, J., Chang, J., BalintKurti, P. y Shyu, C. (2012). PhenoPhyte: A flexible affordable method to quantify 2D phenotypes from imagery. Plant Method 8: 45. | spa |
dc.relation.references | Gregersen, S., Jeppesen, P., Holst, J. y Hermansen, K. (2004). Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism. 53(1), 73-76. | spa |
dc.relation.references | Hatfield, J., Stanley, C. y Carlson, R. (1976). Evaluation of an electronic foliometer to measure leaf area in corn and soybeans. Agron. J., 68, 434-436. | spa |
dc.relation.references | Hay, R. y Porter, J. (2006). The physiology of crop yield (2nd ed.). Oxford: Blackwell Publishing. | spa |
dc.relation.references | Hibbard, R., Grisby, B. y Keck, W. (1937). A low light intensity photoelectric device for the measuring of leaf areas. Michigan Academy of Science.23, 141-147. | spa |
dc.relation.references | Hill, S., Prokosch, M., Morin, A. y Rodeheffer, C. (2014). The effect of non-caloric sweeteners on cognition, choice, and post-consumption satisfaction. Appetite 83: 82-88. | spa |
dc.relation.references | Hoffman, G. (1971). Estimating leaf area from length measurements for hybrid granex onion. Agron. J. 63, 948- 949. | spa |
dc.relation.references | Hsieh, M., Chan, P., Sue, Y., Liu, J., Liang, T., Huang, T., Tomlinson, B., Chow, M., Kao, P. y Chen Y. (2003). Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: a two-year, randomized, placebo-controlled study. Clinical Therapeutics 25(11), 2797-2808. | spa |
dc.relation.references | Humphries, E. y French, S. (1963). The accuracy of the rating method for determining leaf area. Ann. appl. Biol. 52, 193-198. | spa |
dc.relation.references | Humphries, E. y French, S. (1964). Determination of leaf area by rating in comparison with geometric shapes. Ann. appl. Biol. 54, 281-284. | spa |
dc.relation.references | Hurd, R. y Rees, A. (1966). Transmission error in the photometric estimation of leaf area. Plant Physiol., 41, 905-906. | spa |
dc.relation.references | Ibnu, E., Bin, A. y Mimi, A. (2014). Evaluación de la tolerancia a los metales pesados en hojas, tallos y flores de la Stevia rebaudiana Planta. Ciencias Ambientales 20: 386-393. | spa |
dc.relation.references | Intagri (2017). El Índice de Área Foliar (IAF) y su Relación con el Rendimiento del Cultivo de Maíz. https://www. intagri.com/articulos/cereales/el-indice-de-area-foliar-iaf | spa |
dc.relation.references | Izco, J., Barreno, E., Burgués, M., Costa, M., Devesa, J., Fernández, F., Gallardo, T., Lilimona, X., Salvo, E., Talavera, S. y Valdés, B. (1997). Botánica. Madrid, España: McGraw-Hill Interamericana de España. | spa |
dc.relation.references | Jarma, A. (2003). Stevia rebaudiana Bert., alternativa de sustitución de cultivos ilícitos en Colombia. (Informe Final de Proyecto). U. de Córdoba, Fac. Ciencias Agrícolas. Montería. | spa |
dc.relation.references | Jarma, A., Rengifo, T. y Araméndiz, H. (2005). Aspectos fisiológicos de Stevia (Stevia rebaudiana Bertoni) en el Caribe colombiano: I. Efecto de la radiación incidente sobre el área foliar y la distribución de biomasa. Agr. Col. 23(2):207-216. http://www.revistas.unal.edu.co/index.php/agrocol/article/view/19943 | spa |
dc.relation.references | Jarma, A., Rengifo, T. y Araméndiz, H. (2006). Fisiología de Stevia (Stevia rebaudiana Bertoni) en función de la radiación en el Caribe colombiano. II. Análisis de crecimiento. Agr. Col. 24(1):38-47. | spa |
dc.relation.references | Jenkins, H. (1959). An airflow planimeter for measuring the area of detached leaves. Plant Physiol., 34, 532- 536. | spa |
dc.relation.references | Jeppesen, P., Gregersen, S., Poulsen, R. y Hermansen, K. (2000). Stevioside acts directly on pancreatic 13 cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metabolism 149(2), 208-214. | spa |
dc.relation.references | Jeppesen, P., Gregersen, S., Alstrup, K. y Hermansen, K. (2002). Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto- Kakizaki (GK) rats. Phytomed. 9, 9-14. | spa |
dc.relation.references | Jerez, E., Martín, R. y Díaz, Y. (2014). Estimación de la superficie foliar en dos variedades de papa (Solanum tuberosum L.) por métodos no destructivos. Cultivos Tropicales, 35(1), 57-61. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362014000100008&lng=es&tlng=es. | spa |
dc.relation.references | Johnson, R. (1967). Comparison of methods for estimating cotton leaf area. Agron. J., 59, 493-494. | spa |
dc.relation.references | Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P. and Baret, F. (2004). Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agric. Forest Meteorol. 121:19–35. | spa |
dc.relation.references | Kandiannan, K., Kailasam, C., Chandaragiri, K. and Sankaran, N. (2002). Allometric model for leaf area estimation in black pepper (Piper nigrum L.). J. Agron. Crop Sci., 188, 138-140 | spa |
dc.relation.references | Kandiannan, K., Parthasarathy, U., Krishnamurthy, K., Thankamani, C. y Srinivasan, V. (2009). Modeling individual leaf area of ginger (Zingiber officinale Roscoe) using leaf length and width. Scientia Horticulturae, 120(4), 532–537. https://doi.org/10.1016/j.scienta.2008.11.037 | spa |
dc.relation.references | Keramatlou, I., Sharifani, M., Sabouri, H., Alizadeh, M., y Kamkar, B. (2015). A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Scientia Horticulturae, 184, 36–39. https://doi. org/10.1016/j.scienta.2014.12.017 | spa |
dc.relation.references | Kishor, M., Senthil, R., Sankar, V., Sakthivel, T., Karunakaran, G. y Tripathi, P. (2017). Non-destructive estimation of leaf area of durian ( Durio zibethinus ) An artificial neural network approach. Scientia Horticulturae, 219, 319–325. https://doi.org/10.1016/j.scienta.2017.03.028 | spa |
dc.relation.references | Koller, H. (1972). Leaf area-Leaf weight relationships in the soybean canopy. Crop Sci., 12, 180-183. | spa |
dc.relation.references | Korva, J. y Forbes, G. (1997). A simple and low-cost method for leaf area measurement of detached leaves. Expl. Agric., 33, 65-72. | spa |
dc.relation.references | Kramer, P. (1937). An improved photoelectric device for measuring leaf areas. Am. J. Bot., 24, 375-376. | spa |
dc.relation.references | Krishnamurthy, K., Jagannath, M., Rajashekara, B. y Raghunatha, G. (1973). Estimation of leaf area in grain sorghum for single leaf measurements. Agron. J., 66 (4), 544-545. | spa |
dc.relation.references | Kujur, R., Singh, V., Ram, M., Yadava, H., Singh, K., Kumari, S. y Roy, B. (2010). Antidiabetic activity and phytochemical screening of crude extract of Stevia rebaudiana in alloxan-induced diabetic rats. Pharmacognosy Res 2: 258-263. | spa |
dc.relation.references | Kuntal, D. (2013). Wound healing potential of aqueous crude extract of Stevia rebaudiana in mice. Brazilian Journal of Pharmacognosy 23: 351-357. | spa |
dc.relation.references | Kvet, J. y Marshall, J. ( 1971). Assessment of leaf area and other assimilating plant surfaces. En: Sestak, Z., Catsky, J., Jarvis, P.G. (eds.) Plant photosynthetic production Manual of methods. Junk, N.V. Pubs. La Haya.517-555. | spa |
dc.relation.references | Kvet, J., Necas, J. y Kubin, S. (1966). Mereni listové plochy. (Measurements of leaf area). En: Sestak, Z., Catsky, J. (Eds.): Metody Studia Fotosynthetické Produkce Rostlin. (Methods of Studing Photosynthetic Production of Plants). Academia, Praga. 315-331. | spa |
dc.relation.references | Lahlou, S., Tahraoui, A., Israili, Z. y Lyoussi, B. (2006). Diuretic activity of the aqueous extracts of Carum carvi and Tanacetum vulgare in normal rats. Journal of Ethnopharmacology 110: 458–463. | spa |
dc.relation.references | Lailerd, N., Saengsirisuwan, V., Sloniger, J., Toskulkao, C. y Henriksen, E. (2004). Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle. Metabolism 53: 101−107. | spa |
dc.relation.references | Lal, K. y Subba Rao, M. (1951). A rapid method of leaf area determination. Nature, 167, 72. | spa |
dc.relation.references | Langer, R. (1956). Measurement of leaf growth in grasses. En: Milthorpe, F.L. (ed). The growth of leaves. Butterworths Scientific publications, Londres. 197-198. | spa |
dc.relation.references | Larcher, W. (2003). Physiology plant ecology: Ecophysiology and stress physiology of functional groups (4th ed.). Berlín, Alemania: Springer. | spa |
dc.relation.references | Larsen, D. y Kershaw, J. (1990). The measurement of leaf area. En: Lassoie, J., Hinckley, T. (Eds.), Techniques and Approaches in Forest Tree Physiology. CRC Press, Inc., Boca Raton, Fl. 465-475. | spa |
dc.relation.references | Lemus, R., Vega, A., Zura, L. y Ah-Hen K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry 132: 1121–1132. | spa |
dc.relation.references | Liebig, H. (1978). Einflüsse endogner und exogener faktoren auf die ertragsbildung von salatgurken (Cucumis sativus L.) unter besonderer berücksichtigung von ertragsrhytmik, bestandesdichte und schnittmabnahmen. Dissertation, Univ. Hannover. | spa |
dc.relation.references | Lima, C., Oliveira, F., Medeiros, J., Oliveira, M. y Oliveira, F. (2008). Modelos matemáticos para estimativa de área foliar de feijão caupi. Rev Caatinga 21: 120-127. | spa |
dc.relation.references | Liu, J., Jin-wei, L. y Jian, T. (2010). Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food Bioprod. Process. 88(2-3), 215-221 | spa |
dc.relation.references | Lu, H. Lu, C., Wei, M. y Chan, L. (2004). Comparison of different models for nondestructive leaf area estimation in taro. Agron. J., 96, 448-453. | spa |
dc.relation.references | Lyon, C. (1948). A factor method for the area of tomato leaves. Plant Physiol., 23, 634-635. | spa |
dc.relation.references | Maldaner, I., Heldwein, A., Loose, L., Lucas, D., Guse, F. y Bortoluzzi, M. (2009). Modelos de determinação não-destrutiva da área foliar em girassol. Ciência Rural, 39(5), 1356-1361. https://dx.doi.org/10.1590/S0103-84782009000500008 | spa |
dc.relation.references | Maloof, J., Nozue, K., Mumbach, M. y Palmer, C. (2013). LeafJ: An ImageJ plugin for semi-automated leaf shape measurement. J. Vis. Exp. 71: e50028. doi:10.3791/50028. | spa |
dc.relation.references | Manivel, L. y Weaver, R. (1974). Biometric correlations between leaf area and length measurements of Grenache grape leaves. HortScience, 9 (1), 27-28. | spa |
dc.relation.references | Marshall, J. (1968). Methods for leaf area measurement of large and small leaf samples. Photosynthetica, 2(1), 41-47. | spa |
dc.relation.references | Martín, M., Soto, F., Rivera, R. y Rentería, M. (2006). Estimación de la superficie foliar de la Canavalia ensiformis a partir de las medidas lineales de sus hojas. Cultivos Tropicales, Instituto Nacional de Ciencias Agrícolas. La Habana, Cuba. vol. 27, núm. 4, 77-80. | spa |
dc.relation.references | McKee, G. (1964). A coefficient for computing leaf area in hybrid corn. Agron. J., 56, 240-241. | spa |
dc.relation.references | Miller, E. (1938). Plant Physiology. McGraw-Hill Co., Nueva York. | spa |
dc.relation.references | Milthorpe, F. (1942). A simplified photoelectric cell method for measuring leaf areas. J. Austr. Inst. Agric. Sci., 8, 27. | spa |
dc.relation.references | Milthorpe, F. (1956). The growth of leaves. Butterworths Scientific publications. Londres. | spa |
dc.relation.references | Ministerio de Agricultura y Ganadería y Dirección General de Economia Agropecuaria [MAG-DGEA]. (2014). Síntesis Estadísticas del Sector de Stevia. Asunción. | spa |
dc.relation.references | Ministerio de Industria y Comercio y Red de Inversión y Exportación [MIC-REDIEX]. (2011). Boletín de la Mesa Sectorial de Stevia. http://www.rediex.gov.py/beta/userfiles/file/Boletin_Mesa_Stevia_1_2011.pdf. | spa |
dc.relation.references | Mitchell, J. (1936). Measurement of the area of attached and detached leaves. Science, 83, 334-336. | spa |
dc.relation.references | Monselise, S. y Heymann L. (1953). Influence of exposure and age on dry matter content, area and mineral composition of shamouti orange leaves. Am. Soc. Hort. Sci. Proc., 62, 67-74. | spa |
dc.relation.references | Montero, F., De Juan, J., Cuesta, A. y Brasa, A. (2000). Non destructive methods to estimate leaf area in Vitis vinifera L. Hortscience, 35 (4), 696-698. | spa |
dc.relation.references | Murata, Y. (1967). On a new automatic leaf area meter. Jap. Agr. Res. Quart, 2, 35. | spa |
dc.relation.references | Negash, M., Starr, M., Kanninen, M. y Berhe, L. (2013). Allometric equations for estimating aboveground biomass of Coffea arabica L. grown in the Rift Valley escarpment of Ethiopia. Agrofor Syst, 87, 953–966 | spa |
dc.relation.references | Negisi, K., Satoo, T. y Yagi, K. (1957). A method for the rapid measuring of leaf areas. Jour. Jap. Forest Soc., 39, 380-384. | spa |
dc.relation.references | Nuñez, E. (2011). Stevia rebaudiana Bertoni, un sustituto del azúcar. Área Ciencia de las Plantas y Recursos Naturales Maestría en Producción Vegetal – Ciclo de Seminarios. | spa |
dc.relation.references | Nyakwende, E., Paull, C. y Atherton, J. (1997). Non-destructive determination of leaf area in tomato plants using image processing. Journal of Horticultural Science, 72 (2), 255-262. | spa |
dc.relation.references | Ollat, N., Fermaud, M., Tandonnet, J. y Neveux, M. (1998). Evaluation of an indirect method for leaf area index determination in the vineyard: combined effects of cultivar, year and training system. Vitis, 37 (2), 73- 78. | spa |
dc.relation.references | Organización de las Naciones Unidas para la Alimentación y la Agricultura y el Instituto Interamericano de Cooperación para la Agricultura [FAO-IICA]. (2017). Gestión integral del riesgo de desastres en el sector agrícola y la seguridad alimentaria en los países del CAS. Análisis de capacidades técnicas e institucionales – Paraguay. | spa |
dc.relation.references | Palaniswamy, K. y Gomez, K. (1974). Length-width meted for estimating leaf area of rice. Agron. J., 66, 430-433. | spa |
dc.relation.references | Palencia, G., Mercado, T. y Combatt, E. (2006). Estudio Agroclimático del Departamento de Córdoba. Universidad de Córdoba. Montería, Colombia: Editorial Gráficas del Caribe Ltda. | spa |
dc.relation.references | Paquin, R. y Coulombe, L. (1959). A simple method for measuring the area of leaves of potted plants. Can. J. Bot., 37, 167 | spa |
dc.relation.references | Payne, W., Wendt, C., Hossner, L. y Gates, C. (1991). Estimating pearl millet leaf area and specific leaf area. Agron. J., 83, 937-941. | spa |
dc.relation.references | Peksen, E. (2007). Non-destructive leaf area estimation model for faba bean (Vicia faba L.), Scientia Horticulturae, Volume 113 (4): 322-328, ISSN 0304-4238, https://doi.org/10.1016/j.scienta.2007.04.003. | spa |
dc.relation.references | Persaud, N., Gandah, M., Ouattara, M. y Mokete, N. (1993). Estimating leaf area of pearl millet from linear measurements. Agron. J., 85, 10-12. | spa |
dc.relation.references | Pico, A. (2018) Caracterización morfoagronómica de 25 clones de estevia (Stevia rebaudiana Bert.) en condiciones del valle del Sinú medio (Tesis de pregrado). Universidad de Córdoba, Montería. | spa |
dc.relation.references | Poletti, A. (2016). La Stevia rebaudiana/Ka’a he’ẽ: de la prohibición al auge en el comercio exterior. Universidad Columbia del Paraguay. https://www.columbia.edu.py/institucional/investigacion/articulos-de-revision/208-la-stevia-rebaudiana-en-el-comercio-internacional | spa |
dc.relation.references | Pompelli, M., Ferreira, D. y Cavalcante, P. (2010) Environmental influence on the physico-chemical and physiological properties of Jatropha curcas L. seeds. Aust J Bot 58: 421–427. | spa |
dc.relation.references | Pompelli, M., Antunes, W., Ferreira, D., Cavalcante, P., Wanderley-Filho, H., y Endres, L. (2012). Allometric models for non-destructive leaf area estimation of Jatropha curcas. Biomass and Bioenergy, 36, 77–85. https://doi.org/10.1016/j.biombioe.2011.10.010 | spa |
dc.relation.references | Pompelli, M., Figueiroa, J. y Lozano, I. (2018). Allometric models for non-destructive leaf area estimation in Eugenia uniflora (L.). Journal of Agronomy. 2. http://dx.doi.org/10.21704/pja.v2i2.1133 | spa |
dc.relation.references | Pompelli, M., Santos, J. y Santos, M. (2019). Estimating leaf area of Jatropha nana through non-destructive allometric models. AIMS Environmental Science, 6(2): 59-76. doi: 10.3934/environsci.2019.2.59 | spa |
dc.relation.references | Pompelli, M., Santos, M., Jarma, A., Lozano, F., Santos, J., Rivera, J., Espitia, C., Castillejo, A. y Jarma, B. (2018). Leaf area estimation in Jatropha curcas (L.): an update. AIMS Environmental Science. 5. 353-371. doi:10.3934/environsci.2018.5.353. | spa |
dc.relation.references | Price, C., Symonova, O., Mileyko, Y., Hilley, T. y Weitz, S. (2011). Leaf extraction and analysis framework graphical user interface: Segmenting and analyzing the structure of leaf veins and areoles. Plant Physiol. 155: 236-245. | spa |
dc.relation.references | Quintero F. y Casanova E. (2000). Evaluación del crecimiento del cultivar de sorgo Chaguaramas III bajo diversos niveles de fertilización con nitrógeno y fósforo en el estado Guarico, Venezuela. Agronomía Tropical 50: 285-302. | spa |
dc.relation.references | Ramesh, K., Singh, V. y Ramawat, N. (2007). Leaf área distribution and non-destructive estimation methods of leaf área for Stevia rebaudiana (Bert.) Bertoni. Asian Journal. | spa |
dc.relation.references | Rao, J. (1978). Leaf area determination in cabbage. Curr. Sci., 47 (9), 312-313. | spa |
dc.relation.references | Ray, R. y Sing, R. (1989). Leaf area estimation in capsicum (Capsicum annuum L.). Sci. Hortic., 39, 181-188. | spa |
dc.relation.references | Reddy, V., Acock, B., Baker, D. y Acock, M. (1989). Seasonal leaf area-leaf weight relationships in the cotton canopy. Agron. J. 81, 1-4. | spa |
dc.relation.references | Reyes, A. y Taylor, S. (1999). Diuretics in cardiovascular therapy: the new clinicopharmacological bases that matter. Cardiovascular Drugs and Therapy 13: 371-398. | spa |
dc.relation.references | Reziwanggu, A., Jeppesen, P., Rolfsen, S. Xiao, J. y Hermansen, K. (2004). Rebaudioside A potently stimulates insulin secretion from isolated mouse islets: studies on the dose-, glucose-, and calcium-dependency. Metabolism 53(10), 1378-1381. | spa |
dc.relation.references | Rhoads, F. y Bloodworth, M. (1964). Area measurement of cotton leaves by dry-weight method. Agr. J., 56, 520-522. | spa |
dc.relation.references | Riccardi, M., Mele, G., Pulvento, C. Lavini, A. d’Andria, R. y Jacobsen, S. (2014). Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosynth. Res. 120: 263-272. | spa |
dc.relation.references | Robbins, N. y Pharr, D. (1987). Leaf area prediction models for cucumber from linear measurements. Sci. Hortic., 22, 1264-1266. | spa |
dc.relation.references | Robison, C. y Massengale, M. (1967). Use of area-weight relationship to estimate leaf area in alfalfa (Medicago sativa L., cultivar Moapa). Crop Sci., 7, 394-395. | spa |
dc.relation.references | Rodríguez, J., Raffaillac, J. y Alcon C. (2005). Uso del Programa Sigma Scan Pro 5 para la Determinación del Área Foliar. La Paz, Bolivia. | spa |
dc.relation.references | Romero, J., Nahas, S., Roberti, J., Rodriguez, J. y Romero, E. (2015). Estimacion no destructiva del área foliar por planta en sorgo bioenergeticos. Rev. Agron. Noroeste Argent. 35 (1): 51-53 | spa |
dc.relation.references | Rouphael, Y., Colla, G., Fanasca, S. y Karam, F. (2007). Leaf area estimation of sunflower leaves from simple linear measurements. Photosynthetica, 45(2), 306–308. https://doi.org/10.1007/s11099-007-0051-z | spa |
dc.relation.references | Ruck, H. y Bolas, B. (1955). Studies in the comparative physiology of apple rootstocks. I. The effect of nitrogen on the growth and assimilation of Malling Apple Rootstocks. Ann. Bot. N.S., 20, 57-58. | spa |
dc.relation.references | Sauceda A., Lugo G., Villaseñor M., Partida R. y Reyes O. (2015). Un método preciso para medir severidad de roya de la hoja (Puccinia triticina Eriksson) en trigo. Rev. Fitotec. Mex. 38: 427-434. | spa |
dc.relation.references | Schneider, C., Rasband, W. y Eliceiri, K. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Method. 9: 671-675. | spa |
dc.relation.references | Schultz, H. (1992). An empirical model for the simulation of leaf appearance and leaf development of primary shoots of several grapevine (Vitis vinifera L.). Sciencia Horticulturae, 52, 179-200. | spa |
dc.relation.references | Schwab, N., Streck, N., Rehbein, A., Ribeiro, B., Ulhmann, L., Langner, J. y Becker, C. (2014). Dimensões lineares da folha e seu uso na determinação do perfil vertical foliar de gladíolo. Bragantia 73: 97-105. | spa |
dc.relation.references | Schwarz, D. y Kläring, H. (2001). Allometry to estimate leaf area of tomato. J. Plant Nut., 24 (8), 1291-1309. | spa |
dc.relation.references | Secretaría de Agricultura de Antioquia. (2000). Informe preliminar sobre adaptación de la especie Stevia rebaudiana en la región tropical. Gobernación de Antioquia, Medellín (Colombia). | spa |
dc.relation.references | Sepúlveda, G. y Kliewer, M. (1983). Estimation of leaf area of two grapevine cultivars (Vitis vinifera L.) using laminae linear measurements and fresh weight. Am. J. Enol. Vitic. 4 (4), 221-226. | spa |
dc.relation.references | Shivanna, N., Mahadev, N., Farhath, K. y Vijay K. (2013). Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. Journal of Diabetes and Its Complications 27: 103–113. | spa |
dc.relation.references | Silvestre J. y Eiras, J. (2001). Allometric relationship between leaf area and length measurements of Vitis vinifera L. leaves. Ciência Téc. Vitiv., 16 (1), 35-42. | spa |
dc.relation.references | Smith, R. y Kliewer, W. (1984). Estimation of Thompson Seedless grapevine leaf area. Am. J. Enol. Vitic. 35, 16-22. | spa |
dc.relation.references | Spencer, R. (1962). A rapid method for estimating leaf area of cassava (Mahinot utilissima Pohl) using linear measurements. Trop. Agr., 39 (2), 147-152. | spa |
dc.relation.references | Steel, M. y Penny, D. (2000). Parsimony, likelihood, and the role of models in molecular phylogenetics. Molecular Biology and Evolution, 17(6), 839-850. https://doi.org/10.1093/oxfordjournals.molbev.a026364 | spa |
dc.relation.references | Stickler, F., Wearden, C. y Pauli, A. (1961). Leaf area determination in grain sorghum. Agr. J. 53: 187-188. | spa |
dc.relation.references | Suárez, I. y Salgado, J. (2008). Propagación In Vitro de Stevia rebaudiana Bert. (Asteraceae Eupatorieae) a través de organogénesis. Rev. Temas Agrarios. 13(1):40-48. | spa |
dc.relation.references | Suggs, C., Beeman, J. y Splinter, W. (1960). Physical properties of green Virginia-type tobacco leaves. Parte III. Relation of leaf length and width to leaf area. Tobacco Science, 4, 194-197. | spa |
dc.relation.references | Tarbell, K. y Reid, J. (1991). A computer vision system for characterizing corn growth and development. Transactions of the ASAE, vol 34 (5), 2245-2255. | spa |
dc.relation.references | Tejawani, K., Ramakrishna, C., Kurup, O. y Ven Kataraman, K. (1957). Measurements of leaf área of tobacco. Indian J. Agron., 2, 36-39. | spa |
dc.relation.references | Thoday, D. (1909). Experimental researches on vegetable assimilation and respiration. V. A critical examination of Sachs’ method for using increase of dry weight as a measure of carbon dioxide assimilation in leaves. Proc. Roy. Soc., B 82, 1-55. | spa |
dc.relation.references | Thorne, G. y Watson, D. (1955). The effect on yield and leaf area of wheat of applying nitrogen as a topdressing in April or in sprays at ear emergence. J. Agric. Sci., 46, 449-456. | spa |
dc.relation.references | Toebe, M., Rodrigues, R., Chuquel, A., Segatto P. y Castanha, A. (2019). Leaf area estimation of squash ‘Brasileirinha’ by leaf dimensions. Ciência Rural, 49(4), e20180932. https://doi.org/10.1590/0103-8478cr20180932 | spa |
dc.relation.references | Toebe, M., Brum, B., Lopes, S., Cargnelutti, A. y Silveira, T. (2010). Estimativa da área foliar de Crambe abyssinica por discos foliares e por fotos digitais. Cienc Rural 40: 475-478 | spa |
dc.relation.references | Varma, V., y A. M. Osuri. 2013. Black Spot: A platform for automated and rapid estimation of leaf area from scanned images. Plant Ecol. 214: 1529-1534. | spa |
dc.relation.references | Villagran, J., Huayamave, C., Lara, J. y Maluk, O. (2009). Stevia: producción y procesamiento de un endulzante alternativo. Facultad de Economía y Negocios. Escuela Superior Politécnica del Litoral. https://www.dspace.espol.edu.ec/bitstream/123456789/7861/1/D-38559.pdf | spa |
dc.relation.references | Vyvyan, M. y Evans, H. (1932). The leaf relations of fruit trees. 1. A morphological analysis of the distribution of leaf surface on two nine-year old apple trees (Laxton superb). J. Pomology, 10, 228-270. | spa |
dc.relation.references | Walther, B. y Moore, J. (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28, 815–829. | spa |
dc.relation.references | Wang, Y., Wang, D., Shi, P. y Omasa, K. (2014). Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Method. 10: 36. | spa |
dc.relation.references | Warman, L., Moles, A. y Edwards, W. (2011). Not so simple after all: Searching for ecological advantages of compound leaves. Oikos 120: 813-821. | spa |
dc.relation.references | Watson, D. (1947). Comparative physiological studies on the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann. of Bot. N.S. 41-76. | spa |
dc.relation.references | Wendt, C. (1967). Use of relationship between leaf length and leaf area to estimate the leaf area of cotton (Gossypium hirsutum L.), castors (Ricinus comunis L.), and sorghum (Sorghum vulgare L.). Agron. J., 59, 484-486. | spa |
dc.relation.references | Wiersma, J. y Bailey, T. (1975). Estimation of leaflet, trifoliate, and total leaf areas of soybean. Agron. J., 67, 26-30. | spa |
dc.relation.references | Williams, L. y Martinson, T. (2003). Nondestructive leaf area estimation of Niagara and DeChaunac grapevines. Scientia horticulturae 98:493-498. | spa |
dc.relation.references | Williams, R. (1954). Estimation of leaf area for agronomical and plant physiological studies. Aust. J. Agron. Res. 5, 235-236. | spa |
dc.relation.references | Williams, R., Evans, L. y Ludwing, L. (1964). Estimation of leaf area for clover and Lucerne. Austr. J. Agric. Res., 15, 231-233. | spa |
dc.relation.references | Winter, E. y Whiting, J. (2004). Using leaf area to crop weight to determine vine balance. Australian Viticulture, 1, 70-73. | spa |
dc.relation.references | Winter, E., Salter, P., Stanhill, G. y Bleasdale, J. (1956). Some methods of measuring leaf area. En: Milthorpe, F.L. (ed). The growth of leaves. Londres. Butterworths Scientific publications 151-167. | spa |
dc.relation.references | Withrow, R. (1935). A photoelectric device for the rapid measurement of leaf area. J. Agric. Res., 50, 637-643. | spa |
dc.relation.references | Yadav, S., Mishra, Y. y Singh, R. (2007). Total leaf area estimation of Flemingia semialata Roxb. by linear regression. Agricultural Science Digest 27(1), 44-46. | spa |
dc.relation.references | Zuur, A., Elena, N. y Elphick, C. (2010). A protocol for data exploration to avoid common statistical problems. Method Ecol Evol, 1, 3–14. | spa |
dc.rights | Copyright Universidad de Córdoba, 2019 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.keywords | Stevia | eng |
dc.subject.keywords | Leaf area | eng |
dc.subject.keywords | Allometry | eng |
dc.subject.keywords | Leaf morphology | eng |
dc.subject.proposal | Stevia | spa |
dc.subject.proposal | Área foliar | spa |
dc.subject.proposal | Alometría | spa |
dc.subject.proposal | Morfología foliar | spa |
dc.title | Estimación del área foliar con parámetros biométricos de las hojas de cuatro genotipos de stevia (Stevia rebaudiana (Bertoni) Bertoni) en el Sinú Medio | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_16ec | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- HernándezFernándezIsraelAntonio.pdf
- Tamaño:
- 2.73 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis
No hay miniatura disponible
- Nombre:
- Formato de autorización de publicacion (Israel Hernandez).pdf
- Tamaño:
- 424.92 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: