This thesis is devoted to the study of the initial value problem for a nonlinear plate equation in Rn × (0, ∞) with initial data in Modulation spaces, which includes the Bessel-potential Hs p and Besov B s p,q spaces, for large enought regularity index s. We derive a set of time-decay estimates for the corresponding linear plate equation on the framework of modulation spaces, and then, we use these results to analyze the existence and asymptotic stability of global solutions of the nonlinear problem.