Publicación:
Análisis teórico de un modelo de deflexión de placas

dc.contributor.advisorBanquet Brango, Carlos Albertospa
dc.contributor.advisorVillamizar Roa, Élder Jesússpa
dc.contributor.authorCorpa Liñan, Luis Enrique
dc.date.accessioned2022-09-01T19:53:29Z
dc.date.available2023-09-01
dc.date.available2022-09-01T19:53:29Z
dc.date.issued2022-09-01
dc.description.abstractThis thesis is devoted to the study of the initial value problem for a nonlinear plate equation in Rn × (0, ∞) with initial data in Modulation spaces, which includes the Bessel-potential Hs p and Besov B s p,q spaces, for large enought regularity index s. We derive a set of time-decay estimates for the corresponding linear plate equation on the framework of modulation spaces, and then, we use these results to analyze the existence and asymptotic stability of global solutions of the nonlinear problem.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Matemáticasspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.resumenEste trabajo está dedicado al estudio de un problema de valor inicial para una ecuación no lineal de placas en $\mathbb{R}^{n} \times (0,\infty)$ con datos iniciales en espacios de modulación, que incluye el espacio de potenciales de Bessel $H^{s}_{p}$ y espacios de Besov $B^{s}_{p,q}$, para índices de regularidad $s$ suficientemente grande. Derivamos un conjunto de estimaciones de decaimiento en tiempo para la ecuación de placa lineal correspondiente en el marco de los espacios de modulación, y luego usamos estos resultados para analizar la existencia y la estabilidad asintótica de las soluciones globales del problema no lineal.spa
dc.description.tableofcontentsDeclaración de Autoría ............................................................................................................................................................................................................................................. Vspa
dc.description.tableofcontentsResumen ......................................................................................................................................................................................................................................................................... VIIspa
dc.description.tableofcontentsAgradecimientos ......................................................................................................................................................................................................................................................... XIspa
dc.description.tableofcontentsINTRODUCCIÓN ............................................................................................................................................................................................................................................................. 1spa
dc.description.tableofcontents1. PRELIMINARES .......................................................................................................................................................................................................................................................... 5spa
dc.description.tableofcontents1.1. Lemas técnicos ........................................................................................................................................................................................................................................................ 5spa
dc.description.tableofcontents1.2. Espacios $L^p$ ...................................................................................................................................................................................................................................................... 11spa
dc.description.tableofcontents1.3. Transformada de Föurier ............................................................................................................................................................................................................................... 13spa
dc.description.tableofcontents1.4. Espacio de Schwartz ........................................................................................................................................................................................................................................ 17spa
dc.description.tableofcontents1.5. Transformada de Föurier en $L^2$ ....................................................................................................................................................................................................... 20spa
dc.description.tableofcontents1.6. Distribuciones temperadas .......................................................................................................................................................................................................................... 21spa
dc.description.tableofcontents1.7. Espacios de Sobolev ......................................................................................................................................................................................................................................... 24spa
dc.description.tableofcontents1.8. Espacios de modulación .............................................................................................................................................................................................................................. 29spa
dc.description.tableofcontents2. ESTIMATIVAS DE DECAIMIENTO ............................................................................................................................................................................................................... 39spa
dc.description.tableofcontents2.1. Planteamiento del problema .................................................................................................................................................................................................................... 39spa
dc.description.tableofcontents2.2. Estimativas de decaimiento en $L^{\infty}$ y $H^s_p$ ......................................................................................................................................................... 40spa
dc.description.tableofcontents2.3. Estimativas de decaimiento en $M^s_{p,q}$ .................................................................................................................................................................................. 51spa
dc.description.tableofcontents2.3.1. Estimativa de $\Vert \Lambda_{\theta,\frac{1}{2}}(t) g \Vert_{M^s_{p,q}}$ ................................................................................................................. 52spa
dc.description.tableofcontents2.3.2. Estimativa de $\Vert \partial_t \Lambda_{\theta,1}(t) g \Vert_{M^{s-1}_{p,q}}$ ...................................................................................................... 57spa
dc.description.tableofcontents2.3.3. Estimativa de $\Vert \partial_t S(t) u_0 \Vert_{M^{s}_{p,q}}$ ............................................................................................................................................ 60spa
dc.description.tableofcontents2.3.4. Estimativa de $\Vert \partial_t^2 S(t) u_0 \Vert_{M^{s-1}_{p,q}}$ ................................................................................................................................... 63spa
dc.description.tableofcontents2.3.5. Estimativa de $\Vert S(t) \Delta u_1 \Vert_{M^{s}_{p,q}}$ ..................................................................................................................................................... 66spa
dc.description.tableofcontents2.3.6. Estimativa de $\Vert \partial_t S(t) \Delta u_1 \Vert_{M^{s-1}_{p,q}}$ ........................................................................................................................... 67spa
dc.description.tableofcontents3. RESULTADOS DE EXISTENCIA ..................................................................................................................................................................................................................... 68spa
dc.description.tableofcontents3.1. Espacios de solución ....................................................................................................................................................................................................................................... 68spa
dc.description.tableofcontents3.2. Estimativas de no linealidad en espacios de Modulación .................................................................................................................................................... 68spa
dc.description.tableofcontents3.3. Existencia de soluciones locales y globales en espacios de Modulación ................................................................................................................... 76spa
dc.description.tableofcontents4. DISPERSIÓN Y ESTABILIDAD ASÍNTOTICA ........................................................................................................................................................................................ 83spa
dc.description.tableofcontents5. CONCLUSIONES ................................................................................................................................................................................................................................................... 88spa
dc.description.tableofcontents5.1. Conclusiones ......................................................................................................................................................................................................................................................... 88spa
dc.description.tableofcontents5.2. Trabajos futuros ................................................................................................................................................................................................................................................. 88spa
dc.description.tableofcontentsBibliografía ..................................................................................................................................................................................................................................................................... 89spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6508
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Matemáticasspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsPlate equationseng
dc.subject.keywordsModulation spaces,eng
dc.subject.keywordsTime-decay estimates,eng
dc.subject.keywordsGlobal solutionseng
dc.subject.keywordsStabilityeng
dc.subject.proposalEcuación de placasspa
dc.subject.proposalEspacios de modulaciónspa
dc.subject.proposalEstimativas de decaimiento en tiempospa
dc.subject.proposalSolución globalspa
dc.subject.proposalEstabilidadspa
dc.titleAnálisis teórico de un modelo de deflexión de placasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.references[1] Herbert Amann y Joachim Escher. Analysis III. 2009. ISBN : 978-3-7643-7479-2. DOI : 10.1007/978-3-7643-7480-8.spa
dcterms.references[2] Carlos Banquet Brango, Luis Corpa-Liñan y Élder J. Villamizar-Roa. «On a class of nonlinear plate equations on modulation spaces preprint submited». En: (2022).spa
dcterms.references[3] Carlos Banquet Brango, Gilmar Garbugio y Élder J. Villamizar-Roa. «On the existence theory for nonlinear plate equations». En: Zeitschrift für angewandte Mathematik und Physik 73.10 (2022), págs. 1443-1460. DOI : 10.1007/s00033- 021-01646-z.spa
dcterms.references[4] Carlos Banquet Brango y Élder J. Villamizar-Roa. «Existence Theory for the Boussinesq Equation in Modulation Spaces». En: Bulletin of the Brazilian Mathe- matical Society, New Series 51 (2019). DOI : 10.1007/s00574-019-00188-3.spa
dcterms.references[5] Carlos Banquet Brango y Élder J. Villamizar-Roa. «Time-decay and Strichartz estimates for the BBM equation on modulation spaces: Existence of local and global solutions». En: Journal of Mathematical Analysis and Applications 498 (2021). DOI : 10.1016/j.jmaa.2021.124934.spa
dcterms.references[6] Leonid Chaichenets y col. «On existence of global solutions of the one-dimensional cubic NLS for initial data in the modulation space M^s_{p,q} (R) ». En: Journal of Dif- ferential Equations 263 (2016), págs. 4429-4441. DOI : 10.1016/j.jde.2017.04. 020.spa
dcterms.references[7] Marcello D’Abbicco. «The critical exponent for the dissipative plate equation with power nonlinearity». En: Computers & Mathematics with Applications 74 (2017), págs. 1006-1014. DOI : 10.1016/j.camwa.2017.02.045.spa
dcterms.references[8] Hans Feichtinger. «Modulation spaces on locally compact Abelian group». En: (1983), págs. 99-140.spa
dcterms.references[9] Gerald Folland. Real analysis. Modern techniques and their applications. 2nd ed. Addison-Wesley Publishing Company, 1999. ISBN : 978-1-118-62639-9.spa
dcterms.references[10] Pelin G. Geredeli e Irena Lasiecka. «Asymptotic analysis and upper semicon- tinuity with respect to rotational inertia of attractors to von Karman plates with geometrically localized dissipation and critical nonlinearity». En: Nonli- near Analysis. Theory, Methods & Applications. Series A: Theory and Methods 91 (2013), págs. 72-92. DOI : 10.1016/j.na.2013.06.008.spa
dcterms.references[11] Gerd Grubb. Distributions and Operators. Vol. 252. Springer-Verlag New York, 2009. ISBN : 978-0-387-84894-5. DOI : 10.1007/978-0-387-84895-2.spa
dcterms.references[12] Tsukasa Iwabuchi. «Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices». En: Journal of Differential Equations 248 (2010), págs. 1972-2002. DOI : 10.1016/j.jde.2009.08.013.spa
dcterms.references[13] Frank Jones. Lebesgue integration on Euclidean Spaces. Jones & Bartlett Publishers, 2001.spa
dcterms.references[14] Tomoya Kato. «The inclusion relations between α-modulation spaces and L p - Sobolev spaces or local Hardy spaces». En: Journal of Functional Analysis 272 (2016), págs. 1340-1405. DOI : 10.1016/j.jfa.2016.12.002.spa
dcterms.references[15] Tomoya Kato, Mitsuru Sugimoto y Naohito Tomita. «Nonlinear operations on a class of modulation spaces». En: Journal of Functional Analysis 278 (2018). DOI : 10.1016/j.jfa.2019.108447.spa
dcterms.references[16] Erwin Kreyszig. Introductory Functional Analysis with Applications. Wiley Clas- sics Library. John Wiley & Sons. Inc., 1978. ISBN : 9780471504597.spa
dcterms.references[17] Irena Lasiecka, Michael Pokojovy y Xiang Wan. «Global Existence and Expo- nential Stability for a Nonlinear Thermoelastic Kirchhoff-Love Plate». En: Non- linear Analysis: Real World Applications 38 (2017), págs. 184-221. DOI : 10.1016/ j.nonrwa.2017.04.001.spa
dcterms.references[18] Irena Lasiecka, Michael Pokojovy y Xiang Wan. «Long-time behavior of quasi- linear thermoelastic Kirchhoff-Love plates with second sound». En: Nonlinear Analysis 186 (2019), págs. 219-258. DOI : 10.1016/j.na.2019.02.019.spa
dcterms.references[19] Felipe Linares y Gustavo Ponce. Introduction to Nonlinear Dispersive Equations. Springer, 2009. DOI : 10.1007/978-0-387-84899-0.spa
dcterms.references[20] Ramesh Manna. «Modulation spaces and non-linear Hartree type equations». En: Nonlinear Analysis 162 (2017), págs. 76-90. DOI : 10.1016/j.na.2017.06. 009.spa
dcterms.references[21] James Munkres. Analysis on Manifolds. Addison-Wesley Publishing Company, 1991. DOI : 10.1201/9780429494147.spa
dcterms.references[22] Murray Protter y Charles Morrey. Intermediate Calculus. Vol. 2. Springer, 1985. DOI : 10.1007/978-1-4612-1086-3.spa
dcterms.references[23] Huang Qiang, Dashan Fan y Jiecheng Chen. «Critical exponent for evolution equation in Modulation space». En: Journal of Mathematical Analysis and Appli- cations 443 (2014), págs. 230-242. DOI : 10.1016/j.jmaa.2016.04.051.spa
dcterms.references[24] Reinhard Racke y Yoshihiro Ueda. «Dissipative structures for thermoelastic plate equations in R^n». En: Advances in Differential Equations (2016), págs. 601-630.spa
dcterms.references[25] Reinhard Racke y Yoshihiro Ueda. «Nonlinear thermoelastic plate equations - Global existence and decay rates for the Cauchy problem». En: Journal of Dif- ferential Equations 263 (2017), págs. 8138-8177. DOI : 10.1016/j.jde.2017.08. 036.spa
dcterms.references[26] Reinhard Racke y Yoshihiro Ueda. «The Cauchy Problem for Thermoelastic Plates with Two Temperatures». En: Zeitschrift für Analysis und ihre Anwendun- gen 39 (2020), págs. 103-129. DOI : 10.4171/ZAA/1653.spa
dcterms.references[27] Walter Rudin. Real and Complex Analysis. Vol. 3. McGraw-Hill Book Co., 1987. DOI : 10.2307/2348852.spa
dcterms.references[28] Michael Ruzhansky, Mitsuru Sugimoto y Baoxiang Wang. «Modulation Spa- ces and Nonlinear Evolution Equations». En: Progress in Mathematics 301 (2012), págs. 267-283. DOI : 10.1007/978-3-0348-0454-7_14.spa
dcterms.references[29] Yoshihiro Sawano. Theory of Besov spaces, to appear. Springer, 2018. ISBN : 978- 981-13-0835-2. DOI : https://doi.org/10.1007/978-981-13-0836-9.spa
dcterms.references[30] Baoxiang Wang y Chunyan Huang. «Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations». En: Journal of Differential Equations 239 (2007), págs. 213-250. DOI : 10.1016/j.jde.2007.04.009.spa
dcterms.references[31] Baoxiang Wang y Henryk Hudzik. «The global Cauchy problem for the NLS and NLKG with small rough data». En: Journal of Differential Equations 232 (2007), págs. 36-73. DOI : 10.1016/j.jde.2006.09.004.spa
dcterms.references[32] Guoping Zhao, Jiecheng Chen y Weichao Guo. «Klein-Gordon Equations on Modulation Spaces». En: Abstract and Applied Analysis 2014 (2014), págs. 1-15. DOI : 10.1155/2014/947642.spa
dcterms.references[33] Youbin Zhu. «Global existence of small amplitude solution for the generali- zed IMBq equation». En: Journal of Mathematical Analysis and Applications 340 (2008), págs. 304-321. DOI : 10.1016/j.jmaa.2007.08.018.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
luisenriquecorpaliñan.pdf
Tamaño:
747.71 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría sobre ecuaciones de placas en espacios de modulación.
No hay miniatura disponible
Nombre:
AutorizaciónPublicación_Corpa.pdf
Tamaño:
295.28 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización de publicación
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones