Publicación: Análisis teórico de un modelo de deflexión de placas
dc.contributor.advisor | Banquet Brango, Carlos Alberto | spa |
dc.contributor.advisor | Villamizar Roa, Élder Jesús | spa |
dc.contributor.author | Corpa Liñan, Luis Enrique | |
dc.date.accessioned | 2022-09-01T19:53:29Z | |
dc.date.available | 2023-09-01 | |
dc.date.available | 2022-09-01T19:53:29Z | |
dc.date.issued | 2022-09-01 | |
dc.description.abstract | This thesis is devoted to the study of the initial value problem for a nonlinear plate equation in Rn × (0, ∞) with initial data in Modulation spaces, which includes the Bessel-potential Hs p and Besov B s p,q spaces, for large enought regularity index s. We derive a set of time-decay estimates for the corresponding linear plate equation on the framework of modulation spaces, and then, we use these results to analyze the existence and asymptotic stability of global solutions of the nonlinear problem. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Matemáticas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.resumen | Este trabajo está dedicado al estudio de un problema de valor inicial para una ecuación no lineal de placas en $\mathbb{R}^{n} \times (0,\infty)$ con datos iniciales en espacios de modulación, que incluye el espacio de potenciales de Bessel $H^{s}_{p}$ y espacios de Besov $B^{s}_{p,q}$, para índices de regularidad $s$ suficientemente grande. Derivamos un conjunto de estimaciones de decaimiento en tiempo para la ecuación de placa lineal correspondiente en el marco de los espacios de modulación, y luego usamos estos resultados para analizar la existencia y la estabilidad asintótica de las soluciones globales del problema no lineal. | spa |
dc.description.tableofcontents | Declaración de Autoría ............................................................................................................................................................................................................................................. V | spa |
dc.description.tableofcontents | Resumen ......................................................................................................................................................................................................................................................................... VII | spa |
dc.description.tableofcontents | Agradecimientos ......................................................................................................................................................................................................................................................... XI | spa |
dc.description.tableofcontents | INTRODUCCIÓN ............................................................................................................................................................................................................................................................. 1 | spa |
dc.description.tableofcontents | 1. PRELIMINARES .......................................................................................................................................................................................................................................................... 5 | spa |
dc.description.tableofcontents | 1.1. Lemas técnicos ........................................................................................................................................................................................................................................................ 5 | spa |
dc.description.tableofcontents | 1.2. Espacios $L^p$ ...................................................................................................................................................................................................................................................... 11 | spa |
dc.description.tableofcontents | 1.3. Transformada de Föurier ............................................................................................................................................................................................................................... 13 | spa |
dc.description.tableofcontents | 1.4. Espacio de Schwartz ........................................................................................................................................................................................................................................ 17 | spa |
dc.description.tableofcontents | 1.5. Transformada de Föurier en $L^2$ ....................................................................................................................................................................................................... 20 | spa |
dc.description.tableofcontents | 1.6. Distribuciones temperadas .......................................................................................................................................................................................................................... 21 | spa |
dc.description.tableofcontents | 1.7. Espacios de Sobolev ......................................................................................................................................................................................................................................... 24 | spa |
dc.description.tableofcontents | 1.8. Espacios de modulación .............................................................................................................................................................................................................................. 29 | spa |
dc.description.tableofcontents | 2. ESTIMATIVAS DE DECAIMIENTO ............................................................................................................................................................................................................... 39 | spa |
dc.description.tableofcontents | 2.1. Planteamiento del problema .................................................................................................................................................................................................................... 39 | spa |
dc.description.tableofcontents | 2.2. Estimativas de decaimiento en $L^{\infty}$ y $H^s_p$ ......................................................................................................................................................... 40 | spa |
dc.description.tableofcontents | 2.3. Estimativas de decaimiento en $M^s_{p,q}$ .................................................................................................................................................................................. 51 | spa |
dc.description.tableofcontents | 2.3.1. Estimativa de $\Vert \Lambda_{\theta,\frac{1}{2}}(t) g \Vert_{M^s_{p,q}}$ ................................................................................................................. 52 | spa |
dc.description.tableofcontents | 2.3.2. Estimativa de $\Vert \partial_t \Lambda_{\theta,1}(t) g \Vert_{M^{s-1}_{p,q}}$ ...................................................................................................... 57 | spa |
dc.description.tableofcontents | 2.3.3. Estimativa de $\Vert \partial_t S(t) u_0 \Vert_{M^{s}_{p,q}}$ ............................................................................................................................................ 60 | spa |
dc.description.tableofcontents | 2.3.4. Estimativa de $\Vert \partial_t^2 S(t) u_0 \Vert_{M^{s-1}_{p,q}}$ ................................................................................................................................... 63 | spa |
dc.description.tableofcontents | 2.3.5. Estimativa de $\Vert S(t) \Delta u_1 \Vert_{M^{s}_{p,q}}$ ..................................................................................................................................................... 66 | spa |
dc.description.tableofcontents | 2.3.6. Estimativa de $\Vert \partial_t S(t) \Delta u_1 \Vert_{M^{s-1}_{p,q}}$ ........................................................................................................................... 67 | spa |
dc.description.tableofcontents | 3. RESULTADOS DE EXISTENCIA ..................................................................................................................................................................................................................... 68 | spa |
dc.description.tableofcontents | 3.1. Espacios de solución ....................................................................................................................................................................................................................................... 68 | spa |
dc.description.tableofcontents | 3.2. Estimativas de no linealidad en espacios de Modulación .................................................................................................................................................... 68 | spa |
dc.description.tableofcontents | 3.3. Existencia de soluciones locales y globales en espacios de Modulación ................................................................................................................... 76 | spa |
dc.description.tableofcontents | 4. DISPERSIÓN Y ESTABILIDAD ASÍNTOTICA ........................................................................................................................................................................................ 83 | spa |
dc.description.tableofcontents | 5. CONCLUSIONES ................................................................................................................................................................................................................................................... 88 | spa |
dc.description.tableofcontents | 5.1. Conclusiones ......................................................................................................................................................................................................................................................... 88 | spa |
dc.description.tableofcontents | 5.2. Trabajos futuros ................................................................................................................................................................................................................................................. 88 | spa |
dc.description.tableofcontents | Bibliografía ..................................................................................................................................................................................................................................................................... 89 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6508 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Matemáticas | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Plate equations | eng |
dc.subject.keywords | Modulation spaces, | eng |
dc.subject.keywords | Time-decay estimates, | eng |
dc.subject.keywords | Global solutions | eng |
dc.subject.keywords | Stability | eng |
dc.subject.proposal | Ecuación de placas | spa |
dc.subject.proposal | Espacios de modulación | spa |
dc.subject.proposal | Estimativas de decaimiento en tiempo | spa |
dc.subject.proposal | Solución global | spa |
dc.subject.proposal | Estabilidad | spa |
dc.title | Análisis teórico de un modelo de deflexión de placas | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] Herbert Amann y Joachim Escher. Analysis III. 2009. ISBN : 978-3-7643-7479-2. DOI : 10.1007/978-3-7643-7480-8. | spa |
dcterms.references | [2] Carlos Banquet Brango, Luis Corpa-Liñan y Élder J. Villamizar-Roa. «On a class of nonlinear plate equations on modulation spaces preprint submited». En: (2022). | spa |
dcterms.references | [3] Carlos Banquet Brango, Gilmar Garbugio y Élder J. Villamizar-Roa. «On the existence theory for nonlinear plate equations». En: Zeitschrift für angewandte Mathematik und Physik 73.10 (2022), págs. 1443-1460. DOI : 10.1007/s00033- 021-01646-z. | spa |
dcterms.references | [4] Carlos Banquet Brango y Élder J. Villamizar-Roa. «Existence Theory for the Boussinesq Equation in Modulation Spaces». En: Bulletin of the Brazilian Mathe- matical Society, New Series 51 (2019). DOI : 10.1007/s00574-019-00188-3. | spa |
dcterms.references | [5] Carlos Banquet Brango y Élder J. Villamizar-Roa. «Time-decay and Strichartz estimates for the BBM equation on modulation spaces: Existence of local and global solutions». En: Journal of Mathematical Analysis and Applications 498 (2021). DOI : 10.1016/j.jmaa.2021.124934. | spa |
dcterms.references | [6] Leonid Chaichenets y col. «On existence of global solutions of the one-dimensional cubic NLS for initial data in the modulation space M^s_{p,q} (R) ». En: Journal of Dif- ferential Equations 263 (2016), págs. 4429-4441. DOI : 10.1016/j.jde.2017.04. 020. | spa |
dcterms.references | [7] Marcello D’Abbicco. «The critical exponent for the dissipative plate equation with power nonlinearity». En: Computers & Mathematics with Applications 74 (2017), págs. 1006-1014. DOI : 10.1016/j.camwa.2017.02.045. | spa |
dcterms.references | [8] Hans Feichtinger. «Modulation spaces on locally compact Abelian group». En: (1983), págs. 99-140. | spa |
dcterms.references | [9] Gerald Folland. Real analysis. Modern techniques and their applications. 2nd ed. Addison-Wesley Publishing Company, 1999. ISBN : 978-1-118-62639-9. | spa |
dcterms.references | [10] Pelin G. Geredeli e Irena Lasiecka. «Asymptotic analysis and upper semicon- tinuity with respect to rotational inertia of attractors to von Karman plates with geometrically localized dissipation and critical nonlinearity». En: Nonli- near Analysis. Theory, Methods & Applications. Series A: Theory and Methods 91 (2013), págs. 72-92. DOI : 10.1016/j.na.2013.06.008. | spa |
dcterms.references | [11] Gerd Grubb. Distributions and Operators. Vol. 252. Springer-Verlag New York, 2009. ISBN : 978-0-387-84894-5. DOI : 10.1007/978-0-387-84895-2. | spa |
dcterms.references | [12] Tsukasa Iwabuchi. «Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices». En: Journal of Differential Equations 248 (2010), págs. 1972-2002. DOI : 10.1016/j.jde.2009.08.013. | spa |
dcterms.references | [13] Frank Jones. Lebesgue integration on Euclidean Spaces. Jones & Bartlett Publishers, 2001. | spa |
dcterms.references | [14] Tomoya Kato. «The inclusion relations between α-modulation spaces and L p - Sobolev spaces or local Hardy spaces». En: Journal of Functional Analysis 272 (2016), págs. 1340-1405. DOI : 10.1016/j.jfa.2016.12.002. | spa |
dcterms.references | [15] Tomoya Kato, Mitsuru Sugimoto y Naohito Tomita. «Nonlinear operations on a class of modulation spaces». En: Journal of Functional Analysis 278 (2018). DOI : 10.1016/j.jfa.2019.108447. | spa |
dcterms.references | [16] Erwin Kreyszig. Introductory Functional Analysis with Applications. Wiley Clas- sics Library. John Wiley & Sons. Inc., 1978. ISBN : 9780471504597. | spa |
dcterms.references | [17] Irena Lasiecka, Michael Pokojovy y Xiang Wan. «Global Existence and Expo- nential Stability for a Nonlinear Thermoelastic Kirchhoff-Love Plate». En: Non- linear Analysis: Real World Applications 38 (2017), págs. 184-221. DOI : 10.1016/ j.nonrwa.2017.04.001. | spa |
dcterms.references | [18] Irena Lasiecka, Michael Pokojovy y Xiang Wan. «Long-time behavior of quasi- linear thermoelastic Kirchhoff-Love plates with second sound». En: Nonlinear Analysis 186 (2019), págs. 219-258. DOI : 10.1016/j.na.2019.02.019. | spa |
dcterms.references | [19] Felipe Linares y Gustavo Ponce. Introduction to Nonlinear Dispersive Equations. Springer, 2009. DOI : 10.1007/978-0-387-84899-0. | spa |
dcterms.references | [20] Ramesh Manna. «Modulation spaces and non-linear Hartree type equations». En: Nonlinear Analysis 162 (2017), págs. 76-90. DOI : 10.1016/j.na.2017.06. 009. | spa |
dcterms.references | [21] James Munkres. Analysis on Manifolds. Addison-Wesley Publishing Company, 1991. DOI : 10.1201/9780429494147. | spa |
dcterms.references | [22] Murray Protter y Charles Morrey. Intermediate Calculus. Vol. 2. Springer, 1985. DOI : 10.1007/978-1-4612-1086-3. | spa |
dcterms.references | [23] Huang Qiang, Dashan Fan y Jiecheng Chen. «Critical exponent for evolution equation in Modulation space». En: Journal of Mathematical Analysis and Appli- cations 443 (2014), págs. 230-242. DOI : 10.1016/j.jmaa.2016.04.051. | spa |
dcterms.references | [24] Reinhard Racke y Yoshihiro Ueda. «Dissipative structures for thermoelastic plate equations in R^n». En: Advances in Differential Equations (2016), págs. 601-630. | spa |
dcterms.references | [25] Reinhard Racke y Yoshihiro Ueda. «Nonlinear thermoelastic plate equations - Global existence and decay rates for the Cauchy problem». En: Journal of Dif- ferential Equations 263 (2017), págs. 8138-8177. DOI : 10.1016/j.jde.2017.08. 036. | spa |
dcterms.references | [26] Reinhard Racke y Yoshihiro Ueda. «The Cauchy Problem for Thermoelastic Plates with Two Temperatures». En: Zeitschrift für Analysis und ihre Anwendun- gen 39 (2020), págs. 103-129. DOI : 10.4171/ZAA/1653. | spa |
dcterms.references | [27] Walter Rudin. Real and Complex Analysis. Vol. 3. McGraw-Hill Book Co., 1987. DOI : 10.2307/2348852. | spa |
dcterms.references | [28] Michael Ruzhansky, Mitsuru Sugimoto y Baoxiang Wang. «Modulation Spa- ces and Nonlinear Evolution Equations». En: Progress in Mathematics 301 (2012), págs. 267-283. DOI : 10.1007/978-3-0348-0454-7_14. | spa |
dcterms.references | [29] Yoshihiro Sawano. Theory of Besov spaces, to appear. Springer, 2018. ISBN : 978- 981-13-0835-2. DOI : https://doi.org/10.1007/978-981-13-0836-9. | spa |
dcterms.references | [30] Baoxiang Wang y Chunyan Huang. «Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations». En: Journal of Differential Equations 239 (2007), págs. 213-250. DOI : 10.1016/j.jde.2007.04.009. | spa |
dcterms.references | [31] Baoxiang Wang y Henryk Hudzik. «The global Cauchy problem for the NLS and NLKG with small rough data». En: Journal of Differential Equations 232 (2007), págs. 36-73. DOI : 10.1016/j.jde.2006.09.004. | spa |
dcterms.references | [32] Guoping Zhao, Jiecheng Chen y Weichao Guo. «Klein-Gordon Equations on Modulation Spaces». En: Abstract and Applied Analysis 2014 (2014), págs. 1-15. DOI : 10.1155/2014/947642. | spa |
dcterms.references | [33] Youbin Zhu. «Global existence of small amplitude solution for the generali- zed IMBq equation». En: Journal of Mathematical Analysis and Applications 340 (2008), págs. 304-321. DOI : 10.1016/j.jmaa.2007.08.018. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- luisenriquecorpaliñan.pdf
- Tamaño:
- 747.71 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de maestría sobre ecuaciones de placas en espacios de modulación.
No hay miniatura disponible
- Nombre:
- AutorizaciónPublicación_Corpa.pdf
- Tamaño:
- 295.28 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización de publicación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: