Publicación: K-Marcos en espacios p−ádicos
Portada
Citas bibliográficas
Código QR
Autores
Director
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor/Compilador
Editores
Tipo de Material
Fecha
Cita bibliográfica
Título de serie/ reporte/ volumen/ colección
Es Parte de
Resumen en español
En el presente trabajo se dará una reseña de la teoría de marcos en espacios de Hilbert, realizando una descripción de los aspectos fundamentales vía a la teoría de operadores, haciendo uso de [15] como guía principal. De igual forma se llevará a cabo un estudio de los K-marcos asociados a un operador acotado en espacios de Hilbert. Adicionalmente, se utilizará como herramienta elementos del análisis p−ádicos permitiendo la construcción de los marcos y K-marcos en espacios de Hilbert separables denotados por Hl(Qnp), por otro lado se dará un ejemplo concreto deun marco en Hl(Qnp), el cual no es una base para dicho espacio. Finalmente se realizará la construcción de un operador pseudodiferencial Al : Hl(Qnp) → Hl(Qnp), con el objetivo de garantizar la existencia de los K-marcos asociados al operador Al en los espacios Hl(Qnp).
Resumen en inglés
In this paper, We will give an overview of the theory of frames in Hilbert’s spaces, describing its various fundamental aspects of Hilbert’s spaces, carrying out a description of the fundamental aspects from the operators theory, using [15] as a main guide. In the same way a study of the K-frames associated to an operator in Hilbert spaces will be developed. In addition to this we will use as a resource the elements of the p − adic analysis in the construction of the p − adic the frames and K-frames in separable Hilbert spaces denoted by Hl(Qnp). On the other hand, we will give an example of a frame in Hl(Qnp), which is not a basis for the space previously mentioned. In conclusion, a pseudo-differential operator will be built.Al : Hl(Qnp) → Hl(Qnp), with the purpose of guarantee the existence of the K-frames associated to an operator on the spaces Hl(Qnp).