B.D.B. Monografías
URI permanente para esta colección
Navegar
Examinando B.D.B. Monografías por Entidad "Publication"
Mostrando 1 - 20 de 27
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Análisis cualitativo de algunos modelos en epidemiología matemática a partir del modelo de Kermack-McKendrick(2023-02-17) Cuello Rodríguez, Dina María; Avilez Ortíz, Sergio Miguel; Arenas Tawil, Abraham JoséIt is known that we are currently going through a pandemic, which is why it is extremely important to model the behavior of disease transmission, in this paper we intend to analytically address some models based on the Kermack-McKendrick model, which is a system composed of three connected nonlinear ordinary differential equations, which is a well-planned system to be mathematically acceptable and serves to detect parameters that allow taking respective measures to control diseases.Publicación Acceso abierto Análisis de estabilidad de un modelo depredador-presa con estructura de etapas para la presa(2023-08-17) Daza Barreto, Javier Andres; Moreno Contreras, Edwin Amed; Pérez Reyes, EdgardoEn esta monografía se presenta y analiza un modelo del tipo Depredador-Presa, propuestopor Ashine [2]. El modelo consta de dos depredadores y una presa estructurada en etapas, que involucra el tipo de respuesta funcional Lotka-Voltera. Se asume que la presa crece logísticamente en ausencia de depredadores. El estudio abarca la existencia y unicidad del modelo propuesto, junto con propiedades importantes como lo son la positividad y acotación de las soluciones del mismo. También se investiga la existencia de puntos de equilibrio y se realiza un análisis de estabilidad, tanto a nivel local como global, para todos los puntos de equilibrio posibles. En el análisis global se utilizan funciones de Liapunov adecuadas para estudiar la dinámica del modelo propuesto. Finalmente, para contrastar los resultados analíticos obtenidos en los capítulos previos se llevan a cabo una serie de simulaciones en Matlab.Publicación Acceso abierto Análisis numérico de un método de Galerkin para un problema evolutivo no lineal(Universidad de Cordoba, 2024-12-18) Muñoz López, Juan Alberto; Reales Martínez, Carlos Alberto; Arenas Tawil, Abraham José; Silgado Ballesta, AlberthEl presente trabajo se centra en el desarrollo y análisis de un método numérico basado en el enfoque de Galerkin, aplicado a problemas evolutivos no lineales. Estos problemas surgen en diversos campos científicos, como la biología, la física y la ingeniería, y presentan desafíos significativos tanto desde el punto de vista teórico como computacional. En primer lugar, se introducen conceptos preliminares sobre los espacios de Sobolev, además fundamentales para el análisis del método. Posteriormente, se plantea un problema evolutivo no lineal como caso de estudio, explorando tanto su formulación como su solución numérica mediante el método de Galerkin en el contexto de los elementos finitos. Por último, se presentan dos ejemplos de aplicación que validan el uso del método de los elementos finitos para resolver problemas evolutivos no lineales, destacando su precisión y utilidad en escenarios prácticosPublicación Acceso abierto Aplicación de los métodos iterativos de espacios de Krylov a la solución numérica de la ecuación de Poisson(2023-08-17) López Hernández, Herlys Yulieth; Pacheco Zapata, Miguel Ángel; Avilez Ortiz, Sergio AvilezEn este trabajo de grado, presentaremos algunos métodos iterativos de espacios de Krylov. Estos métodos son de gran utilidad al buscar soluciones aproximadas para sistemas del tipo Ax=b, especialmente cuando hay una gran cantidad de ceros en la matriz. Aplicaremos estos métodos para obtener una aproximación numérica de la ecuación de Poisson, que será estudiada y planteada a lo largo de este trabajo. En primer lugar, introduciremos algunos conceptos preliminares sobre los espacios de Krylov, explicando su origen y presentando métodos importantes derivados de este espacio. Posteriormente, plantearemos la ecuación de Poisson y la resolveremos utilizando el método de diferencias finitas, para así analizar su estabilidad, consistencia y convergencia. Por último, aplicaremos esta ecuación en algunos campos de la física, donde utilizaremos los métodos de Krylov para encontrar soluciones eficientes, con esto, buscamos explorar y utilizar los métodos iterativos de los espacios de Krylov como herramientas efectivas en la resolución aproximada de sistemas con una matriz esparsa, centrándonos en la ecuación de Poisson y su aplicación en diversos contextos de la física.Publicación Acceso abierto Aproximación de soluciones analítico-numéricas de Ecuaciones Algebraicas-Diferenciales(2021-06-27) Benítez, Duban; Arenas Tawil, Abraham JoséLos sistemas mecánicos multicuerpo restringidos, son una clase de sistemas que son usualmente implementados en diversas aplicaciones y sus comportamientos son modelados en la mayoría de los casos, a partir de ecuaciones diferenciales algebraicas de índice 2 o índice 3, las cuales no son fáciles de resolver numéricamente. En este trabajo se presenta una generalización del método llamado MSPPA desarrollado por Dr. Brahim Benhammouda (Brahim, 2018), cuya base es la combinación entre el método de las series de Potencia (MSP) y los Polinomios de Adomian (PA), convirtiéndose en una excelente y efectiva herramienta para resolver las ecuaciones diferenciales algebraicas de índice 2 que modelan la dinámica de los sistemas mecánicos multicuerpo restringidos, con la ventaja de que el método es aplicado directamente a la ecuación diferencial algebraica reduciendo así, tanto el trabajo de cálculo como el margen de error en cuanto a la solución dada. Además, se ilustra de manera detallada los procedimientos que conllevan a mejorar la precisión y convergencia de las soluciones a este tipo de ecuaciones junto con la implementación del método en el programa de computación matemática llamado Maple.Publicación Acceso abierto Buena colocación local para la ecuación de onda no lineal en espacios de Gevrey(2023) Verbel Naissir, Mairol Jose; Banquet Brango, Carlos AlbertoEn este trabajo primeramente se estudian los espacios L^p, la transformada de Fourier en R^n y los espacios de Sobolev en R^n. Luego se utiliza la teoría anterior para definir el espacio de Gevrey y demostrar algunas propiedades que serán necesarias al momento de obtener la buena colocación para la ecuación de onda no lineal en este mismo espacio, debido a que este es el problema principal que se quiere solucionar en el presente trabajo. Posteriormente, se considera el problema de valor inicial de la ecuación de onda general. con datos iniciales pertenecientes a estos espacios de Gevrey, luego usando transformada Fourier se obtiene la solución al problema lineal y mediante el principio de Duhamel se obtiene una ecuación integrodiferencial que es formalmente equivalente a la solución del problema original, es decir, se soluciona el problema que se obtiene vía transformada de Fourier, pero no se soluciona el problema que se considera antes de aplicar transformada. Finalmente, se usa un argumento de punto fijo para demostrar el teorema de buena colocación para la ecuación de onda no lineal en espacios de Gevrey, esto es, de forma corta que existe una solución única que depende continuamente de los datos iniciales.Publicación Acceso abierto Caracterización de marcos asociados a un operador acotado en espacios de Hilbert(Universidad de Córdoba, 2024-12-20) Monterrosa Castillo, Gleimer Enrique; Pastrana, Juan Carlos; Villar Ferrer, Osmin; Pérez Reyes, Edgardo; Lloreda Zuñiga, Jimmy; Ferrer Villar, OsminSe estudian algunos tipos de marcos asociados a ciertos operadores y ver las principales propiedades que se preservan de un marco, además de caracterizar los operadores de síntesis y marcos entre otros. Más aún el objetivo principal de estudiar marcos es reconstruir cada elemento de un espacio de Hilbert mediante una secuencia de imágenes de un operador lineal acotado.Publicación Acceso abierto Construcción de marcos duales en espacio de Hilbert(Universidad de Córdoba, 2024-08-06) Sierra Polanco, Karol Tatiana; Negrete Petro, Pedro Manuel; Benítez Babilonia, Luis Enrique; Polo Flórez, Osvaldo de JesúsEn este trabajo estudiaremos la teoría de marcos en espacios de Hilbert, los ope- radores asociados a los marcos y sus propiedades, además se estudiará el teorema más relevante de esta teoría, como es el teorema de descomposición de marcos, daremos varios ejemplos y, por último, se mostrará la caracterización de una clase especial de marcos llamados marcos duales en espacios de Hilbert.Publicación Acceso abierto Una demostración elemental del teorema de los números primos(2022-03-25) Flores Luna, Larry Antonio; Borja Soto, Jerson ManuelGiven a real positive number x, the quantity of prime numbers less than or equal to x is denoted by π(x). In this work, we will present an elementary proof of famous prime number theorem, which asserts that the quantity π(x) is asymptotically equivalent to the quotient x/ ln x as x → ∞. To do this demonstration, we will use elementary techniques of analytic number theory to demonstrate Selberg’s asymptotic formula, from which we will derive the elementary proof of the prime number theorem.Publicación Acceso abierto Estudio de la transformada de laplace como método para resolver problemas con ecuaciones diferenciales en derivadas parciales(2023-02-10) Arteaga Palomo, Manuel Eduardo; Reyes Vásquez, Jorge ArmandoEn el presente documento se pretende estudiar con cierto grado de profundidad la transformada de Laplace en el campo de los complejos como método para resolver ecuaciones diferenciales en derivadas parciales con condiciones iniciales y de frontera, aunque solo se estudiarán los casos lineales. Se demostrará la analiticidad de la transformada de Laplace, las propiedades más importantes de este operador integral y se listan las transfromadas de algunas funciones elementales; seguidamente se estudia la transformada inversa, se mencionan algunos métodos para calcularla con ayuda de la teoría de la variable compleja basada en los residuos y el Teorema de Cauchy, luego, se aplican todos los resultados dados para resolver problemas modelados con la ecuación de onda y la ecuación calor.Publicación Acceso abierto Existencia de soluciones periódicas para un sistema dinámico discreto autónomo no lineal(2023-08-18) Galue Espitia, Reinel Luis; Reyes Vásquez, Jorge ArmadoEl objetivo del presente trabajo es presentar algunas soluciones periódicas para un sistema dinámico discreto autónomo no lineal, por ser un tema relativamente nuevo, este trabajo puede servir como introducción a la teoría de sistemas dinámicos discretos autónomo no lineal. Aunque el estudiante del grado de Matemáticas de nuestra universidad no se encuentra familiarizado con este tema, su relativa sencillez y el interés científico que despierta la convierten, según nuestra opinión, en una excelente elección para un trabajo como el presente. Comenzaremos este trabajo con una breve introducción a los sistemas dinámicos, algunas definiciones, teoremas y más, continuamos con el estudio para encontrar existencia de soluciones periódicas para la ecuación de tiempo discreto x_{n+1} = βx_n − g(x_n), con un parámetro β > 0 y g una función no lineal. En el primer caso donde g es la función de McCulloch-Pitts podemos investigar la existencia de soluciones periódicas para la ecuación de tiempo discreto y algunos valores con respecto al parámetro β ∈ (0, ∞). Ya para el segundo caso que es un poco más general, encontraremos soluciones arbitrarias para la ecuación de tiempo discreto con g una función sigmoidea y β ∈((1+√5)/2 , ∞)Publicación Acceso abierto Homología singular de espacios topológicos(Universidad de Córdoba, 2024-02-02) Blanquicett Mangones, Andrés Julián; Agámez Portilla, Andrei Sebastian; Borja Soto, Jerson Manuel; Benítez Babilonia, Luis Enrique; Galeano Delgado, Juan GabrielEn el presente trabajo, se exploran conceptos fundamentales del Álgebra Homológica, tales como Módulos, Homomorfismos y Sucesiones Exactas. Se analizan en profundidad los Complejos de Cadena y la Homología, y se discuten teoremas clave como el Lema de la Serpiente y el Teorema Fundamental del Álgebra Homológica. Además, se examina la Homotopía entre Homomorfismos de Complejos de Cadena. Todo lo anterior es con el fin de llegar a la base central de estre poyecto, la Homología. Para ello se estudian los Simplejos y el Complejo de Cadenas Singulares. Luego, se abordan temas como el 0-ésimo Grupo de Homología, la Homología de un punto y la Homología reducida. Se destaca la Funtorialidad y se presenta el Teorema de Invarianza por Homotopía. Posteriormente, se exploran conceptos más avanzados como la Homología Relativa, la Homología de Pares Topológicos, la Escisión y la Sucesión de Mayer-Vietoris. Finalmente, se discute la Homología de un Cociente de Espacios.Publicación Acceso abierto Implementación del método de elementos finitos en FEnics para problemas de fluidos en dominios axisimétricos(2022-03-25) Zapata Pérez, Brahiam Steven; Reales Martínez, Carlos AlbertoIn this work we implement the Finite Element Method and its programming in FEniCS for fluid problems in axisymmetric domains, making a formulation of the Stokes problem in cylindrical symmetry. The implementation of this formulation allows us to present an example with a known solution where we use several polynomial degrees in the finite elements. We then present a coupled Stokes Darcy problem, where we show examples with known solutions and an example application. Finally we present the complete codes in FEnicsPublicación Acceso abierto Una introducción a la geometría algebraica(2023-07-11) Hernández López, Luis Carlos; Galeano Anaya, Hugo AlbertoEn esta monografía, se presenta una introducción a la geometría algebraica, una disciplina matemática que combina el álgebra y la geometría para estudiar las soluciones de sistemas de ecuaciones polinómicas. Se comienza dando unos preliminares algebraicos, explicando los conceptos fundamentales sobre teoría de anillos y módulos. Se introduce el espacio afín An, se exploran conceptos como conjuntos algebraicos, el ideal de un conjunto de puntos, se estudian las demostraciones de los teoremas de la base y los ceros de Hilbert, la topología de zariski en el espacio afín An. Se aborda también el estudio de variedades proyectivas, se introduce el espacio proyectivo Pn, los conjuntos algebraicos proyectivos, la topología de zariski en el espacio proyectivo Pn, se desarrollan ejemplos detallados relacionados con todos estos conceptos.Publicación Acceso abierto Ley de reciprocidad cuadrática y cuestiones relacionadas con cuadrados(2021-09-29) Cuadrado Chica, Mary Alejandra; Borja Soto, Jerson ManuelEn el presente trabajo tratamos acerca de residuos cuadráticos y la ley de reciprocidad cuadrática. Se muestra la caracterización de los enteros que se pueden representar como suma de dos cuadrados, y hacemos un estudio del respectivo problema modular, que plantea caracterizar y contar la cantidad de enteros módulo n que pueden ser representados como suma de dos cuadrados módulo n.Publicación Acceso abierto Método de cuadratura para resolver problemas con valores en la frontera(2021-06-27) Sánchez Montiel, Jean Carlos; Reyes Vásquez, Jorge ArmandoA través del estudio de fenómenos termodinámicos de difusión de materia y energía, así como de fenómenos de física de partículas se llega al modelo no lineal u'(0)+ f(λ, u(t)) = 0, t ∈ (0, π) u(0) = u(π) = 0. Motivados por todos estos fenómenos físicos y la suprema importancia de este tipo de modelo, nos vemos interesados en realizar un estudio cualitativo de existencia y comportamiento de las soluciones positivas y soluciones que cambian de signo. Todo este análisis lo realizaremos usando el método de cuadratura.Publicación Acceso abierto Método de elementos finitos para un problema de corrientes inducidas axisimetrico(2022-03-25) Otero Pantoja, Jean Carlos; Reales, CarlosIn this work a Finite Element Method for an Axisymmetric Eddy Current problem will be studied. A variational formulation of the problem will be established and the existence and uniqueness of the solution will be proved, making use of some results of the Functional Analysis. Next, a discretization of the variational problem will be established and error estimates will be tested.Publicación Embargo Modelamiento de la conducta delincuencial por edades de bandas criminales usando ecuaciones diferenciales(Universidad de Córdoba, 2024-04-04) Negrete de la Rosa, Adriana Lucia; Arenas Tawil, Abraham José; Reales Martínez, Carlos Alberto; Lloreda Zuñiga, Jimmy HerlinEn este trabajo analizamos un modelo de pandillas criminales estructurado por tres grupos de edades diferentes propuesto por [11]. Este modelo establece tres poblaciones susceptibles, tres grupos de personas que se unen a pandillas criminales y tres centros penitenciarios. Suponemos que el comportamiento delictivo es aprendido y contagioso por la tendencia a imitarlo y los menores de edad que cometan delitos de pena capital deberán esperar en el centro penitenciario destinado para su edad hasta cumplir la mayoría de edad y ser juzgados como adultos. Demostramos la existencia y unicidad, acotación y positividad del sistema, las cuales son sumamente importantes para garantizar el buen planteamiento del modelo. Se deducen los puntos de equilibrio, en ausencia de pandillas criminales y endémico, el equilibrio endémico produce la existencia de bifurcación hacia atrás en el modelo. Para finalizar, llevamos a cabo simulaciones en MATLAB implementando el comando ode45 para complementar los resultados teóricos obtenidos en ciertos capítulos.Publicación Embargo Modelos de carrera criminal contagiosa con bifurcaciones hacia atrás(Universidad de Córdoba, 2024-04-03) Rivas Hernández, Estefania; Arenas Tawil, Abraham Jose; Avilez Ortiz, Sergio Miguel; Reyes Vásquez, Jorge ArmandoEn esta monografía, inicialmente se presenta un modelo de criminalidad parcialmente contagioso propuesto por [1]. El modelo se compone de tres categorías: individuos susceptibles, individuos encarcelados, individuos desertores. Se estudian propiedades esenciales como la existencia y unicidad, la positividad y acotación de las soluciones del modelo propuesto, asegurando que las soluciones sean coherentes y realistas en el contexto del contagio conductual del crimen. También estudiamos los puntos de equilibrio del sistema, identificando las condiciones en las que el número de individuos en cada categoría permanece constante. Posteriormente, se analiza la estabilidad de estos puntos de equilibrio desde una perspectiva local. Además, comprobamos la posibilidad de bifurcaciones hacia atrás en el modelo. Por último, realizamos una serie de simulaciones en MATLAB implementando el comando ode45 para contrastar y validar los resultados obtenidos en los capítulos anteriores, proporcionando una conexión entre los aspectos analíticos y los resultados prácticos del modelo de contagio conductual del crimen. Por otro lado, se estudia un segundo modelo penal de contagio completo, ver [1] tomando como base el modelo de criminalidad parcialmente contagioso. A este modelo se le realizan todos los estudios y análisis del modelo de criminalidad parcialmente contagioso.Publicación Acceso abierto El número básico de reproducción R_0 cómo un parámetro de control en los modelos matemáticos epidemiológicos(2023-08-17) Torres Rojas, Camilo; Salcedo Herazo, Yulieth; Aviléz Ortiz, SergioEn este trabajo de grado calculamos el número básico de reproducción R_0, basados principalmente en el artículo hecho por Van den Driessche, P. y Watmough, J. [1]. Más precisamente, calculamos R_0 a partir de la matriz de próxima generación en algunos modelos matemáticos epidemiológicos que están definidos mediante ecuaciones diferenciales ordinarias (EDO). También veremos las simulaciones de dichos modelos. Y finalmente, vemos la utilidad y la importancia del R_0 que puede proporcionar una mejor comprensión de un brote y permitir una respuesta de salud pública adecuada.