B.J.A. Tesis
URI permanente para esta colección
Navegar
Examinando B.J.A. Tesis por Autor "Benítez Babilonia, Luis Enrique"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Estudio de puntos fijos de aplicaciones no-expansivas en espacios asimétricos(Universidad de Córdoba, 2022-08-31) Rubio Hernández, Luis Javier; Benítez Babilonia, Luis EnriqueUn espacio asimétrico es un espacio dotado con una distancia que no cumple el axioma de simetría. La distancia asimétrica induce dos topologías τ + y τ −, llamadas topología hacia adelante y hacia atrás, respectivamente, que proporciones dos versiones para algunas nociones, como convergencia, completitud y compacidad, entre otros. Algunos resultados de punto fijo de la teoría clásica, como el Teorema del Punto Fijo de Banach, han sido extendidos a espacios asimétricos. En este trabajo, extenderemos a espacios asimétricos algunos resultados de punto fijo para contracciones, aplicaciones contractivas y aplicaciones no-expansivas.Publicación Acceso abierto K-Marcos en espacios p−ádicos(Universidad de Córdoba, 2023-12-13) Vergara Ramírez, Miguel Alfonso; Ferrer Villar, Osmin Oberto; Benítez Babilonia, Luis EnriqueEn el presente trabajo se dará una reseña de la teoría de marcos en espacios de Hilbert, realizando una descripción de los aspectos fundamentales vía a la teoría de operadores, haciendo uso de [15] como guía principal. De igual forma se llevará a cabo un estudio de los K-marcos asociados a un operador acotado en espacios de Hilbert. Adicionalmente, se utilizará como herramienta elementos del análisis p−ádicos permitiendo la construcción de los marcos y K-marcos en espacios de Hilbert separables denotados por Hl(Qnp), por otro lado se dará un ejemplo concreto deun marco en Hl(Qnp), el cual no es una base para dicho espacio. Finalmente se realizará la construcción de un operador pseudodiferencial Al : Hl(Qnp) → Hl(Qnp), con el objetivo de garantizar la existencia de los K-marcos asociados al operador Al en los espacios Hl(Qnp).Publicación Acceso abierto Semigrupos de operadores de composición de funciones sobre N^n_+(Universidad de Córdoba, 2023-08-22) Giraldo Arcia, Oriana; Benítez Babilonia, Luis EnriqueEn el contexto de conjuntos discretos, se estudia la construcción de conos convexos discretos en el trabajo de Adivar y Fang, y se propone al conjunto N^n_+ como un cono convexo discreto, utilizando la L♮-convexidad definida por K. Murota. Sobre este conjunto se introduce la métrica de Thompson sobre un conjunto que satisface ambas definiciones siguiendo un procedimiento análogo al utilizado en la construcción de esta métrica para la teoría no lineal de Perron-Frobenius. Con estos conceptos como base, se detallan funciones definidas en este tipo de conjuntos, de tal forma que, un semigrupo construido a partir de estas funciones induce de manera algebraica un semigrupo de operadores de composición.