Publicación: Aproximación de soluciones analítico-numéricas de Ecuaciones Algebraicas-Diferenciales
Portada
Citas bibliográficas
Código QR
Autores
Director
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor/Compilador
Editores
Tipo de Material
Fecha
Cita bibliográfica
Título de serie/ reporte/ volumen/ colección
Es Parte de
Resumen en español
Los sistemas mecánicos multicuerpo restringidos, son una clase de sistemas que son usualmente implementados en diversas aplicaciones y sus comportamientos son modelados en la mayoría de los casos, a partir de ecuaciones diferenciales algebraicas de índice 2 o índice 3, las cuales no son fáciles de resolver numéricamente. En este trabajo se presenta una generalización del método llamado MSPPA desarrollado por Dr. Brahim Benhammouda (Brahim, 2018), cuya base es la combinación entre el método de las series de Potencia (MSP) y los Polinomios de Adomian (PA), convirtiéndose en una excelente y efectiva herramienta para resolver las ecuaciones diferenciales algebraicas de índice 2 que modelan la dinámica de los sistemas mecánicos multicuerpo restringidos, con la ventaja de que el método es aplicado directamente a la ecuación diferencial algebraica reduciendo así, tanto el trabajo de cálculo como el margen de error en cuanto a la solución dada. Además, se ilustra de manera detallada los procedimientos que conllevan a mejorar la precisión y convergencia de las soluciones a este tipo de ecuaciones junto con la implementación del método en el programa de computación matemática llamado Maple.