Show simple item record

dc.contributor.advisorPerez Sierra Omar Andresspa
dc.contributor.advisorOrtega Quintana Fabian Albertospa
dc.contributor.authorPadilla Feria, Cesar David
dc.contributor.authorMontalvo Lambraño, Heyne de Jesús
dc.date.accessioned2021-01-25T17:27:18Z
dc.date.available2021-01-25T17:27:18Z
dc.date.issued2020-12-07
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3944
dc.description.abstractLa evaluación del efecto de la temperatura del proceso y el espesor de las láminas sobre la cinética de secado y propiedades físicas (encogimiento, densidad aparente y porosidad) en láminas de batata blanca (Ipomoea batatas L.) sometidas a secado por Ventana Refractiva ha sido estudiado con el propósito de determinar los parámetros cinéticos mediante la aplicación de la cinética de primer orden para la influencia de la temperatura, la segunda Ley de Fick para la transferencia de humedad, y el comportamiento de sus propiedades físicas mediante los modelos lineal de Ocho et al. (2007) y polinómico de cuarto grado. Las muestras de batata fueron adecuadas en forma de láminas cuadradas con 3.5 cm de lado y espesores de 1.5 y 2.5 mm, las cuales fueron sometidas a secado a temperaturas de 75, 85 y 95°C. El diseño experimental fue dirigido bajo un diseño completamente al azar con arreglo factorial 3x2 (3 temperaturas y 2 espesores) con tres repeticiones. El contenido de humedad de las muestras fue determinado por el método AOAC 931.04/2012, el encogimiento fue estimado mediante la medición de los lados y el espesor de las láminas, la densidad aparente fue determinada por la medición de la pérdida de peso y reducción del volumen aparente de las muestras durante el proceso y la porosidad fue determinada por medio del modelo empleado por Dissa et al. (2010). Con los resultados obtenidos se construyeron las curvas de secado, en las que se evidencia que este proceso tuvo lugar en el periodo decreciente, el mostró que la difusión es el mecanismo que gobierna el secado de Ipomoea batatas (L.). La difusividad efectiva de la humedad presentó valores entre 8.67x10-5 y 52.8x10-5 m2.s-1, la energía de activación tuvo valores de 34.78 y 21.23 kJ.mol-1, para los espesores de 1.5 y 2.5 mm, de manera correspondiente; el coeficiente convectivo para la transferencia de humedad mostró una tendencia lineal en relación a la temperatura, con valores entre 1.23x10-6 y 3.52x10-6 m.s-1. El encogimiento, densidad aparente y porosidad fueron afectados por la temperatura significativamente, sin embargo, solo el espesor afectó el encogimiento de las láminas. El encogimiento disminuyó con el aumento de la temperatura e incrementó con el aumento del espesor de las láminas, registrándose valores de encogimiento promedio de hasta 47.48%. Por su parte, la densidad aparente se redujo durante el secado, mostrando valores finales entre 516 y 860.6 kg.m-3, el modelo polinómico de cuarto grado se ajustó adecuadamente a los datos de esta propiedad arrojando valores de coeficientes R2>0.9. La porosidad aumentó durante la deshidratación de las láminas de batata, arrojando valores al final del proceso de hasta 66.9% y el comportamiento, en función de la razón de humedad, fue descrito adecuadamente por el modelo polinómico de cuarto orden.spa
dc.description.tableofcontentsLISTADO DE FIGURAS 11spa
dc.description.tableofcontentsLISTADO DE TABLAS 12spa
dc.description.tableofcontentsLISTADO DE APÉNDICES 13spa
dc.description.tableofcontentsRESUMEN 14spa
dc.description.tableofcontentsABSTRACT 16spa
dc.description.tableofcontentsINTRODUCCIÓN 18spa
dc.description.tableofcontentsCAPÍTULO 1. REVISIÓN DE LA LITERATURA 23spa
dc.description.tableofcontents1.1. GENERALIDADES DE LA BATATA. 23spa
dc.description.tableofcontents1.1.1. Descripción y origen 23spa
dc.description.tableofcontents1.1.2. Características nutricionales 24spa
dc.description.tableofcontents1.1.3. Procesamiento y usos 25spa
dc.description.tableofcontents1.2. SECADO. 25spa
dc.description.tableofcontents1.2.1. Tipos de secado 27spa
dc.description.tableofcontents1.2.2. Secado por Ventana Refractiva 29spa
dc.description.tableofcontents1.2.3. Terminología y definiciones fundamentales 34spa
dc.description.tableofcontents1.2.4. Efecto de los principales factores en la cinética de secado 37spa
dc.description.tableofcontents1.2.5. Modelo matemático de transferencia de masa para el secado por Ventana Refractiva. 40spa
dc.description.tableofcontents1.2.6. Efectos del secado sobre las propiedades físicas 43spa
dc.description.tableofcontentsCAPÍTULO 2. MATERIALES Y MÉTODOS 49spa
dc.description.tableofcontents2.1. TIPO DE INVESTIGACIÓN 49spa
dc.description.tableofcontents2.2. LOCALIZACIÓN 49spa
dc.description.tableofcontents2.3. EQUIPOS UTILIZADOS 49spa
dc.description.tableofcontents2.3.1. Equipo de ventana refractiva (RW) 49spa
dc.description.tableofcontents2.3.2. Equipos complementarios. 49spa
dc.description.tableofcontents2.4. VARIABLES E INDICADORES 50spa
dc.description.tableofcontents2.4.1. Variables independientes 50spa
dc.description.tableofcontents2.4.2. Variables dependientes 50spa
dc.description.tableofcontents2.5. MÉTODOS Y PROCEDIMIENTOS 50spa
dc.description.tableofcontents2.5.1. Obtención de la materia prima 50spa
dc.description.tableofcontents2.5.2. Secado de batata 51spa
dc.description.tableofcontents2.5.3. Determinación del contenido de humedad 51spa
dc.description.tableofcontents2.5.4. Determinación del efecto de la temperatura del proceso y el espesor de las láminas sobre la cinética del secado por Ventana Refractiva™ en batata blanca. 52spa
dc.description.tableofcontents2.5.5. Obtención de los parámetros cinéticos para el secado por Ventana Refractiva™ en batata blanca. 52spa
dc.description.tableofcontents2.5.6. Determinación del efecto de la temperatura del proceso y el espesor de las láminas sobre las propiedades físicas 53spa
dc.description.tableofcontents2.5.7. Diseño experimental 55spa
dc.description.tableofcontents2.5.8. Análisis estadístico de datos 56spa
dc.description.tableofcontentsCAPÍTULO 3. RESULTADOS Y DISCUSIÓN 57spa
dc.description.tableofcontents3.1. DETERMINACIÓN DEL EFECTO DE LA TEMPERATURA DE PROCESO Y ESPESOR DE LAS LÁMINAS SOBRE LA CINÉTICA DEL SECADO POR VENTANA REFRACTIVA EN BATATA BLANCA 57spa
dc.description.tableofcontents3.1.1. Curvas de secado para la razón de humedad 57spa
dc.description.tableofcontents3.1.2. Curvas de velocidad de secado 60spa
dc.description.tableofcontents3.2. OBTENCIÓN DE LOS PARÁMETROS CINÉTICOS EN EL SECADO POR VENTANA REFRACTIVA EN BATATA BLANCA 64spa
dc.description.tableofcontents3.3.1. Encogimiento 69spa
dc.description.tableofcontents3.3.2. Densidad aparente 73spa
dc.description.tableofcontents3.3.3. Porosidad 77spa
dc.description.tableofcontentsCAPÍTULO 4. CONCLUSIONES 81spa
dc.description.tableofcontentsCAPÍTULO 5. RECOMENDACIONES 82spa
dc.description.tableofcontentsBIBLIOGRAFÍA 83spa
dc.description.tableofcontentsAPÉNDICES 116spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleEfecto de la temperatura del proceso y el espesor de las láminas en el secado por ventana refractiva en batata blanca (Ipomoea batatas L.) sobre la cinética de secado y propiedades físicasspa
dc.typeTrabajo de grado - Pregradospa
dcterms.referencesAbegunde, O., Mu, T., Chen, J. and Deng, F. (2013). Physicochemical Characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocol. 33(2): 169-177.spa
dcterms.referencesAbonyi, B. (1999). Evaluation of Energy Efficiency and Quality Retention for the Refractance Window™ Drying System. Washington State University, Pullman, WA 99164-6120.spa
dcterms.referencesAGRONET. (2018). Red de información y comunicación del sector agropecuario colombiano [CD-ROM]. Internet: http://www.agronet.gov.co/produccion-y-agronegocios. [20 enero 2018].spa
dcterms.referencesAhmed, M., Akter, M. and Eun, J. (2010). Peeling, drying temperatures, and sulphite-treatment affect physicochemical properties and nutritional quality of sweet potato flour. Food Chemistry. 121: 112-118.spa
dcterms.referencesAhmed, N., Singh, J., Chauhan, H., Anjum, P. and Kour, H. (2013). Different Drying Methods: Their Applications and Recent Advances. International Journal of Food Nutrition and Safety. 4(1): 34-42.spa
dcterms.referencesAina, A., Falade, K., Akingbala, J., et al. (2009). Physicochemical properties of twenty-one Caribbean sweet potato cultivars. Food Science and Technology. 44: 1696-1704.spa
dcterms.referencesAkinola, A., Shittu, A. and Ezeorah, S. (2017). Dehydration and Rehydration Characterization of Yam (Dioscorea Rotundata) Tuber Slices Dehydrated Using a Refractance WindowTM Dryer. 12: 75-87.spa
dcterms.referencesAkinola, A. and Ezeorah, S. (2017). Evaluation of the Dehydration Kinetics of Cassava (Manihot Esculenta) Slices Dried Using a Refractance WindowTM Dryer. Journal of Engineering Research. 22(1): 1-10.spa
dcterms.referencesAkinola, A. and Azeorah, S. (2018). Dehydration Kinetics of Casssava, Yam and Potato Slices Using a Refractance Window TM Dryer. Fouye Journal of Engineering and Technology. 3: 88-92.spa
dcterms.referencesAkinola, A., Adehounand, S. and Azeorah, S. (2018a). Effect of Temperature on Okra (Abelmoschusesculentus) Fruit Slices Dehydrated Using a Refractance WindowTM Dryer. Journal of Engineering and Computer Science. 19(1): 13-21.spa
dcterms.referencesAkinola, A., Talabi, O. and Azeorah, S. (2018b). Effective Moisture Diffusivity and Activation Energy Estimation of Cucumber Fruit Slices Using a Refractance WindowTM Dryer. Journal of the Association of Professional Engineers of Trinidad & Tobago. 46(2): 11-16.spa
dcterms.referencesAkinola, A., Ayo, D. and Azeorah, S. (2018c). Temperature Dependence of the Effective Moisture Diffusivity of Yam (Dioscorea rotundata) Slices Dried Using a Refractance WindowTM Dryer. Journal of the Association of Professional Engineers of Trinidad and Tobago. 46(1): 30-34.spa
dcterms.referencesAkinola, A. and Azeorah, S. (2019). Moisture Diffusivity and Activation Energy Estimation of White Yam (Dioscorea rotundata) Slices Using Drying Data from a Refractance WindowTM Dryer. Journal of Engineering and Technology. 4(1): 102-106.spa
dcterms.referencesAkoetey, W., Britain, M. and Morawicki, R. (2017). Potential use of byproducts from cultivation and processing of sweet potatoes. Food Technology. 47(5). ISSNe 1678-4596. http://dx.doi.org/10.1590/0103-8478cr20160610spa
dcterms.referencesAlbright, L. [Ed.]. (2009). Albright´s Chemical Engineering Handbook. CRC Press Taylor & Francis Group. Indiana, USA. Pages: 1668-1676.spa
dcterms.referencesAOAC (2012). Official methods of analysis 19th ed. Association of official Analytical Chemist, Washington, DC., USA.spa
dcterms.referencesArranz, F., Correa, E., Jiménez, H., Diezma, B., García, J., Robla, J. y Barreiro, P. (2011). Empleo de métodos numéricos para el ajuste de los coeficientes de difusividad (D) y convectivo de transferencia de masa (hm) en el secado de alimentos. Memorias I. 6to Congreso Ibérico de Agroingeniería. Universidad de Évora, Portugal, del 5 al 7 de septiembre.spa
dcterms.referencesAtu, L. (2013). Studies on Propagation Materials and Growing Conditions for Sweet potato [Ipomoea batatas (L.) Lam] Production. Thesis submitted for the degree of Master of Philosophy at University of Queensland. Queensland, Australia.spa
dcterms.referencesAustin D. (1978). The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. En: Gregory P. (ed.) Exploration, maintenance, and utilization of sweet potato genetic resources. CIP, Lima, Perú. pp. 27-60.spa
dcterms.referencesAversa, M., Curcio, S., Calabrò, V. and Iorio, G. (2011). Measurement of the Water-Diffusion Coefficient, Apparent Density Changes and Shrinkage during the Drying of Eggplant (Solanum Melongena). International Journal of Food Properties. 14:3 523-537.spa
dcterms.referencesAversa, M., Curcio, S., Calabrò, C. and Iorio, G. (2012). Experimental Evaluation of Quality Parameters during Drying of Carrot Samples. Food Bioprocess Technology. 5: 118-129.spa
dcterms.referencesBaeghbali, V., Niakousari, M. and Farahnaky, A. (2016). Refractance Window drying of pomegranate juice: Quality retention and energy efficiency. Food Science and Technology. 66: 34-40.spa
dcterms.referencesBaeghbali, V. and Niakousari, M. (2018). A review on mechanism, quality preservation and energy efficiency in Refractance Window drying a conductive hydro-drying technique. Journal Nutritional Food Technology. 1(2): 50-54.spa
dcterms.referencesBeckford, R. and Bartlett, J. (2015). Inclusion levels of sweet potato root meal in the diet of broilers I. Effect on performance, organ weights, and carcass quality. Poultry Science. 94: 1316-1322.spa
dcterms.referencesBerk, Z. (2009). Food Process Engineering and Technology. First edition. Copyright © 2009 Elsevier Inc. San Diego, USA. Pages: a) 460; b) 466 and c) 470.spa
dcterms.referencesBernaert, N., Van Droogenbroeck, B., Van Pamel, E. and De Ruyck, H. (2019). Innovative refractance window drying technology to keep nutrient value during processing. Trends in Food Science & Technology. 84: 22-24.spa
dcterms.referencesBrennan, J. [Ed.]. (2006). Food Processing Handbook. WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim, Germany. Páginas: 85-88.spa
dcterms.referencesBriki, S., Zitouni, B., Bechaa, B. and Amiali, M. (2019). Comparison of convective and infrared heating as means of drying pomegranate arils (Punica granatum L.). Heat and Mass Transfer. 55(6): https://doi.org/10.1007/s00231-019-02644-8spa
dcterms.referencesCaetano, P., Mariano, F., Mendonça, V., Furlaneto, K., Daiuto, E. and Lopes, R. (2018). Physicochemical and sensory characteristics of sweet potato chips undergoing different cooking methods. Food Science and Technology, Campinas. 38(3): 434-440.spa
dcterms.referencesCárdenas, J. and Ayala, A. (2016). Evaluación de temperatura de secado por Ventana de Refractancia en Aloe vera (Aloe barbandesis M.). Revista Agronomía Colombiana. 34(1Supl.). doi: 10.15446/agron.colomb.v34n1supl.58275spa
dcterms.referencesCarrin, M. and Crapiste, G. (2008). Convective drying of foods. In: Ratti, C [editor]. Advances in food dehydration. Boca Raton, FL: CRC Press. Page: 123-152.spa
dcterms.referencesCastro, A., Mayorga, M. and Moreno, M. (2018). Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering. 223: 152-167.spa
dcterms.referencesCentro Internacional De La Papa (CIP). (1988). Mejoramiento de la batata (Ipomoea batatas) en Latinoamérica. Memorias del "Seminario sobre Mejoramiento de la batata (Ipomoea batatas) en Latinoamérica". CIP, Lima, junio 9-12, 1987. Página: 277.spa
dcterms.referencesChen, Z. (2003). Physicochemical Properties of Sweet Potato Starches and Their Application in Noodle Products. Ph.D. Thesis Wageningen University, The Netherlands.spa
dcterms.referencesCIP (Centro Internacional de la Papa). (2020). Figures about sweet potato. Peru. Disponible en: http://cipotato.org/sweetpotato/facts-2/.spa
dcterms.referencesClarke, P. (2004). REFRACTANCE WINDOWTM - “DOWNUNDER”. Memories of the 14th International Drying Symposium. São Paulo, Brazil, August 2004, Vol. B: 813-820.spa
dcterms.referencesClemente, G. (2003). Efecto de la contracción en la cinética de secado de músculos de jamón. Tesis doctoral, Universidad Politécnica de Valencia, España.spa
dcterms.referencesClifford, I., Kingsley, E., Chika, C. and Chinyere, I. (2014). Effects of Osmotic Dewatering and Oven Drying on β-Carotene Content of Sliced Light Yellow-Fleshed Sweet Potato (Ipomoea batatas L.). Nigerian Food Journal. 32 (2): 25-32.spa
dcterms.referencesCollazo, P., Morejón, Y., Fernández, L. and Vázquez, Y. (2018). Modelos matemáticos y experimentales para el análisis del secado solar de semillas. Revista Ciencias Técnicas Agropecuarias. 27(1).spa
dcterms.referencesCosme, N. (2013). Manual técnico para el cultivo de batata (Camote o Boniato) en la provincia de Tucumán (Argentina).spa
dcterms.referencesCrank, J. (1975). The mathematics of diffusion. Editorial Oxford University press, Inglaterra, páginas: 60-61.spa
dcterms.referencesCuq, B., Rondet, E. and Abecassis, J. (2011). Food powders engineering, between knowhow and science: constraints, stakes and opportunities. Powder Technology. 208(2): 244-251.spa
dcterms.referencesDa Costa, D., De Melo, A., Feitosa, R. and Alves, E. (2015). Sun drying of residual annatto seed powder. Acta Scientiarum. Technology. 37(1): 161-166.spa
dcterms.referencesDe Lima, A., Queiroz, M. and Nebra, S. (2002). Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration. Chemical Engineering Journal. 86: 85-93.spa
dcterms.referencesDiamante, L. and Munro, P. (1991). Mathematical modelling of hot air drying of sweet potato slices. International Journal of Food Science and Technology. 26: 99-109.spa
dcterms.referencesDiamante, L. and Munro, P. (1993). Mathematical Modelling Of the Thin Layer Solar Drying Of Sweet Potato Slices. Solar Energy. 51(4): 271-276.spa
dcterms.referencesDissa, A., Desmorieux, H., Savadogo, P., Segda, B. and Koulidiati, J. (2010). Shrinkage, porosity and density behavior during convective drying of spirulina. Journal of Food Engineering. 97: 410-418.spa
dcterms.referencesDos Santos, J., Lemos, D., Matos, M., Almeida, A. and Da Silva, G. (2012). Estudo da cinética de secagem de Batata-doce (Ipomoea batatas). Revista Brasileira de Produtos Agroindustriais.14 (4): 323-328.spa
dcterms.referencesDoymaz, I. (2011). Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Journal Heat Mass Transfer. 47: 277-285.spa
dcterms.referencesDoymaz, I. (2012). Infrared drying of sweet potato (Ipomoea batatas L.) slices. Journal Food Science Technology. 49 (6): 760-766.spa
dcterms.referencesEngel, F. (1970). Explorations of the Chilca Canyon, Peru. Current Anthropol. 11: 55-58.spa
dcterms.referencesEngel, F. (1970). Explorations of the Chilca Canyon, Peru. Current Anthropol. 11: 55-58.spa
dcterms.referencesErdoğdu, F. (2005). Mathematical approaches for use of analytical solutions in experimental determination of heat and mass transfer parameters. Journal of Food Engineering. 68: 233-238.spa
dcterms.referencesFAOSTAT (Statistics division of Food and Agriculture Organization of the United Nations). (2018). Disponible en: http://faostat3.fao.org/browse/Q/*/E.spa
dcterms.referencesFan, K., Chen, L., He, J. y Yan, F. (2015). Characterization of Thin Layer Hot Air Drying of Sweet Potatoes (Ipomoea batatas L.) Slices. Journal of Food Processing and Preservation. 39(Issue 6): 1361-1371.spa
dcterms.referencesFlórez, D., Contreras, C. y Uribe, C. (2016). Perspectivas Tecnológicas y Comerciales para el Cultivo de Batata en Colombia. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Mosquera, Colombia.spa
dcterms.referencesFoust, A., Wenzel, L., Clamb, C., Maus, L., Andersen, L., Wiley, J. and Sons. (2006). Principios de Operaciones Unitarias. Décima Reimpresión. Compañia Editorial Continental México. Páginas 460-462.spa
dcterms.referencesFreitas, S. and Pareek, S. (2018). Postharvest Physiological Disorders in Fruits and Vegetables. Boca Raton: Taylor & Francis. Págs: 719-748.spa
dcterms.referencesFu, Z., Tu, Z., Zhang, L., Wang, H., Wen, Q. and Huang T. (2016). Actividades antioxidantes y polifenoles de hojas de batata (Ipomoea batatas L.) extraídas con solventes de diversas polaridades. Biociencia de los Alimentos. 15: 11-18.spa
dcterms.referencesGanguli, S., Dean, D. and Benjamin, A. (2003). Preparation of biodegradable plastics based on nanoengeveered sweet potato starch/mPE blends. In: Cohen, L.J., Ong, C., Arendt, C. (Eds.), Advancing Materials in the Global Economy - Applications. Emerging Markets and Evolving Technologies, Long Beach, CA. 2545–2558.spa
dcterms.referencesGeankoplis, C. (1998). Procesos de transporte y operaciones unitarias, CECSA, México, pag. 580-618.spa
dcterms.referencesGuo, K., Liu, T., Xu, A., Zhang, L., Bian, Z. and Wei, C. (2019). Structural and functional properties of starches from root tubers of white, yellow, and purple sweet potatoes. Food Hydrocolloids. 89: 829-836.spa
dcterms.referencesHall, M. and Phatak, S. (1993). 47-Sweet Potato (Ipomoea batatas L.) Genetic Improvement of Vegetable Crops. Pages: 693-708.spa
dcterms.referencesHao, J., Chung, L., Xiao, F., Hong, X., Yan, L. and Zhen, G. (2015): Drying Kinetics and Evolution of Sample's Core Temperature and Moisture Distribution of Yam Slices (Dioscorea alata L.) during Convective Hot Air Drying. Drying Technology. DOI: 10.1080/07373937.2015.1105814spa
dcterms.referencesHarchegani, M., Varnamkhasti, M., Ghanbarian, D., Sadeghi, M. and Tohidi, M. (2015). Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat Mass Transfer. DOI 10.1007/s00231-015-1546-yspa
dcterms.referencesHariadi, H., Sunyoto, M., Nurhadi, B. and Karuniawan, A. (2020). Study of Drying Method Types on the Physicochemical Characteristics of Purple-Fleshed Sweet Potato Extract Powder. Progress in Color, Colorants y Coatings. 13: 41-51.spa
dcterms.referencesHashem, H., Tayel, S., Younes, O. and Abdel, A. (2019). Effect of Refractance Window Drying Method on Quality Characteristics of Balady Menthol. Journal Food and Dairy Science. 10(8): 265- 269.spa
dcterms.referencesHeldman, D. and Lund, D. [Ed]. (2007). Handbook of Food Engineering, Second Edition. CRC Press Taylor and Francis Group. Pages: 639-641.spa
dcterms.referencesHernández, Y. (2017). Deshidratación de manzanas tipo Granny Smith en Ventana Refractiva con pretamiento de Deshidratación Osmótica y Campo eléctrico moderado. Memoria para optar el titulo de ingeniero Civil Químico, Universidad Técnica de Federico Santa María, Valparaiso-Chile.spa
dcterms.referencesHofsetz, K., Costa, C., Dupas, M., Mayor, L. and Sereno, A. (2007). Changes in the physical properties of bananas on applying HTST pulse during air-drying. Journal of Food Engineering. 83: 531-540.spa
dcterms.referencesHong, X., Hai, L., Xue, Y., Zhi, D., Zheng, L. and Zhen, G. (2009). Effects of Different Pretreatments on Drying Kinetics and Quality of Sweet Potato Bars Undergoing Air Impingement Drying. International Journal of Food Engineering. 5: Tema 5, Articulo 5.spa
dcterms.referencesHorta, G., Corrêa, P., Mendes, F., Duarte, A., Afonso, P. and Carvalho, S. (2011). Modeling of the shrinkage kinetics of coffee berries during drying. Acta Scientiarum. Agronomy. 33(3): 423-428.spa
dcterms.referencesHou, F., Mu, T., Ma, M. and Blecker, C. (2019). Optimization of processing technology using response surface methodology and physicochemical properties of roasted sweet potato. Food Chemistry. 278: 136-143.spa
dcterms.referencesHuamán, Z. (1992). Botánica sistemática y morfología de la planta de batata o camote. Boletín de Información Técnica 25, Centro Internacional de la Papa, Lima, Perú. Pág. 22.spa
dcterms.referencesIshida, H., Suzuno, H., Sugiyama, N., Innami, S., Tadokoro, T. and Maekawa, A. (2000). Evaluación nutritiva de componentes químicos de hojas, tallos y tallos de batata (Ipomoea batatas poir). Food Chemestry. 68(3): 359-367.spa
dcterms.referencesİzli, N. and Polat, A. (2020). Intermittent Microwave Drying of Apple Slices: Drying Kinetics, Modeling, Rehydration Ratio and Effective Moisture Diffusivity. Tarım Bilimleri Dergisi - Journal of Agricultural Sciences. 26: 32-41.spa
dcterms.referencesJoardder, M., Kumar, C. and Karim, M. (2017). Food structure: Its formation and relationships with other properties. Critical Reviews in Food Science and Nutrition. 57(6): 1190-1205. DOI: 10.1080/10408398.2014.971354spa
dcterms.referencesJoardder, M. and Karim, M. (2019). Development of a porosity prediction model based on shrinkage velocity and glass transition temperature. Drying Technology. DOI: 10.1080/07373937.2018.1555540spa
dcterms.referencesJiang, Q., Liang, S., Zeng, Y., Lin, W., Ding, F., Li, Z., Cao, M., Li, Y., Ma, M. and Wu, Z. (2019). Morphology, structure and in vitro digestibility of starches isolated from (Ipomoea batatas (L.) Lam) by alkali and ethanol methods. International Journal of Biological Macromolecules. 125: 1147-1155.spa
dcterms.referencesJunqueira, J., Mendonça, K. and Corrêa, J. (2016). Microwave Drying of Sweet Potato (Ipomoea batatas (L.)) Slices: Influence of the Osmotic Pretreatment. Defect and Diffusion Forum. 367: 167-174.spa
dcterms.referencesJusuf, M. and Ginting, E. (2014). The Prospects and Challenges of Sweet Potato as Bio-Ethanol Source in Indonesia. Elsevier Ltd. 173–179.spa
dcterms.referencesKamenan, B., Ekoun, P. and Gbaha, P. (2019). Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences. 18: 72-82.spa
dcterms.referencesKitahara, K., Fukunaga, S., Katayama, K., Takahata, Y., Nakazawa, Y., Yoshinaga, M. and Guganuma, T. (2005). Physicochemical properties of sweet potato starches with different gelatinization temperatures. Starch/Stärke. 57: 473-479.spa
dcterms.referencesKitahara, K., Nakamura, Y., Otani, M., Hamada, T., Nakayachi, O. and Takahata, Y. (2017). Carbohydrate components in sweet potato storage roots: their diversities and genetic improvement. Breed. Sci. 67: 62-72.spa
dcterms.referencesKoç, B., Eren, I. and Ertekin, F. (2008). Modelling bulk density, porosity and shrinkage of quince during drying: effect of drying method. Journal Food Engineering. 85: 340-349.spa
dcterms.referencesKomolafe, C., Ojediran, J., Ajao, F., Dada, O., Afolabi, Y., Oluwaleye, I. and Alake, A. (2019). Modelling of moisture diffusivity during solar drying of locust beans with thermal storage material under forced and natural convection mode. Case Studies in Thermal Engineering. 15: 100542.spa
dcterms.referencesKrokida, M. and Maroulis, Z. (1997). Effect of drying method on shrinkage and porosity. Drying Technology. 15: 2441-2458.spa
dcterms.referencesKudadam, J. (2017). Simulación de la transferencia de calor transitoria durante el enfriamiento y calentamiento de batatas enteras ( Ipomoea batatas (L.) Lam.) En condiciones de aire forzado. Applied Thermal Engeneering, 1771-1778.spa
dcterms.referencesKumar, Y., Tiwari, S. and Belorkar, S. (2015). Drying: An Excellent Method for Food Preservation. International Journal of Ingineering Studies and Technical Approach. 1 (8).spa
dcterms.referencesKurozawa, L., Hubinger. and Park, K. (2012). Glass transition phenomenon on shrinkage of papaya during convective drying. Journal of Food Engineering. 108: 43-50.spa
dcterms.referencesLanzerstorfer, C. (2020). Apparent density of compressible food powders under storage conditions. Journal of Food Engineering. 276: 109897.spa
dcterms.referencesLebot, V. (2009). Tropical root and tuber crops cassava, sweet potato, yams and aroids. CABI, Oxfordshire, UK. pp. 91-274.spa
dcterms.referencesLeiton, Y. (2012). Evaluación del método de secado por ventana de refractancia en pulpa de guayaba (Psidium guajava), Magister, Universidad del Valle, Santiago de Cali.spa
dcterms.referencesLeiva, D. (2012). Evaluación Del Efecto De La Combinación De Tecnologías De Deshidratación Aplicadas En Tejido De Piña Sobre El Consumo Energético Del Proceso Y La Calidad Del Producto Terminado. Maestría en Diseño Y Gestión De Procesos. Universidad de la Sabana, Colombia.spa
dcterms.referencesLentzou, D., Boudouvis, A., Karathanos, V. and Xanthopoulos, G. (2019). A moving boundary model for fruit isothermal drying and shrinkage: An optimization method for water diffusivity and peel resistance estimation. Journal of Food Engineering. 263: 299-310.spa
dcterms.referencesLeon, J. (1976). Origin, evolution, and early dispersal of root and tuber crops, in Proceedings of the Fourth Symposium of the International Society for Tropical Root Crops, Cock, J., Maclntyre, R. and Graham, M., eds., International Development Research Centre, Ottawa, Canada, 20.spa
dcterms.referencesLewis, M. (1987). Physical Properties of Foods and Food Processing Systems. Chichester: Ellis Horwood Ltd. Pages: 51-68.spa
dcterms.referencesLi, L., Liao, C. and Chin, L. (1994). Variability in test and physio-chemical properties and its breeding implications in sweet potato (Ipomoea batatas). Journal of the Agricultural Association of China, New Series 165, 19.spa
dcterms.referencesLi, X., Yang, H. and Lu, G. (2018). Acondicionamiento a baja temperatura combinado con almacenamiento en frío que induce un endulzamiento rápido de las raíces tuberosas del camote (Ipomoea batatas (L.) Lam) al tiempo que inhibe la lesión por frío. Postharvest Biology And Technology. 142: 1-9.spa
dcterms.referencesLiu, Q. (2004). Importance of sweetpotato in the security of food and energy in China. Oil Gas Sci. Technol. 9, 19.spa
dcterms.referencesLiu, G., Chen, J., Liu, M. and Wan, X. (2012). International Conference on Advances in Computational Modeling and Simulation: Shrinkage, porosity and density behaviour during convective drying of bio-porous material. Procedia Engineering. 31: 634-640.spa
dcterms.referencesLiu, P., Sun, S., Wang, W., Hou, H. and Dong, H. (2015). Effect of glycerol plasticizer on the Properties of sweet potato starch-based films. J. Chin. Cereals Oils Ass, 30: 15-20.spa
dcterms.referencesLlave, Y., Takemori, K., Fukuoka, M., Takemori, T., Tomita, H. and Sakai, N. (2016). Mathematical modeling of shrinkage deformation in eggplant undergoing simultaneous heat and mass transfer during convection oven roasting. Journal of Food Engineering. 178: 124-136.spa
dcterms.referencesLozano J., Rotstein, E. and Urbicain, M. (1983). Shrinkage, porosity and bulk density of food stuffs at changing moisture contents. Journal of Food Science 48: 1497–1502, 1553.spa
dcterms.referencesMagoon, R.E. (1986). Method and Apparatus for Drying Fruit Pulp and the Like. USA. Patent 4, 631,837.spa
dcterms.referencesMaroulis, Z., Saravacos, G., Panagiotou, N. and Krokida, M. (2001). Moisture Diffusivity Data Compilation for Foodstuffs: Effect of Material Moisture Content and Temperature. International Journal of Food Properties. 4(2): 225-237.spa
dcterms.referencesMartynenko, A. (2014). True, Particle, and Bulk Density of Shrinkable Biomaterials: Evaluation from Drying Experiments. Drying Technology. 32: 1319-1325.spa
dcterms.referencesMayor, L. and Sereno, A. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering. 61: 373-386.spa
dcterms.referencesMcCabe, W., Smith, J. and Harriott, P. (2007). OPERACIONES UNITARIAS EN INGENIERÍA QUÍMICA. Editorial Mc Graw Hill, Séptima edición, México, Página: 388.spa
dcterms.referencesMejía, A. (2011). Efecto de la deshidratación por radiación infrarroja sobre algunas características fisicoquímicas de interés comercial del aloe vera (Aloe barbadensis). Magister en diseño y gestión de procesos, énfasis en alimentos, Universidad de la Sabana, Chia-Cundinamarca.spa
dcterms.referencesMeng, Y., Wang, J., Fang, S. and Chen, J. (2011). Drying characteristics and mathematical modeling of hot air drying of cooked sweet potatoes. Transactions of the Chinese Society of Agricultural Engineering. 27(7): 387-392.spa
dcterms.referencesMitrevski, V., Mijakovski, V., Popovski, F. and Popovski, D. (2012). Influence of Boundary Conditions on Particle Density. Journal of Agricultural Science and Technology. ISSN 1939-1250.spa
dcterms.referencesMorales, J. y Vélez, J. (2014). Deshidratación de frutas y hortalizas por ventana refractiva®. Revista de Ciencias y Tecnología de Alimentos. 13(2): 35-46.spa
dcterms.referencesMorales, A., Morales, A., Rodríguez, D., Pastrana, I. y Méndez, C. (2017). Origen, Evolución Y Distribución Del Boniato (Ipomoea Batatas (L.) Lam.). Una Revisión. Agricultura Tropical. 3(1): 1-13.spa
dcterms.referencesMoreira, R. and Sereno, A. (2003). Evaluation of mass transfer coefficients and volumetric shrinkage during osmotic dehydration of apple using sucrose solutions in static and non-static conditions. Journal of Food Engineering. 57: 25-31.spa
dcterms.referencesMoses, J., Norton, T., Alagusundaram, K., Norton, T. and Tiwari, B. (2014). Novel Drying Techniques For the Food Industry. Food Ingeneering Reviews, 6: 43-55.spa
dcterms.referencesMu, T., Zhang, M., Sun, H. and Wang, C. (2017). Sweet Potato Processing Technology. Copyright © Science Publishing & Media Ltd. Beijing. Páginas: 55-56.spa
dcterms.referencesMu, T. and Singh, J. (2019). Sweet Potato: Chemistry, Processing, and Nutrition. (2019). © Elsevier Inc. All rights reserved. Beijing. Páginas: 1-4.spa
dcterms.referencesMujaffar, S. and Bynoe, S. (2019). Investigations into Hot Air and Microwave Drying of the West Indian Bay Leaf (Pimenta racemose). Memories 7th European Drying Conference. Politecnico Di Torino, Torino, July 10-12, paper 023.spa
dcterms.referencesMujumdar, A. [Ed.]. (2006). Handbook of Industry Drying. Third Edition. CRC Press Taylor & Francis Group. U.K. Páginas: 4-22.spa
dcterms.referencesNamutebi, A., Hill, S., Farhat, I., et al. (2003). Physicochemical characteristics of starches from new breeds of sweet potatoes grown in Uganda. Afr. Crop Sci. Conf. Proc. 6: 568-576.spa
dcterms.referencesNarváez, L. y León, R. (2017). Determinación del Efecto del Ultrasonido Como Pretratamiento del Secado por Microondas de la Ahuyama (Cucurbita maxima). Tesis presentada en opción al título académico de Ingeniero de Alimentos. Universidad de Córdoba, Monteria, Córdoba.spa
dcterms.referencesNedunchezhiyan, M., Byju, G. and Jata, S. (2012). Sweet Potato Agronomy. Fruit, Vegetable and Cereal Science and Biotechnology.spa
dcterms.referencesNegera, A., Takele, F. and Wondimu, T. (2017). Evaluation of Integrated Management Practices of Sweet Potato Weevil (Cylas Puncticollis (Boheman) (Coleoptera: Brentidae) in Bako, Western Ethiopia. Journal of Natural Sciences Research. ISSN 2225-0921 (Online). Vol.7 (8).spa
dcterms.referencesNguyen, T., Mondor, M. and Ratti, C. (2018). Shrinkage of cellular food during air-drying. Journal of Food Engineering. 230: 8-17.spa
dcterms.referencesNindo, C., Sun, T., Wang, S., Tang, J. and Powers, J. (2003). Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis, L.). LWT- Food Science and Technology. 36(Issue 5): 507-516.spa
dcterms.referencesNindo, C., Tang, J., Powers, J. and Bolland, K. (2004). Energy consumption during Refractance Window evaporation of selected berry juices. International Journal of Energy Research, 28: 1089-1100.spa
dcterms.referencesNindo, C. and Tang, J. (2007). Refractance Window dehydration technology: a novel contact drying method. Drying Technology. 25(1): 37-48.spa
dcterms.referencesNoranizan, M., Dzulkifly, M. and Russly, A. (2010). Effect of heat treatment on the physicochemical properties of starch from different botanical sources. International Food. 17: 127-135.spa
dcterms.referencesOchoa, M., Kesseler, A., Pirone, B., Márquez, C. y De Michelis, A. (2007). Analysis of shrinkage phenomenon of whole sweet cherry fruits (Prunus avium) during convective dehydration with very simple models. Journal of Food Engineering. 79: 657-661.spa
dcterms.referencesOchoa, C., Quintero, P., Ayala, A. and Ortiz, M. (2012). Drying characteristics of mango slices using the Refractance Window™ technique. Journal of Food Engineering. 109: 69-75.spa
dcterms.referencesOcoro, M. and Ayala, A. (2012). Evaluación de la técnica de ventana de refractancia en el secado de puré de papaya (Carica papaya L.). Vitae. 19(1): 72-74.spa
dcterms.referencesOh, S., Jung, E. and Pyo, G. (2018). Quality characteristics and moisture sorption isotherm of three varieties of dried sweet potato manufacturd by hot air semi-drying followed by hot pressing. LWT - Food Science and Technology. 64: 73-78.spa
dcterms.referencesOjediran, J., Okonkwo, C., Adeyi, A., Adeyi, O., Olaniran, A., George, N. and Olayanju, A. (2020). Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer: application of ANFIS in the prediction of drying kinetics. Journal Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03555spa
dcterms.referencesOmolola, A., Jideani, A. and Kapila, P. (2015). Drying kinetics of banana (Musa spp.) Asociación Interciencia. 40(6): 374-380.spa
dcterms.referencesOnwude, D., Hashim, N., Janius, R., Nawi, N. and Abdan. K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Compressive Review in Food Science and Food Safety. 15: 599-618.spa
dcterms.referencesOnwude, D., Hashim, N., Abdan, K., Janius, R. and Chen, G. (2019). The effectiveness of combined infrared and hot-air drying strategies for sweet potato. Journal of Food Engineering. 241: 75-87.spa
dcterms.referencesOrtega, F. (2013). Determinación de los Parámetros Cinéticos de Transferencia de Masa, Color y Fuerza Máxima de Fractura de Rodajas de Yuca (Manihot esculenta Crantz) Sometidas a Freído Por Inmersión. Maestría en Ciencias Agroalimentarias con Énfasis en Ingeniería, Universidad De Córdoba, Montería-Córdoba.spa
dcterms.referencesOrtiz, M. (2014). Modelación matemática del secado de alimentos por el método de ventana de refractancia. Doctor en Ingeniería, Énfasis en Ingeniería de Alimentos, Universidad del Valle, Cali -Valle del Cauca.spa
dcterms.referencesOrtiz, B., Yáñez, E., Pacheco, F., Ruiz, H., García, M., Cortés, O. and Ruiz, O. (2015). Drying of shrinkable food products: Appraisal of deformation behavior and moisture diffusivity estimation under isotropic shrinkage. Journal of Food Engineering. 144: 138-147.spa
dcterms.referencesOrtiz, M., Gulati, T., Datta, A. and Ochoa, C. (2015). Quantitative understanding of Refractance WindowTM drying. Food and Bioproducts Processing 95: 237-253.spa
dcterms.referencesPanagiotou, N., Krokida, M., Maroulis, Z. and Saravacos, G. (2004). Moisture Diffusivity: Literature Data Compilation for Foodstuffs. International Journal of Food Properties. 7(2): 273-299.spa
dcterms.referencesPereira, Cleide. (2012). Ferramentas Analíticas E Numéricas Para A Descrição Da Secagem De Sólidos Na Forma De Cilindros E De Elipsoides. Universidade Federal de Campina Grande. Programa De Pós-Graduação Em Engenharia De Processos.spa
dcterms.referencesPerry, R. and Green, D. (Eds.). (1997). Perry’s Chemical Engineers’ Handbook, 7a. edition. Nueva York: McGraw-Hill, 1; Shapter 20.spa
dcterms.referencesPineda, M., Chacón, A. y Cordero, G. (2009). Efecto de las condiciones de secado sobre la cinética de deshidratación de las hojas de morera (Morus alba). Revista agronomía mesoamericana. 20(2): 275-283.spa
dcterms.referencesPordesimo, L., Onwulata, C. and Carvalho, C. (2009). Food powder delivery through a feeder system: effect of physicochemical properties. Int. J. Food Prop. 12(3): 556-570.spa
dcterms.referencesRafiee, S., Sharifi, M., Keyhani, A., Omid, M., Jafari, A., Mohtasebi, S. and Mobli, H. (2010). Modeling Effective Moisture Diffusivity of Orange Slice (Thompson Cv.), International Journal of Food Properties. 13(1): 32-40.spa
dcterms.referencesRafiee, S., Sharifi, M., Keyhani, A., Omid, M., Jafari, A., Mohtasebi, S. and Mobli, H. (2010). Modeling Effective Moisture Diffusivity of Orange Slice (Thompson Cv.), International Journal of Food Properties. 13(1): 32-40.spa
dcterms.referencesRahimi, J., Singh, A., Olusola, P., Adedeji, A., Ngadi, M. and Raghavan, V. (2013). Effect of Carboxylmethyl Cellulose Coating and Osmotic Dehydration on Freeze Drying Kinetics of Apple Slices. Journal Food. 2: 170-182.spa
dcterms.referencesRajoriya, D., Shewale, S. and Umesh, H. (2019). Refractance Window Drying of Apple Slices: Mass Transfer Phenomena and Quality Parameters. Food and Bioprocess Technology. 12 (Issue 10): 1646-1658.spa
dcterms.referencesRamirez, D. (2012). Evaluación Del Efecto De La Combinación De Tecnologías De Deshidratación Aplicadas En Tejido De Piñas Sobre El Consumo Energético Del Proceso Y La Calidad Del Producto Terninado. Bogotá, Colombia.spa
dcterms.referencesRamos, I., Brandao, T. and Silva, C. (2003). Structural Changes During Air Drying of Fruits and Vegetables. Food Science and Technology International. 9(3): 201-206.spa
dcterms.referencesRamos, P., Paz, M., Caballero, A., Morales, B., Basurto, F. and Palacios, G. (2014). Snack´s tipo Chips con base en Camote morado Ipomoea batatas L. (Convolvulaceae), evaluados sensorialmente. Lacandonia. 8(1): 31-36.spa
dcterms.referencesRatti, C. (1994). Shrinkage during drying of foodstuffs. Journal Food Engineering. 23 (1): 91-105.spa
dcterms.referencesRégnier, C., Bocage, B., Archimède, H., Noblet, J. and Renaudeau, D. (2013). Digestive utilization of tropical foliages of cassava, sweet potatoes, wild cocoyam and erythrina in Creole growing pigs. Animal Feed Science and Technology. 180 (Issues 1-4): 44-54.spa
dcterms.referencesRodríguez, J., Méndez, L., López, A. and Sandoval, S. (2012). True Density and Apparent Density during the Drying Process for Vegetables and Fruits: A Review. Journal of Food Science. doi: 10.1111/j.1750-3841.2012.02990spa
dcterms.referencesRodríguez, P., Carruthers, T., Wood, J., Williams, B., Weitemier, K., Kronmiller, B., Ellis, D., Anglin, N., Longway, L., Harris, S., Rausher, M., Kelly, S., Liston, A. and Escocia, R. (2018). Reconciling Conflicting Phylogenies in the Origin of Sweet Potato and Dispersal to Polynesia. Current Boilogy. 28(8): 1246-1256.spa
dcterms.referencesRodríguez, T., Brito, K. and Leite, E. (2019). Sweet potato roots: Unrevealing an old food as a source of health promoting bioactive compounds – A review. Trends in Food Science & Technology. 85: 277-286.spa
dcterms.referencesRodrigues, T., Landi, C. and Leonel, M. (2020). Gelatinized sweet potato starches obtained at different preheating temperatures in a spray dryer. International Journal of Biological Macromolecules. 19(15): 1339-1346.spa
dcterms.referencesRotimi, R. (2012). Effects of pre-treatments on drying kinetics of sweet potato slices. Agricultural Engineering International: CIGR Journal. 14(3): 136-145.spa
dcterms.referencesSabarez, H. (2012). Modelado computacional de los fenómenos de transporte que ocurren durante el secado convectivo de ciruelas pasas. Journal Food Engineering. 111(2): 279-288.spa
dcterms.referencesSabarez, H. (2014). Modelado matemático de los fenómenos de transporte acoplado y desarrollo del color: acabado de secado de sultanas enrejadas. Secado Technol. 32: 578-589.spa
dcterms.referencesSabarez, H. (2016). Drying of Food Materials. Reference Module in Food Science. SN-9780081005965. DO: 10.1016/B978-0-08-100596-5.03416-8spa
dcterms.referencesSAC (Sociedad de Agricultores de Colombia). (2011). El Cultivo De La Batata [Pdf]. Recuperado de: http://www.sac.org.co/images/contenidos/Cartillas/Cartilla%20Batata.pdf.spa
dcterms.referencesSagar, V. and Suresh, P. (2010). Recent advances in drying and dehydration of fruits and Vegetables: a review. Journal Food Scientists and Technologists. 47(1): 16-25.spa
dcterms.referencesSagar, V. and Suresh, P. (2010). Recent advances in drying and dehydration of fruits and Vegetables: a review. Journal Food Scientists and Technologists. 47(1): 16-25.spa
dcterms.referencesSaha, B., Bucknall, M., Arcot, J. and Driscoll, R. (2018). Derivation of two layer drying model with shrinkage and analysis of volatile depletion during drying of banana. Journal of Food Engineering. 226: 42-52.spa
dcterms.referencesSalehi, F. and Kashaninejad, M. (2018). Modelado de la cinética de pérdida de humedad y cambios de color en la superficie de la rodaja de limón durante el secado combinado de vacío por infrarrojo. Information Processing In Agriculture. 5(4): 516-523.spa
dcterms.referencesSatyanarayan, D. and Vijaya, R. (2012). Advancements in Drying Techniques for Food, Fiber, and Fuel. Drying Technology: An International Journal. 30:11-12, 1147-1159.spa
dcterms.referencesSchultz, E., Mazzuco, M., Machado, R., Bolzan, A., Quadri, M.B. and Quadri, M.G. (2007). Effect of pre-treatments on drying, density and shrinkage of apple slices. Journal of Food Engineering. 78: 1103-1110.spa
dcterms.referencesShafiur, M. [Ed]. (2007). Handbook of food preservation. Segunda edición. Indiana, USA. CRC Press Taylor & Francis Group.spa
dcterms.referencesShahari, N., Jamil, N. and Rasmani, K. (2016). Comparative Study of Shrinkage and Non-Shrinkage Model of Food Drying. Journal of Physics: Conference Series 738 012087. doi:10.1088/1742-6596/738/1/012087spa
dcterms.referencesSilayo, V., Laswai, H., Mkuchu, J. and Mpagalile, J. (2003). Effect of sun drying on some quality characteristics of sweet potato chips. Africa Journal of Food, Agriculture, Nutrition and Development. 3(2): 1-10.spa
dcterms.referencesSingh, S., Raina, C., Bawa, A. and Saxena, D. (2006). Effect of Pretreatments on Drying and Rehydration Kinetics and Color of Sweet Potato Slices. Drying Technology: An International Journal. 24(11): 1487-1494.spa
dcterms.referencesSingh, N. and Pandey, R. (2012). Convective air drying characteristics of sweet potato cube (Ipomoea batatas L.). Food and Bioproducts Processing. 90: 317-322.spa
dcterms.referencesSouza, D., Resende, O., Moura, L., Ferreira (Jr), W. and Andrade, J. (2019). Drying kinetics of the sliced pulp of biofortified Sweet Potato (Ipomoea batatas L.). Engenharia Agrícola. 39(2): 176-181.spa
dcterms.referencesSugri, I., Maalekuu, B., Gaveh, E. y Kusi, F. (2019). Los índices de composición y vida de anaquel de la Batata se mejoraron significativamente con el desmantelamiento previo a la cosecha. Annals of agricultural sciences. https://doi.org/10.1016/j.aoas.2019.03.002spa
dcterms.referencesSun, H., Mu, T., Xi, L., Zhang, M. and Chen J. (2014). Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods. Food Chemistry. 156: 380-389.spa
dcterms.referencesTaira, J., Taira, K., Ohmine, W. y Nagata, J. (2013). Determinación de minerales y actividad de oxidación anti-LDL de hojas de batata (Ipomoea batatas L.). Composition and Food Analysis. 29(2): 117-125.spa
dcterms.referencesTaiwo, K. and Baik, O. (2007). Effects of pre-treatments on the shrinkage and textural properties of fried sweet potatoes. LWT - Food Science and Technology. 40(Issue 4): 661-668.spa
dcterms.referencesTakamine, K., Abe, J., Iwaya, A., Maseda, S. and Hizukuri, S. (2000). A new manufacturing process for dietary fiber from sweet potato residue and its physical characteristics. Journal Appl. Glycosci. 47(1): 67-72.spa
dcterms.referencesTang, Y., Cai, W. and Xu, B. (2015). Profiles of phenolics, carotenoids and antioxidative capacities of thermal processed white, yellow, orange and purple sweet potatoes grown in Guilin, China. Food Science and Human Wellness. 4: 123-132.spa
dcterms.referencesTindall, H. (1983). Convulvulaceae, in Vegetables in the Tropics. Macmillan Press, London. Pág 97.spa
dcterms.referencesTorregrosa, A. (2013). Determinación De La Influencia De La Temperatura Y Velocidad Del Aire Sobre Las Cinéticas De Secado De Tres Variedades De Yuca Procesadas En La Planta Instalada En La Vereda Los Algarrobos. Maestría en Ciencias Agroalimentarias con Énfasis en Ingeniería, Universidad De Córdoba, Montería-Córdoba.spa
dcterms.referencesTorquato, A., Rodrigues, I., Pascual, Irais., Rosa, W. and Da Silveira, M. (2017). Potential for sweet potato (Ipomoea batatas (L.) Lam.) Single crosses to improve ethanol production. Chapingo Serie Horticultura. 23(1): 59-74.spa
dcterms.referencesTreybal, R. (1980). Operaciones de transferencia de masa. Editorial Mc Graw Hill chemical engineering series, segunda edición. New York. Pages:spa
dcterms.referencesTrivedi, M., D’costa, V., Shitut, J. and Srivastav, S. (2017). Refractance Window Technology A Promising Drying Technique for the Food Industry. International Journal of Innovative and Emerging Research in Engineering. Vol (4), issue 1.spa
dcterms.referencesVallous, N., Gavrielidou, M., Karapantsios, T. and Koatoglou, M. (2002). Performance of a double drum dryer for producing pregelatinized maize starches. Journal of Engineering. 51: 171-183.spa
dcterms.referencesVega, H., Gongora, M. and Barbosa, G. (2001). Advances in dehydratation of Food. Journal of Ingineering Food. 49: 271-289.spa
dcterms.referencesVidal, A., Zaucedo, A. y Ramos, M. (2018). Propiedades nutrimentales del camote (Ipomoea batatas L.) y sus beneficios en la salud humana. Revista Iberoamericana de Tecnología Postcosecha, vol. 19, núm. 2, 2018.spa
dcterms.referencesWang, S., Nie, S. and Zhu, F. (2016). Review: Chemical constituents and health effects of sweet potato. Food Research International. 89: 90-116.spa
dcterms.referencesWidodo, Y., Wahyuningsih, S. and Ueda, A. (2015). Second Humboldt Kolleg in conjunction with International Conference on Natural Sciences, HK-ICONS 2014: Sweet Potato Production for Bio-ethanol and Food Related Industry in Indonesia: Challenges for Sustainability. Procedia Chemistry. 14: 493-500.spa
dcterms.referencesWilson, L. & Lowe, S. (1973). Anatomy of root system in West Indian sweet potato (Ipomoea batatas (L.) Lam.) Cultivars. Annals of Botany. 37(151): 633-&.spa
dcterms.referencesWoolfe, J. (1992). Sweet potato: an untapped food resource, University of Cambridge, London, U.K.spa
dcterms.referencesYamaguchi, M. (1983a). Origin and evolution of vegetables, in World Vegetables, Principles, Production and Nutritive Values, AVI, Van Nostrand Reinhold Company, New York, 15.spa
dcterms.referencesYamaguchi, M. (1983b). Sweet potato, in World Vegetables, Principles, Production and Nutritive Values, AVI, Van Nostrand Reinhold Company, New York. Página: 123.spa
dcterms.referencesYildiz, A., Palazoǧlu, T. and Erdoǧdu, F. (2007). Determination of heat and mass transfer parameters during of potato slices. Journal of Food Engineering. 79: 11-17.spa
dcterms.referencesZabalaga, R., La Fuente, C. and Tadini, C. (2016). Experimental determination of thermophysical properties of unripe banana slices (Musa Cavendishii) during convective drying. Journal Food Engineering. 187: 62-69.spa
dcterms.referencesZaccari, F., Cabrera, M. and Saadoun, A. (2018). Sweet Potato and Squash Storage. © 2018 Elsevier Inc. All rights reserved, Uruguay. Págs: 1-9.spa
dcterms.referencesZaidul, I., Norulaini, N., Mohd, A., Yamauchi, H. and Noda, T. (2007). RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydrate Polym. 69: 784-791.spa
dcterms.referencesZhang, D. and Li, X. (2004). Sweet potato as animal feed: the perspective of crop improvement for nutrition quality. In: Fuglie, K.O., Hermann, M. (Eds.), Sweet potato Post-Harvest Research and Development in China. International Potato Center (Press-Run 300), Bogor. 26–39.spa
dcterms.referencesZhang, M., Bhandary, B. and Fang, Z. (2017). Advances in Drying Science and Technology: Handbook of Drying of Vegetables and Vegetable Products. CRC Press, Taylor & Francis Group. Páginas: a) 173-176; b) 350-373.spa
dcterms.referencesZhao, L., Liu, G., You, M., et al. (2009). Study on the relationship between the properties of starch and its vermicelli quality. Science and Technology Food Industry. 30(12): 90-92.spa
dcterms.referencesZhu, A. and Jiang, F. (2014). Modeling of mass transfer performance of hot air drying of sweet potato (Ipomoea batatas L.) slices. Chemical Industry & Chemical Engineering Quarterly. 20(2): 171-181.spa
dcterms.referencesZhu, F., Yang, X., Cai, Y., Bertoft, E. and Corke, H. (2011). Physicochemical properties of sweet potato starch. Starch/Stärke. 63: 249-259.spa
dcterms.referencesZhu, F. and Wang, S. (2014). Physicochemical properties, molecular structure, and uses of sweet potato starch. Trends in Food Science & Technology. 36 (issue 2): 68-78.spa
dcterms.referencesZogzas, N., Maroulis, Z. and Marinos-Kouris, D. (1994). Densities, shrinkage and porosity of some vegetables during air-drying. Drying Technology. 12: 1653-1666.spa
dcterms.referencesZogzas, N., Maroulis, Z. and Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in food stuffs. Drying Technology-An International Journal. 14: 2225-2253.spa
dcterms.referencesZotarelli, M., Mattar, B. and Borges, J. 2015. Effect of process variables on the drying rate of mango pulp by Refractance window. Food Research International. 69: 410–417.spa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalVentana refractivaspa
dc.subject.proposalBatataspa
dc.subject.proposalSecadospa
dc.subject.proposalEncogimientospa
dc.subject.proposalLey de Fickspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dc.subject.keywordsRefractive windowspa
dc.subject.keywordssweet potatospa
dc.subject.keywordsdryingspa
dc.subject.keywordsshrinkagespa
dc.subject.keywordsFick's lawspa
dc.subject.keywords2.4.1. Variables independientes 50spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) de Alimentosspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programIngeniería de Alimentosspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2021
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2021