Publicación: Efecto de la temperatura del proceso y el espesor de las láminas en el secado por ventana refractiva en Batata Blanca (Ipomoea Batatas L.) sobre la cinética de secado y propiedades físicas
dc.contributor.advisor | Perez Sierra, Omar Andres | spa |
dc.contributor.advisor | Ortega Quintana, Fabian Alberto | spa |
dc.contributor.author | Padilla Feria, Cesar David | |
dc.contributor.author | Montalvo Lambraño, Heyne de Jesús | |
dc.date.accessioned | 2021-01-25T17:27:18Z | |
dc.date.available | 2021-01-25T17:27:18Z | |
dc.date.issued | 2020-12-07 | |
dc.description.abstract | La evaluación del efecto de la temperatura del proceso y el espesor de las láminas sobre la cinética de secado y propiedades físicas (encogimiento, densidad aparente y porosidad) en láminas de batata blanca (Ipomoea batatas L.) sometidas a secado por Ventana Refractiva ha sido estudiado con el propósito de determinar los parámetros cinéticos mediante la aplicación de la cinética de primer orden para la influencia de la temperatura, la segunda Ley de Fick para la transferencia de humedad, y el comportamiento de sus propiedades físicas mediante los modelos lineal de Ocho et al. (2007) y polinómico de cuarto grado. Las muestras de batata fueron adecuadas en forma de láminas cuadradas con 3.5 cm de lado y espesores de 1.5 y 2.5 mm, las cuales fueron sometidas a secado a temperaturas de 75, 85 y 95°C. El diseño experimental fue dirigido bajo un diseño completamente al azar con arreglo factorial 3x2 (3 temperaturas y 2 espesores) con tres repeticiones. El contenido de humedad de las muestras fue determinado por el método AOAC 931.04/2012, el encogimiento fue estimado mediante la medición de los lados y el espesor de las láminas, la densidad aparente fue determinada por la medición de la pérdida de peso y reducción del volumen aparente de las muestras durante el proceso y la porosidad fue determinada por medio del modelo empleado por Dissa et al. (2010). Con los resultados obtenidos se construyeron las curvas de secado, en las que se evidencia que este proceso tuvo lugar en el periodo decreciente, el mostró que la difusión es el mecanismo que gobierna el secado de Ipomoea batatas (L.). La difusividad efectiva de la humedad presentó valores entre 8.67x10-5 y 52.8x10-5 m2.s-1, la energía de activación tuvo valores de 34.78 y 21.23 kJ.mol-1, para los espesores de 1.5 y 2.5 mm, de manera correspondiente; el coeficiente convectivo para la transferencia de humedad mostró una tendencia lineal en relación a la temperatura, con valores entre 1.23x10-6 y 3.52x10-6 m.s-1. El encogimiento, densidad aparente y porosidad fueron afectados por la temperatura significativamente, sin embargo, solo el espesor afectó el encogimiento de las láminas. El encogimiento disminuyó con el aumento de la temperatura e incrementó con el aumento del espesor de las láminas, registrándose valores de encogimiento promedio de hasta 47.48%. Por su parte, la densidad aparente se redujo durante el secado, mostrando valores finales entre 516 y 860.6 kg.m-3, el modelo polinómico de cuarto grado se ajustó adecuadamente a los datos de esta propiedad arrojando valores de coeficientes R2>0.9. La porosidad aumentó durante la deshidratación de las láminas de batata, arrojando valores al final del proceso de hasta 66.9% y el comportamiento, en función de la razón de humedad, fue descrito adecuadamente por el modelo polinómico de cuarto orden. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) de Alimentos | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | LISTADO DE FIGURAS 11 | spa |
dc.description.tableofcontents | LISTADO DE TABLAS 12 | spa |
dc.description.tableofcontents | LISTADO DE APÉNDICES 13 | spa |
dc.description.tableofcontents | RESUMEN 14 | spa |
dc.description.tableofcontents | ABSTRACT 16 | spa |
dc.description.tableofcontents | INTRODUCCIÓN 18 | spa |
dc.description.tableofcontents | CAPÍTULO 1. REVISIÓN DE LA LITERATURA 23 | spa |
dc.description.tableofcontents | 1.1. GENERALIDADES DE LA BATATA. 23 | spa |
dc.description.tableofcontents | 1.1.1. Descripción y origen 23 | spa |
dc.description.tableofcontents | 1.1.2. Características nutricionales 24 | spa |
dc.description.tableofcontents | 1.1.3. Procesamiento y usos 25 | spa |
dc.description.tableofcontents | 1.2. SECADO. 25 | spa |
dc.description.tableofcontents | 1.2.1. Tipos de secado 27 | spa |
dc.description.tableofcontents | 1.2.2. Secado por Ventana Refractiva 29 | spa |
dc.description.tableofcontents | 1.2.3. Terminología y definiciones fundamentales 34 | spa |
dc.description.tableofcontents | 1.2.4. Efecto de los principales factores en la cinética de secado 37 | spa |
dc.description.tableofcontents | 1.2.5. Modelo matemático de transferencia de masa para el secado por Ventana Refractiva. 40 | spa |
dc.description.tableofcontents | 1.2.6. Efectos del secado sobre las propiedades físicas 43 | spa |
dc.description.tableofcontents | CAPÍTULO 2. MATERIALES Y MÉTODOS 49 | spa |
dc.description.tableofcontents | 2.1. TIPO DE INVESTIGACIÓN 49 | spa |
dc.description.tableofcontents | 2.2. LOCALIZACIÓN 49 | spa |
dc.description.tableofcontents | 2.3. EQUIPOS UTILIZADOS 49 | spa |
dc.description.tableofcontents | 2.3.1. Equipo de ventana refractiva (RW) 49 | spa |
dc.description.tableofcontents | 2.3.2. Equipos complementarios. 49 | spa |
dc.description.tableofcontents | 2.4. VARIABLES E INDICADORES 50 | spa |
dc.description.tableofcontents | 2.4.1. Variables independientes 50 | spa |
dc.description.tableofcontents | 2.4.2. Variables dependientes 50 | spa |
dc.description.tableofcontents | 2.5. MÉTODOS Y PROCEDIMIENTOS 50 | spa |
dc.description.tableofcontents | 2.5.1. Obtención de la materia prima 50 | spa |
dc.description.tableofcontents | 2.5.2. Secado de batata 51 | spa |
dc.description.tableofcontents | 2.5.3. Determinación del contenido de humedad 51 | spa |
dc.description.tableofcontents | 2.5.4. Determinación del efecto de la temperatura del proceso y el espesor de las láminas sobre la cinética del secado por Ventana Refractiva™ en batata blanca. 52 | spa |
dc.description.tableofcontents | 2.5.5. Obtención de los parámetros cinéticos para el secado por Ventana Refractiva™ en batata blanca. 52 | spa |
dc.description.tableofcontents | 2.5.6. Determinación del efecto de la temperatura del proceso y el espesor de las láminas sobre las propiedades físicas 53 | spa |
dc.description.tableofcontents | 2.5.7. Diseño experimental 55 | spa |
dc.description.tableofcontents | 2.5.8. Análisis estadístico de datos 56 | spa |
dc.description.tableofcontents | CAPÍTULO 3. RESULTADOS Y DISCUSIÓN 57 | spa |
dc.description.tableofcontents | 3.1. DETERMINACIÓN DEL EFECTO DE LA TEMPERATURA DE PROCESO Y ESPESOR DE LAS LÁMINAS SOBRE LA CINÉTICA DEL SECADO POR VENTANA REFRACTIVA EN BATATA BLANCA 57 | spa |
dc.description.tableofcontents | 3.1.1. Curvas de secado para la razón de humedad 57 | spa |
dc.description.tableofcontents | 3.1.2. Curvas de velocidad de secado 60 | spa |
dc.description.tableofcontents | 3.2. OBTENCIÓN DE LOS PARÁMETROS CINÉTICOS EN EL SECADO POR VENTANA REFRACTIVA EN BATATA BLANCA 64 | spa |
dc.description.tableofcontents | 3.3.1. Encogimiento 69 | spa |
dc.description.tableofcontents | 3.3.2. Densidad aparente 73 | spa |
dc.description.tableofcontents | 3.3.3. Porosidad 77 | spa |
dc.description.tableofcontents | CAPÍTULO 4. CONCLUSIONES 81 | spa |
dc.description.tableofcontents | CAPÍTULO 5. RECOMENDACIONES 82 | spa |
dc.description.tableofcontents | BIBLIOGRAFÍA 83 | spa |
dc.description.tableofcontents | APÉNDICES 116 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/3944 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería de Alimentos | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Refractive window | eng |
dc.subject.keywords | Sweet potato | eng |
dc.subject.keywords | Drying | eng |
dc.subject.keywords | Shrinkage | eng |
dc.subject.keywords | Fick's law | eng |
dc.subject.keywords | 2.4.1. Variables independientes 50 | eng |
dc.subject.proposal | Ventana refractiva | spa |
dc.subject.proposal | Batata | spa |
dc.subject.proposal | Secado | spa |
dc.subject.proposal | Encogimiento | spa |
dc.subject.proposal | Ley de Fick | spa |
dc.title | Efecto de la temperatura del proceso y el espesor de las láminas en el secado por ventana refractiva en Batata Blanca (Ipomoea Batatas L.) sobre la cinética de secado y propiedades físicas | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abegunde, O., Mu, T., Chen, J. and Deng, F. (2013). Physicochemical Characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocol. 33(2): 169-177. | spa |
dcterms.references | Abonyi, B. (1999). Evaluation of Energy Efficiency and Quality Retention for the Refractance Window™ Drying System. Washington State University, Pullman, WA 99164-6120. | spa |
dcterms.references | AGRONET. (2018). Red de información y comunicación del sector agropecuario colombiano [CD-ROM]. Internet: http://www.agronet.gov.co/produccion-y-agronegocios. [20 enero 2018]. | spa |
dcterms.references | Ahmed, M., Akter, M. and Eun, J. (2010). Peeling, drying temperatures, and sulphite-treatment affect physicochemical properties and nutritional quality of sweet potato flour. Food Chemistry. 121: 112-118. | spa |
dcterms.references | Ahmed, N., Singh, J., Chauhan, H., Anjum, P. and Kour, H. (2013). Different Drying Methods: Their Applications and Recent Advances. International Journal of Food Nutrition and Safety. 4(1): 34-42. | spa |
dcterms.references | Aina, A., Falade, K., Akingbala, J., et al. (2009). Physicochemical properties of twenty-one Caribbean sweet potato cultivars. Food Science and Technology. 44: 1696-1704. | spa |
dcterms.references | Akinola, A., Shittu, A. and Ezeorah, S. (2017). Dehydration and Rehydration Characterization of Yam (Dioscorea Rotundata) Tuber Slices Dehydrated Using a Refractance WindowTM Dryer. 12: 75-87. | spa |
dcterms.references | Akinola, A. and Ezeorah, S. (2017). Evaluation of the Dehydration Kinetics of Cassava (Manihot Esculenta) Slices Dried Using a Refractance WindowTM Dryer. Journal of Engineering Research. 22(1): 1-10. | spa |
dcterms.references | Akinola, A. and Azeorah, S. (2018). Dehydration Kinetics of Casssava, Yam and Potato Slices Using a Refractance Window TM Dryer. Fouye Journal of Engineering and Technology. 3: 88-92. | spa |
dcterms.references | Akinola, A., Adehounand, S. and Azeorah, S. (2018a). Effect of Temperature on Okra (Abelmoschusesculentus) Fruit Slices Dehydrated Using a Refractance WindowTM Dryer. Journal of Engineering and Computer Science. 19(1): 13-21. | spa |
dcterms.references | Akinola, A., Talabi, O. and Azeorah, S. (2018b). Effective Moisture Diffusivity and Activation Energy Estimation of Cucumber Fruit Slices Using a Refractance WindowTM Dryer. Journal of the Association of Professional Engineers of Trinidad & Tobago. 46(2): 11-16. | spa |
dcterms.references | Akinola, A., Ayo, D. and Azeorah, S. (2018c). Temperature Dependence of the Effective Moisture Diffusivity of Yam (Dioscorea rotundata) Slices Dried Using a Refractance WindowTM Dryer. Journal of the Association of Professional Engineers of Trinidad and Tobago. 46(1): 30-34. | spa |
dcterms.references | Akinola, A. and Azeorah, S. (2019). Moisture Diffusivity and Activation Energy Estimation of White Yam (Dioscorea rotundata) Slices Using Drying Data from a Refractance WindowTM Dryer. Journal of Engineering and Technology. 4(1): 102-106. | spa |
dcterms.references | Akoetey, W., Britain, M. and Morawicki, R. (2017). Potential use of byproducts from cultivation and processing of sweet potatoes. Food Technology. 47(5). ISSNe 1678-4596. http://dx.doi.org/10.1590/0103-8478cr20160610 | spa |
dcterms.references | Albright, L. [Ed.]. (2009). Albright´s Chemical Engineering Handbook. CRC Press Taylor & Francis Group. Indiana, USA. Pages: 1668-1676. | spa |
dcterms.references | AOAC (2012). Official methods of analysis 19th ed. Association of official Analytical Chemist, Washington, DC., USA. | spa |
dcterms.references | Arranz, F., Correa, E., Jiménez, H., Diezma, B., García, J., Robla, J. y Barreiro, P. (2011). Empleo de métodos numéricos para el ajuste de los coeficientes de difusividad (D) y convectivo de transferencia de masa (hm) en el secado de alimentos. Memorias I. 6to Congreso Ibérico de Agroingeniería. Universidad de Évora, Portugal, del 5 al 7 de septiembre. | spa |
dcterms.references | Atu, L. (2013). Studies on Propagation Materials and Growing Conditions for Sweet potato [Ipomoea batatas (L.) Lam] Production. Thesis submitted for the degree of Master of Philosophy at University of Queensland. Queensland, Australia. | spa |
dcterms.references | Austin D. (1978). The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. En: Gregory P. (ed.) Exploration, maintenance, and utilization of sweet potato genetic resources. CIP, Lima, Perú. pp. 27-60. | spa |
dcterms.references | Aversa, M., Curcio, S., Calabrò, V. and Iorio, G. (2011). Measurement of the Water-Diffusion Coefficient, Apparent Density Changes and Shrinkage during the Drying of Eggplant (Solanum Melongena). International Journal of Food Properties. 14:3 523-537. | spa |
dcterms.references | Aversa, M., Curcio, S., Calabrò, C. and Iorio, G. (2012). Experimental Evaluation of Quality Parameters during Drying of Carrot Samples. Food Bioprocess Technology. 5: 118-129. | spa |
dcterms.references | Baeghbali, V., Niakousari, M. and Farahnaky, A. (2016). Refractance Window drying of pomegranate juice: Quality retention and energy efficiency. Food Science and Technology. 66: 34-40. | spa |
dcterms.references | Baeghbali, V. and Niakousari, M. (2018). A review on mechanism, quality preservation and energy efficiency in Refractance Window drying a conductive hydro-drying technique. Journal Nutritional Food Technology. 1(2): 50-54. | spa |
dcterms.references | Beckford, R. and Bartlett, J. (2015). Inclusion levels of sweet potato root meal in the diet of broilers I. Effect on performance, organ weights, and carcass quality. Poultry Science. 94: 1316-1322. | spa |
dcterms.references | Berk, Z. (2009). Food Process Engineering and Technology. First edition. Copyright © 2009 Elsevier Inc. San Diego, USA. Pages: a) 460; b) 466 and c) 470. | spa |
dcterms.references | Bernaert, N., Van Droogenbroeck, B., Van Pamel, E. and De Ruyck, H. (2019). Innovative refractance window drying technology to keep nutrient value during processing. Trends in Food Science & Technology. 84: 22-24. | spa |
dcterms.references | Brennan, J. [Ed.]. (2006). Food Processing Handbook. WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim, Germany. Páginas: 85-88. | spa |
dcterms.references | Briki, S., Zitouni, B., Bechaa, B. and Amiali, M. (2019). Comparison of convective and infrared heating as means of drying pomegranate arils (Punica granatum L.). Heat and Mass Transfer. 55(6): https://doi.org/10.1007/s00231-019-02644-8 | spa |
dcterms.references | Caetano, P., Mariano, F., Mendonça, V., Furlaneto, K., Daiuto, E. and Lopes, R. (2018). Physicochemical and sensory characteristics of sweet potato chips undergoing different cooking methods. Food Science and Technology, Campinas. 38(3): 434-440. | spa |
dcterms.references | Cárdenas, J. and Ayala, A. (2016). Evaluación de temperatura de secado por Ventana de Refractancia en Aloe vera (Aloe barbandesis M.). Revista Agronomía Colombiana. 34(1Supl.). doi: 10.15446/agron.colomb.v34n1supl.58275 | spa |
dcterms.references | Carrin, M. and Crapiste, G. (2008). Convective drying of foods. In: Ratti, C [editor]. Advances in food dehydration. Boca Raton, FL: CRC Press. Page: 123-152. | spa |
dcterms.references | Castro, A., Mayorga, M. and Moreno, M. (2018). Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering. 223: 152-167. | spa |
dcterms.references | Centro Internacional De La Papa (CIP). (1988). Mejoramiento de la batata (Ipomoea batatas) en Latinoamérica. Memorias del "Seminario sobre Mejoramiento de la batata (Ipomoea batatas) en Latinoamérica". CIP, Lima, junio 9-12, 1987. Página: 277. | spa |
dcterms.references | Chen, Z. (2003). Physicochemical Properties of Sweet Potato Starches and Their Application in Noodle Products. Ph.D. Thesis Wageningen University, The Netherlands. | spa |
dcterms.references | CIP (Centro Internacional de la Papa). (2020). Figures about sweet potato. Peru. Disponible en: http://cipotato.org/sweetpotato/facts-2/. | spa |
dcterms.references | Clarke, P. (2004). REFRACTANCE WINDOWTM - “DOWNUNDER”. Memories of the 14th International Drying Symposium. São Paulo, Brazil, August 2004, Vol. B: 813-820. | spa |
dcterms.references | Clemente, G. (2003). Efecto de la contracción en la cinética de secado de músculos de jamón. Tesis doctoral, Universidad Politécnica de Valencia, España. | spa |
dcterms.references | Clifford, I., Kingsley, E., Chika, C. and Chinyere, I. (2014). Effects of Osmotic Dewatering and Oven Drying on β-Carotene Content of Sliced Light Yellow-Fleshed Sweet Potato (Ipomoea batatas L.). Nigerian Food Journal. 32 (2): 25-32. | spa |
dcterms.references | Collazo, P., Morejón, Y., Fernández, L. and Vázquez, Y. (2018). Modelos matemáticos y experimentales para el análisis del secado solar de semillas. Revista Ciencias Técnicas Agropecuarias. 27(1). | spa |
dcterms.references | Cosme, N. (2013). Manual técnico para el cultivo de batata (Camote o Boniato) en la provincia de Tucumán (Argentina). | spa |
dcterms.references | Crank, J. (1975). The mathematics of diffusion. Editorial Oxford University press, Inglaterra, páginas: 60-61. | spa |
dcterms.references | Cuq, B., Rondet, E. and Abecassis, J. (2011). Food powders engineering, between knowhow and science: constraints, stakes and opportunities. Powder Technology. 208(2): 244-251. | spa |
dcterms.references | Da Costa, D., De Melo, A., Feitosa, R. and Alves, E. (2015). Sun drying of residual annatto seed powder. Acta Scientiarum. Technology. 37(1): 161-166. | spa |
dcterms.references | De Lima, A., Queiroz, M. and Nebra, S. (2002). Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration. Chemical Engineering Journal. 86: 85-93. | spa |
dcterms.references | Diamante, L. and Munro, P. (1991). Mathematical modelling of hot air drying of sweet potato slices. International Journal of Food Science and Technology. 26: 99-109. | spa |
dcterms.references | Diamante, L. and Munro, P. (1993). Mathematical Modelling Of the Thin Layer Solar Drying Of Sweet Potato Slices. Solar Energy. 51(4): 271-276. | spa |
dcterms.references | Dissa, A., Desmorieux, H., Savadogo, P., Segda, B. and Koulidiati, J. (2010). Shrinkage, porosity and density behavior during convective drying of spirulina. Journal of Food Engineering. 97: 410-418. | spa |
dcterms.references | Dos Santos, J., Lemos, D., Matos, M., Almeida, A. and Da Silva, G. (2012). Estudo da cinética de secagem de Batata-doce (Ipomoea batatas). Revista Brasileira de Produtos Agroindustriais.14 (4): 323-328. | spa |
dcterms.references | Doymaz, I. (2011). Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Journal Heat Mass Transfer. 47: 277-285. | spa |
dcterms.references | Doymaz, I. (2012). Infrared drying of sweet potato (Ipomoea batatas L.) slices. Journal Food Science Technology. 49 (6): 760-766. | spa |
dcterms.references | Engel, F. (1970). Explorations of the Chilca Canyon, Peru. Current Anthropol. 11: 55-58. | spa |
dcterms.references | Engel, F. (1970). Explorations of the Chilca Canyon, Peru. Current Anthropol. 11: 55-58. | spa |
dcterms.references | Erdoğdu, F. (2005). Mathematical approaches for use of analytical solutions in experimental determination of heat and mass transfer parameters. Journal of Food Engineering. 68: 233-238. | spa |
dcterms.references | FAOSTAT (Statistics division of Food and Agriculture Organization of the United Nations). (2018). Disponible en: http://faostat3.fao.org/browse/Q/*/E. | spa |
dcterms.references | Fan, K., Chen, L., He, J. y Yan, F. (2015). Characterization of Thin Layer Hot Air Drying of Sweet Potatoes (Ipomoea batatas L.) Slices. Journal of Food Processing and Preservation. 39(Issue 6): 1361-1371. | spa |
dcterms.references | Flórez, D., Contreras, C. y Uribe, C. (2016). Perspectivas Tecnológicas y Comerciales para el Cultivo de Batata en Colombia. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Mosquera, Colombia. | spa |
dcterms.references | Foust, A., Wenzel, L., Clamb, C., Maus, L., Andersen, L., Wiley, J. and Sons. (2006). Principios de Operaciones Unitarias. Décima Reimpresión. Compañia Editorial Continental México. Páginas 460-462. | spa |
dcterms.references | Freitas, S. and Pareek, S. (2018). Postharvest Physiological Disorders in Fruits and Vegetables. Boca Raton: Taylor & Francis. Págs: 719-748. | spa |
dcterms.references | Fu, Z., Tu, Z., Zhang, L., Wang, H., Wen, Q. and Huang T. (2016). Actividades antioxidantes y polifenoles de hojas de batata (Ipomoea batatas L.) extraídas con solventes de diversas polaridades. Biociencia de los Alimentos. 15: 11-18. | spa |
dcterms.references | Ganguli, S., Dean, D. and Benjamin, A. (2003). Preparation of biodegradable plastics based on nanoengeveered sweet potato starch/mPE blends. In: Cohen, L.J., Ong, C., Arendt, C. (Eds.), Advancing Materials in the Global Economy - Applications. Emerging Markets and Evolving Technologies, Long Beach, CA. 2545–2558. | spa |
dcterms.references | Geankoplis, C. (1998). Procesos de transporte y operaciones unitarias, CECSA, México, pag. 580-618. | spa |
dcterms.references | Guo, K., Liu, T., Xu, A., Zhang, L., Bian, Z. and Wei, C. (2019). Structural and functional properties of starches from root tubers of white, yellow, and purple sweet potatoes. Food Hydrocolloids. 89: 829-836. | spa |
dcterms.references | Hall, M. and Phatak, S. (1993). 47-Sweet Potato (Ipomoea batatas L.) Genetic Improvement of Vegetable Crops. Pages: 693-708. | spa |
dcterms.references | Hao, J., Chung, L., Xiao, F., Hong, X., Yan, L. and Zhen, G. (2015): Drying Kinetics and Evolution of Sample's Core Temperature and Moisture Distribution of Yam Slices (Dioscorea alata L.) during Convective Hot Air Drying. Drying Technology. DOI: 10.1080/07373937.2015.1105814 | spa |
dcterms.references | Harchegani, M., Varnamkhasti, M., Ghanbarian, D., Sadeghi, M. and Tohidi, M. (2015). Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat Mass Transfer. DOI 10.1007/s00231-015-1546-y | spa |
dcterms.references | Hariadi, H., Sunyoto, M., Nurhadi, B. and Karuniawan, A. (2020). Study of Drying Method Types on the Physicochemical Characteristics of Purple-Fleshed Sweet Potato Extract Powder. Progress in Color, Colorants y Coatings. 13: 41-51. | spa |
dcterms.references | Hashem, H., Tayel, S., Younes, O. and Abdel, A. (2019). Effect of Refractance Window Drying Method on Quality Characteristics of Balady Menthol. Journal Food and Dairy Science. 10(8): 265- 269. | spa |
dcterms.references | Heldman, D. and Lund, D. [Ed]. (2007). Handbook of Food Engineering, Second Edition. CRC Press Taylor and Francis Group. Pages: 639-641. | spa |
dcterms.references | Hernández, Y. (2017). Deshidratación de manzanas tipo Granny Smith en Ventana Refractiva con pretamiento de Deshidratación Osmótica y Campo eléctrico moderado. Memoria para optar el titulo de ingeniero Civil Químico, Universidad Técnica de Federico Santa María, Valparaiso-Chile. | spa |
dcterms.references | Hofsetz, K., Costa, C., Dupas, M., Mayor, L. and Sereno, A. (2007). Changes in the physical properties of bananas on applying HTST pulse during air-drying. Journal of Food Engineering. 83: 531-540. | spa |
dcterms.references | Hong, X., Hai, L., Xue, Y., Zhi, D., Zheng, L. and Zhen, G. (2009). Effects of Different Pretreatments on Drying Kinetics and Quality of Sweet Potato Bars Undergoing Air Impingement Drying. International Journal of Food Engineering. 5: Tema 5, Articulo 5. | spa |
dcterms.references | Horta, G., Corrêa, P., Mendes, F., Duarte, A., Afonso, P. and Carvalho, S. (2011). Modeling of the shrinkage kinetics of coffee berries during drying. Acta Scientiarum. Agronomy. 33(3): 423-428. | spa |
dcterms.references | Hou, F., Mu, T., Ma, M. and Blecker, C. (2019). Optimization of processing technology using response surface methodology and physicochemical properties of roasted sweet potato. Food Chemistry. 278: 136-143. | spa |
dcterms.references | Huamán, Z. (1992). Botánica sistemática y morfología de la planta de batata o camote. Boletín de Información Técnica 25, Centro Internacional de la Papa, Lima, Perú. Pág. 22. | spa |
dcterms.references | Ishida, H., Suzuno, H., Sugiyama, N., Innami, S., Tadokoro, T. and Maekawa, A. (2000). Evaluación nutritiva de componentes químicos de hojas, tallos y tallos de batata (Ipomoea batatas poir). Food Chemestry. 68(3): 359-367. | spa |
dcterms.references | İzli, N. and Polat, A. (2020). Intermittent Microwave Drying of Apple Slices: Drying Kinetics, Modeling, Rehydration Ratio and Effective Moisture Diffusivity. Tarım Bilimleri Dergisi - Journal of Agricultural Sciences. 26: 32-41. | spa |
dcterms.references | Joardder, M., Kumar, C. and Karim, M. (2017). Food structure: Its formation and relationships with other properties. Critical Reviews in Food Science and Nutrition. 57(6): 1190-1205. DOI: 10.1080/10408398.2014.971354 | spa |
dcterms.references | Joardder, M. and Karim, M. (2019). Development of a porosity prediction model based on shrinkage velocity and glass transition temperature. Drying Technology. DOI: 10.1080/07373937.2018.1555540 | spa |
dcterms.references | Jiang, Q., Liang, S., Zeng, Y., Lin, W., Ding, F., Li, Z., Cao, M., Li, Y., Ma, M. and Wu, Z. (2019). Morphology, structure and in vitro digestibility of starches isolated from (Ipomoea batatas (L.) Lam) by alkali and ethanol methods. International Journal of Biological Macromolecules. 125: 1147-1155. | spa |
dcterms.references | Junqueira, J., Mendonça, K. and Corrêa, J. (2016). Microwave Drying of Sweet Potato (Ipomoea batatas (L.)) Slices: Influence of the Osmotic Pretreatment. Defect and Diffusion Forum. 367: 167-174. | spa |
dcterms.references | Jusuf, M. and Ginting, E. (2014). The Prospects and Challenges of Sweet Potato as Bio-Ethanol Source in Indonesia. Elsevier Ltd. 173–179. | spa |
dcterms.references | Kamenan, B., Ekoun, P. and Gbaha, P. (2019). Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences. 18: 72-82. | spa |
dcterms.references | Kitahara, K., Fukunaga, S., Katayama, K., Takahata, Y., Nakazawa, Y., Yoshinaga, M. and Guganuma, T. (2005). Physicochemical properties of sweet potato starches with different gelatinization temperatures. Starch/Stärke. 57: 473-479. | spa |
dcterms.references | Kitahara, K., Nakamura, Y., Otani, M., Hamada, T., Nakayachi, O. and Takahata, Y. (2017). Carbohydrate components in sweet potato storage roots: their diversities and genetic improvement. Breed. Sci. 67: 62-72. | spa |
dcterms.references | Koç, B., Eren, I. and Ertekin, F. (2008). Modelling bulk density, porosity and shrinkage of quince during drying: effect of drying method. Journal Food Engineering. 85: 340-349. | spa |
dcterms.references | Komolafe, C., Ojediran, J., Ajao, F., Dada, O., Afolabi, Y., Oluwaleye, I. and Alake, A. (2019). Modelling of moisture diffusivity during solar drying of locust beans with thermal storage material under forced and natural convection mode. Case Studies in Thermal Engineering. 15: 100542. | spa |
dcterms.references | Krokida, M. and Maroulis, Z. (1997). Effect of drying method on shrinkage and porosity. Drying Technology. 15: 2441-2458. | spa |
dcterms.references | Kudadam, J. (2017). Simulación de la transferencia de calor transitoria durante el enfriamiento y calentamiento de batatas enteras ( Ipomoea batatas (L.) Lam.) En condiciones de aire forzado. Applied Thermal Engeneering, 1771-1778. | spa |
dcterms.references | Kumar, Y., Tiwari, S. and Belorkar, S. (2015). Drying: An Excellent Method for Food Preservation. International Journal of Ingineering Studies and Technical Approach. 1 (8). | spa |
dcterms.references | Kurozawa, L., Hubinger. and Park, K. (2012). Glass transition phenomenon on shrinkage of papaya during convective drying. Journal of Food Engineering. 108: 43-50. | spa |
dcterms.references | Lanzerstorfer, C. (2020). Apparent density of compressible food powders under storage conditions. Journal of Food Engineering. 276: 109897. | spa |
dcterms.references | Lebot, V. (2009). Tropical root and tuber crops cassava, sweet potato, yams and aroids. CABI, Oxfordshire, UK. pp. 91-274. | spa |
dcterms.references | Leiton, Y. (2012). Evaluación del método de secado por ventana de refractancia en pulpa de guayaba (Psidium guajava), Magister, Universidad del Valle, Santiago de Cali. | spa |
dcterms.references | Leiva, D. (2012). Evaluación Del Efecto De La Combinación De Tecnologías De Deshidratación Aplicadas En Tejido De Piña Sobre El Consumo Energético Del Proceso Y La Calidad Del Producto Terminado. Maestría en Diseño Y Gestión De Procesos. Universidad de la Sabana, Colombia. | spa |
dcterms.references | Lentzou, D., Boudouvis, A., Karathanos, V. and Xanthopoulos, G. (2019). A moving boundary model for fruit isothermal drying and shrinkage: An optimization method for water diffusivity and peel resistance estimation. Journal of Food Engineering. 263: 299-310. | spa |
dcterms.references | Leon, J. (1976). Origin, evolution, and early dispersal of root and tuber crops, in Proceedings of the Fourth Symposium of the International Society for Tropical Root Crops, Cock, J., Maclntyre, R. and Graham, M., eds., International Development Research Centre, Ottawa, Canada, 20. | spa |
dcterms.references | Lewis, M. (1987). Physical Properties of Foods and Food Processing Systems. Chichester: Ellis Horwood Ltd. Pages: 51-68. | spa |
dcterms.references | Li, L., Liao, C. and Chin, L. (1994). Variability in test and physio-chemical properties and its breeding implications in sweet potato (Ipomoea batatas). Journal of the Agricultural Association of China, New Series 165, 19. | spa |
dcterms.references | Li, X., Yang, H. and Lu, G. (2018). Acondicionamiento a baja temperatura combinado con almacenamiento en frío que induce un endulzamiento rápido de las raíces tuberosas del camote (Ipomoea batatas (L.) Lam) al tiempo que inhibe la lesión por frío. Postharvest Biology And Technology. 142: 1-9. | spa |
dcterms.references | Liu, Q. (2004). Importance of sweetpotato in the security of food and energy in China. Oil Gas Sci. Technol. 9, 19. | spa |
dcterms.references | Liu, G., Chen, J., Liu, M. and Wan, X. (2012). International Conference on Advances in Computational Modeling and Simulation: Shrinkage, porosity and density behaviour during convective drying of bio-porous material. Procedia Engineering. 31: 634-640. | spa |
dcterms.references | Liu, P., Sun, S., Wang, W., Hou, H. and Dong, H. (2015). Effect of glycerol plasticizer on the Properties of sweet potato starch-based films. J. Chin. Cereals Oils Ass, 30: 15-20. | spa |
dcterms.references | Llave, Y., Takemori, K., Fukuoka, M., Takemori, T., Tomita, H. and Sakai, N. (2016). Mathematical modeling of shrinkage deformation in eggplant undergoing simultaneous heat and mass transfer during convection oven roasting. Journal of Food Engineering. 178: 124-136. | spa |
dcterms.references | Lozano J., Rotstein, E. and Urbicain, M. (1983). Shrinkage, porosity and bulk density of food stuffs at changing moisture contents. Journal of Food Science 48: 1497–1502, 1553. | spa |
dcterms.references | Magoon, R.E. (1986). Method and Apparatus for Drying Fruit Pulp and the Like. USA. Patent 4, 631,837. | spa |
dcterms.references | Maroulis, Z., Saravacos, G., Panagiotou, N. and Krokida, M. (2001). Moisture Diffusivity Data Compilation for Foodstuffs: Effect of Material Moisture Content and Temperature. International Journal of Food Properties. 4(2): 225-237. | spa |
dcterms.references | Martynenko, A. (2014). True, Particle, and Bulk Density of Shrinkable Biomaterials: Evaluation from Drying Experiments. Drying Technology. 32: 1319-1325. | spa |
dcterms.references | Mayor, L. and Sereno, A. (2004). Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering. 61: 373-386. | spa |
dcterms.references | McCabe, W., Smith, J. and Harriott, P. (2007). OPERACIONES UNITARIAS EN INGENIERÍA QUÍMICA. Editorial Mc Graw Hill, Séptima edición, México, Página: 388. | spa |
dcterms.references | Mejía, A. (2011). Efecto de la deshidratación por radiación infrarroja sobre algunas características fisicoquímicas de interés comercial del aloe vera (Aloe barbadensis). Magister en diseño y gestión de procesos, énfasis en alimentos, Universidad de la Sabana, Chia-Cundinamarca. | spa |
dcterms.references | Meng, Y., Wang, J., Fang, S. and Chen, J. (2011). Drying characteristics and mathematical modeling of hot air drying of cooked sweet potatoes. Transactions of the Chinese Society of Agricultural Engineering. 27(7): 387-392. | spa |
dcterms.references | Mitrevski, V., Mijakovski, V., Popovski, F. and Popovski, D. (2012). Influence of Boundary Conditions on Particle Density. Journal of Agricultural Science and Technology. ISSN 1939-1250. | spa |
dcterms.references | Morales, J. y Vélez, J. (2014). Deshidratación de frutas y hortalizas por ventana refractiva®. Revista de Ciencias y Tecnología de Alimentos. 13(2): 35-46. | spa |
dcterms.references | Morales, A., Morales, A., Rodríguez, D., Pastrana, I. y Méndez, C. (2017). Origen, Evolución Y Distribución Del Boniato (Ipomoea Batatas (L.) Lam.). Una Revisión. Agricultura Tropical. 3(1): 1-13. | spa |
dcterms.references | Moreira, R. and Sereno, A. (2003). Evaluation of mass transfer coefficients and volumetric shrinkage during osmotic dehydration of apple using sucrose solutions in static and non-static conditions. Journal of Food Engineering. 57: 25-31. | spa |
dcterms.references | Moses, J., Norton, T., Alagusundaram, K., Norton, T. and Tiwari, B. (2014). Novel Drying Techniques For the Food Industry. Food Ingeneering Reviews, 6: 43-55. | spa |
dcterms.references | Mu, T., Zhang, M., Sun, H. and Wang, C. (2017). Sweet Potato Processing Technology. Copyright © Science Publishing & Media Ltd. Beijing. Páginas: 55-56. | spa |
dcterms.references | Mu, T. and Singh, J. (2019). Sweet Potato: Chemistry, Processing, and Nutrition. (2019). © Elsevier Inc. All rights reserved. Beijing. Páginas: 1-4. | spa |
dcterms.references | Mujaffar, S. and Bynoe, S. (2019). Investigations into Hot Air and Microwave Drying of the West Indian Bay Leaf (Pimenta racemose). Memories 7th European Drying Conference. Politecnico Di Torino, Torino, July 10-12, paper 023. | spa |
dcterms.references | Mujumdar, A. [Ed.]. (2006). Handbook of Industry Drying. Third Edition. CRC Press Taylor & Francis Group. U.K. Páginas: 4-22. | spa |
dcterms.references | Namutebi, A., Hill, S., Farhat, I., et al. (2003). Physicochemical characteristics of starches from new breeds of sweet potatoes grown in Uganda. Afr. Crop Sci. Conf. Proc. 6: 568-576. | spa |
dcterms.references | Narváez, L. y León, R. (2017). Determinación del Efecto del Ultrasonido Como Pretratamiento del Secado por Microondas de la Ahuyama (Cucurbita maxima). Tesis presentada en opción al título académico de Ingeniero de Alimentos. Universidad de Córdoba, Monteria, Córdoba. | spa |
dcterms.references | Nedunchezhiyan, M., Byju, G. and Jata, S. (2012). Sweet Potato Agronomy. Fruit, Vegetable and Cereal Science and Biotechnology. | spa |
dcterms.references | Negera, A., Takele, F. and Wondimu, T. (2017). Evaluation of Integrated Management Practices of Sweet Potato Weevil (Cylas Puncticollis (Boheman) (Coleoptera: Brentidae) in Bako, Western Ethiopia. Journal of Natural Sciences Research. ISSN 2225-0921 (Online). Vol.7 (8). | spa |
dcterms.references | Nguyen, T., Mondor, M. and Ratti, C. (2018). Shrinkage of cellular food during air-drying. Journal of Food Engineering. 230: 8-17. | spa |
dcterms.references | Nindo, C., Sun, T., Wang, S., Tang, J. and Powers, J. (2003). Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis, L.). LWT- Food Science and Technology. 36(Issue 5): 507-516. | spa |
dcterms.references | Nindo, C., Tang, J., Powers, J. and Bolland, K. (2004). Energy consumption during Refractance Window evaporation of selected berry juices. International Journal of Energy Research, 28: 1089-1100. | spa |
dcterms.references | Nindo, C. and Tang, J. (2007). Refractance Window dehydration technology: a novel contact drying method. Drying Technology. 25(1): 37-48. | spa |
dcterms.references | Noranizan, M., Dzulkifly, M. and Russly, A. (2010). Effect of heat treatment on the physicochemical properties of starch from different botanical sources. International Food. 17: 127-135. | spa |
dcterms.references | Ochoa, M., Kesseler, A., Pirone, B., Márquez, C. y De Michelis, A. (2007). Analysis of shrinkage phenomenon of whole sweet cherry fruits (Prunus avium) during convective dehydration with very simple models. Journal of Food Engineering. 79: 657-661. | spa |
dcterms.references | Ochoa, C., Quintero, P., Ayala, A. and Ortiz, M. (2012). Drying characteristics of mango slices using the Refractance Window™ technique. Journal of Food Engineering. 109: 69-75. | spa |
dcterms.references | Ocoro, M. and Ayala, A. (2012). Evaluación de la técnica de ventana de refractancia en el secado de puré de papaya (Carica papaya L.). Vitae. 19(1): 72-74. | spa |
dcterms.references | Oh, S., Jung, E. and Pyo, G. (2018). Quality characteristics and moisture sorption isotherm of three varieties of dried sweet potato manufacturd by hot air semi-drying followed by hot pressing. LWT - Food Science and Technology. 64: 73-78. | spa |
dcterms.references | Ojediran, J., Okonkwo, C., Adeyi, A., Adeyi, O., Olaniran, A., George, N. and Olayanju, A. (2020). Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer: application of ANFIS in the prediction of drying kinetics. Journal Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03555 | spa |
dcterms.references | Omolola, A., Jideani, A. and Kapila, P. (2015). Drying kinetics of banana (Musa spp.) Asociación Interciencia. 40(6): 374-380. | spa |
dcterms.references | Onwude, D., Hashim, N., Janius, R., Nawi, N. and Abdan. K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Compressive Review in Food Science and Food Safety. 15: 599-618. | spa |
dcterms.references | Onwude, D., Hashim, N., Abdan, K., Janius, R. and Chen, G. (2019). The effectiveness of combined infrared and hot-air drying strategies for sweet potato. Journal of Food Engineering. 241: 75-87. | spa |
dcterms.references | Ortega, F. (2013). Determinación de los Parámetros Cinéticos de Transferencia de Masa, Color y Fuerza Máxima de Fractura de Rodajas de Yuca (Manihot esculenta Crantz) Sometidas a Freído Por Inmersión. Maestría en Ciencias Agroalimentarias con Énfasis en Ingeniería, Universidad De Córdoba, Montería-Córdoba. | spa |
dcterms.references | Ortiz, M. (2014). Modelación matemática del secado de alimentos por el método de ventana de refractancia. Doctor en Ingeniería, Énfasis en Ingeniería de Alimentos, Universidad del Valle, Cali -Valle del Cauca. | spa |
dcterms.references | Ortiz, B., Yáñez, E., Pacheco, F., Ruiz, H., García, M., Cortés, O. and Ruiz, O. (2015). Drying of shrinkable food products: Appraisal of deformation behavior and moisture diffusivity estimation under isotropic shrinkage. Journal of Food Engineering. 144: 138-147. | spa |
dcterms.references | Ortiz, M., Gulati, T., Datta, A. and Ochoa, C. (2015). Quantitative understanding of Refractance WindowTM drying. Food and Bioproducts Processing 95: 237-253. | spa |
dcterms.references | Panagiotou, N., Krokida, M., Maroulis, Z. and Saravacos, G. (2004). Moisture Diffusivity: Literature Data Compilation for Foodstuffs. International Journal of Food Properties. 7(2): 273-299. | spa |
dcterms.references | Pereira, Cleide. (2012). Ferramentas Analíticas E Numéricas Para A Descrição Da Secagem De Sólidos Na Forma De Cilindros E De Elipsoides. Universidade Federal de Campina Grande. Programa De Pós-Graduação Em Engenharia De Processos. | spa |
dcterms.references | Perry, R. and Green, D. (Eds.). (1997). Perry’s Chemical Engineers’ Handbook, 7a. edition. Nueva York: McGraw-Hill, 1; Shapter 20. | spa |
dcterms.references | Pineda, M., Chacón, A. y Cordero, G. (2009). Efecto de las condiciones de secado sobre la cinética de deshidratación de las hojas de morera (Morus alba). Revista agronomía mesoamericana. 20(2): 275-283. | spa |
dcterms.references | Pordesimo, L., Onwulata, C. and Carvalho, C. (2009). Food powder delivery through a feeder system: effect of physicochemical properties. Int. J. Food Prop. 12(3): 556-570. | spa |
dcterms.references | Rafiee, S., Sharifi, M., Keyhani, A., Omid, M., Jafari, A., Mohtasebi, S. and Mobli, H. (2010). Modeling Effective Moisture Diffusivity of Orange Slice (Thompson Cv.), International Journal of Food Properties. 13(1): 32-40. | spa |
dcterms.references | Rafiee, S., Sharifi, M., Keyhani, A., Omid, M., Jafari, A., Mohtasebi, S. and Mobli, H. (2010). Modeling Effective Moisture Diffusivity of Orange Slice (Thompson Cv.), International Journal of Food Properties. 13(1): 32-40. | spa |
dcterms.references | Rahimi, J., Singh, A., Olusola, P., Adedeji, A., Ngadi, M. and Raghavan, V. (2013). Effect of Carboxylmethyl Cellulose Coating and Osmotic Dehydration on Freeze Drying Kinetics of Apple Slices. Journal Food. 2: 170-182. | spa |
dcterms.references | Rajoriya, D., Shewale, S. and Umesh, H. (2019). Refractance Window Drying of Apple Slices: Mass Transfer Phenomena and Quality Parameters. Food and Bioprocess Technology. 12 (Issue 10): 1646-1658. | spa |
dcterms.references | Ramirez, D. (2012). Evaluación Del Efecto De La Combinación De Tecnologías De Deshidratación Aplicadas En Tejido De Piñas Sobre El Consumo Energético Del Proceso Y La Calidad Del Producto Terninado. Bogotá, Colombia. | spa |
dcterms.references | Ramos, I., Brandao, T. and Silva, C. (2003). Structural Changes During Air Drying of Fruits and Vegetables. Food Science and Technology International. 9(3): 201-206. | spa |
dcterms.references | Ramos, P., Paz, M., Caballero, A., Morales, B., Basurto, F. and Palacios, G. (2014). Snack´s tipo Chips con base en Camote morado Ipomoea batatas L. (Convolvulaceae), evaluados sensorialmente. Lacandonia. 8(1): 31-36. | spa |
dcterms.references | Ratti, C. (1994). Shrinkage during drying of foodstuffs. Journal Food Engineering. 23 (1): 91-105. | spa |
dcterms.references | Régnier, C., Bocage, B., Archimède, H., Noblet, J. and Renaudeau, D. (2013). Digestive utilization of tropical foliages of cassava, sweet potatoes, wild cocoyam and erythrina in Creole growing pigs. Animal Feed Science and Technology. 180 (Issues 1-4): 44-54. | spa |
dcterms.references | Rodríguez, J., Méndez, L., López, A. and Sandoval, S. (2012). True Density and Apparent Density during the Drying Process for Vegetables and Fruits: A Review. Journal of Food Science. doi: 10.1111/j.1750-3841.2012.02990 | spa |
dcterms.references | Rodríguez, P., Carruthers, T., Wood, J., Williams, B., Weitemier, K., Kronmiller, B., Ellis, D., Anglin, N., Longway, L., Harris, S., Rausher, M., Kelly, S., Liston, A. and Escocia, R. (2018). Reconciling Conflicting Phylogenies in the Origin of Sweet Potato and Dispersal to Polynesia. Current Boilogy. 28(8): 1246-1256. | spa |
dcterms.references | Rodríguez, T., Brito, K. and Leite, E. (2019). Sweet potato roots: Unrevealing an old food as a source of health promoting bioactive compounds – A review. Trends in Food Science & Technology. 85: 277-286. | spa |
dcterms.references | Rodrigues, T., Landi, C. and Leonel, M. (2020). Gelatinized sweet potato starches obtained at different preheating temperatures in a spray dryer. International Journal of Biological Macromolecules. 19(15): 1339-1346. | spa |
dcterms.references | Rotimi, R. (2012). Effects of pre-treatments on drying kinetics of sweet potato slices. Agricultural Engineering International: CIGR Journal. 14(3): 136-145. | spa |
dcterms.references | Sabarez, H. (2012). Modelado computacional de los fenómenos de transporte que ocurren durante el secado convectivo de ciruelas pasas. Journal Food Engineering. 111(2): 279-288. | spa |
dcterms.references | Sabarez, H. (2014). Modelado matemático de los fenómenos de transporte acoplado y desarrollo del color: acabado de secado de sultanas enrejadas. Secado Technol. 32: 578-589. | spa |
dcterms.references | Sabarez, H. (2016). Drying of Food Materials. Reference Module in Food Science. SN-9780081005965. DO: 10.1016/B978-0-08-100596-5.03416-8 | spa |
dcterms.references | SAC (Sociedad de Agricultores de Colombia). (2011). El Cultivo De La Batata [Pdf]. Recuperado de: http://www.sac.org.co/images/contenidos/Cartillas/Cartilla%20Batata.pdf. | spa |
dcterms.references | Sagar, V. and Suresh, P. (2010). Recent advances in drying and dehydration of fruits and Vegetables: a review. Journal Food Scientists and Technologists. 47(1): 16-25. | spa |
dcterms.references | Sagar, V. and Suresh, P. (2010). Recent advances in drying and dehydration of fruits and Vegetables: a review. Journal Food Scientists and Technologists. 47(1): 16-25. | spa |
dcterms.references | Saha, B., Bucknall, M., Arcot, J. and Driscoll, R. (2018). Derivation of two layer drying model with shrinkage and analysis of volatile depletion during drying of banana. Journal of Food Engineering. 226: 42-52. | spa |
dcterms.references | Salehi, F. and Kashaninejad, M. (2018). Modelado de la cinética de pérdida de humedad y cambios de color en la superficie de la rodaja de limón durante el secado combinado de vacío por infrarrojo. Information Processing In Agriculture. 5(4): 516-523. | spa |
dcterms.references | Satyanarayan, D. and Vijaya, R. (2012). Advancements in Drying Techniques for Food, Fiber, and Fuel. Drying Technology: An International Journal. 30:11-12, 1147-1159. | spa |
dcterms.references | Schultz, E., Mazzuco, M., Machado, R., Bolzan, A., Quadri, M.B. and Quadri, M.G. (2007). Effect of pre-treatments on drying, density and shrinkage of apple slices. Journal of Food Engineering. 78: 1103-1110. | spa |
dcterms.references | Shafiur, M. [Ed]. (2007). Handbook of food preservation. Segunda edición. Indiana, USA. CRC Press Taylor & Francis Group. | spa |
dcterms.references | Shahari, N., Jamil, N. and Rasmani, K. (2016). Comparative Study of Shrinkage and Non-Shrinkage Model of Food Drying. Journal of Physics: Conference Series 738 012087. doi:10.1088/1742-6596/738/1/012087 | spa |
dcterms.references | Silayo, V., Laswai, H., Mkuchu, J. and Mpagalile, J. (2003). Effect of sun drying on some quality characteristics of sweet potato chips. Africa Journal of Food, Agriculture, Nutrition and Development. 3(2): 1-10. | spa |
dcterms.references | Singh, S., Raina, C., Bawa, A. and Saxena, D. (2006). Effect of Pretreatments on Drying and Rehydration Kinetics and Color of Sweet Potato Slices. Drying Technology: An International Journal. 24(11): 1487-1494. | spa |
dcterms.references | Singh, N. and Pandey, R. (2012). Convective air drying characteristics of sweet potato cube (Ipomoea batatas L.). Food and Bioproducts Processing. 90: 317-322. | spa |
dcterms.references | Souza, D., Resende, O., Moura, L., Ferreira (Jr), W. and Andrade, J. (2019). Drying kinetics of the sliced pulp of biofortified Sweet Potato (Ipomoea batatas L.). Engenharia Agrícola. 39(2): 176-181. | spa |
dcterms.references | Sugri, I., Maalekuu, B., Gaveh, E. y Kusi, F. (2019). Los índices de composición y vida de anaquel de la Batata se mejoraron significativamente con el desmantelamiento previo a la cosecha. Annals of agricultural sciences. https://doi.org/10.1016/j.aoas.2019.03.002 | spa |
dcterms.references | Sun, H., Mu, T., Xi, L., Zhang, M. and Chen J. (2014). Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods. Food Chemistry. 156: 380-389. | spa |
dcterms.references | Taira, J., Taira, K., Ohmine, W. y Nagata, J. (2013). Determinación de minerales y actividad de oxidación anti-LDL de hojas de batata (Ipomoea batatas L.). Composition and Food Analysis. 29(2): 117-125. | spa |
dcterms.references | Taiwo, K. and Baik, O. (2007). Effects of pre-treatments on the shrinkage and textural properties of fried sweet potatoes. LWT - Food Science and Technology. 40(Issue 4): 661-668. | spa |
dcterms.references | Takamine, K., Abe, J., Iwaya, A., Maseda, S. and Hizukuri, S. (2000). A new manufacturing process for dietary fiber from sweet potato residue and its physical characteristics. Journal Appl. Glycosci. 47(1): 67-72. | spa |
dcterms.references | Tang, Y., Cai, W. and Xu, B. (2015). Profiles of phenolics, carotenoids and antioxidative capacities of thermal processed white, yellow, orange and purple sweet potatoes grown in Guilin, China. Food Science and Human Wellness. 4: 123-132. | spa |
dcterms.references | Tindall, H. (1983). Convulvulaceae, in Vegetables in the Tropics. Macmillan Press, London. Pág 97. | spa |
dcterms.references | Torregrosa, A. (2013). Determinación De La Influencia De La Temperatura Y Velocidad Del Aire Sobre Las Cinéticas De Secado De Tres Variedades De Yuca Procesadas En La Planta Instalada En La Vereda Los Algarrobos. Maestría en Ciencias Agroalimentarias con Énfasis en Ingeniería, Universidad De Córdoba, Montería-Córdoba. | spa |
dcterms.references | Torquato, A., Rodrigues, I., Pascual, Irais., Rosa, W. and Da Silveira, M. (2017). Potential for sweet potato (Ipomoea batatas (L.) Lam.) Single crosses to improve ethanol production. Chapingo Serie Horticultura. 23(1): 59-74. | spa |
dcterms.references | Treybal, R. (1980). Operaciones de transferencia de masa. Editorial Mc Graw Hill chemical engineering series, segunda edición. New York. Pages: | spa |
dcterms.references | Trivedi, M., D’costa, V., Shitut, J. and Srivastav, S. (2017). Refractance Window Technology A Promising Drying Technique for the Food Industry. International Journal of Innovative and Emerging Research in Engineering. Vol (4), issue 1. | spa |
dcterms.references | Vallous, N., Gavrielidou, M., Karapantsios, T. and Koatoglou, M. (2002). Performance of a double drum dryer for producing pregelatinized maize starches. Journal of Engineering. 51: 171-183. | spa |
dcterms.references | Vega, H., Gongora, M. and Barbosa, G. (2001). Advances in dehydratation of Food. Journal of Ingineering Food. 49: 271-289. | spa |
dcterms.references | Vidal, A., Zaucedo, A. y Ramos, M. (2018). Propiedades nutrimentales del camote (Ipomoea batatas L.) y sus beneficios en la salud humana. Revista Iberoamericana de Tecnología Postcosecha, vol. 19, núm. 2, 2018. | spa |
dcterms.references | Wang, S., Nie, S. and Zhu, F. (2016). Review: Chemical constituents and health effects of sweet potato. Food Research International. 89: 90-116. | spa |
dcterms.references | Widodo, Y., Wahyuningsih, S. and Ueda, A. (2015). Second Humboldt Kolleg in conjunction with International Conference on Natural Sciences, HK-ICONS 2014: Sweet Potato Production for Bio-ethanol and Food Related Industry in Indonesia: Challenges for Sustainability. Procedia Chemistry. 14: 493-500. | spa |
dcterms.references | Wilson, L. & Lowe, S. (1973). Anatomy of root system in West Indian sweet potato (Ipomoea batatas (L.) Lam.) Cultivars. Annals of Botany. 37(151): 633-&. | spa |
dcterms.references | Woolfe, J. (1992). Sweet potato: an untapped food resource, University of Cambridge, London, U.K. | spa |
dcterms.references | Yamaguchi, M. (1983a). Origin and evolution of vegetables, in World Vegetables, Principles, Production and Nutritive Values, AVI, Van Nostrand Reinhold Company, New York, 15. | spa |
dcterms.references | Yamaguchi, M. (1983b). Sweet potato, in World Vegetables, Principles, Production and Nutritive Values, AVI, Van Nostrand Reinhold Company, New York. Página: 123. | spa |
dcterms.references | Yildiz, A., Palazoǧlu, T. and Erdoǧdu, F. (2007). Determination of heat and mass transfer parameters during of potato slices. Journal of Food Engineering. 79: 11-17. | spa |
dcterms.references | Zabalaga, R., La Fuente, C. and Tadini, C. (2016). Experimental determination of thermophysical properties of unripe banana slices (Musa Cavendishii) during convective drying. Journal Food Engineering. 187: 62-69. | spa |
dcterms.references | Zaccari, F., Cabrera, M. and Saadoun, A. (2018). Sweet Potato and Squash Storage. © 2018 Elsevier Inc. All rights reserved, Uruguay. Págs: 1-9. | spa |
dcterms.references | Zaidul, I., Norulaini, N., Mohd, A., Yamauchi, H. and Noda, T. (2007). RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydrate Polym. 69: 784-791. | spa |
dcterms.references | Zhang, D. and Li, X. (2004). Sweet potato as animal feed: the perspective of crop improvement for nutrition quality. In: Fuglie, K.O., Hermann, M. (Eds.), Sweet potato Post-Harvest Research and Development in China. International Potato Center (Press-Run 300), Bogor. 26–39. | spa |
dcterms.references | Zhang, M., Bhandary, B. and Fang, Z. (2017). Advances in Drying Science and Technology: Handbook of Drying of Vegetables and Vegetable Products. CRC Press, Taylor & Francis Group. Páginas: a) 173-176; b) 350-373. | spa |
dcterms.references | Zhao, L., Liu, G., You, M., et al. (2009). Study on the relationship between the properties of starch and its vermicelli quality. Science and Technology Food Industry. 30(12): 90-92. | spa |
dcterms.references | Zhu, A. and Jiang, F. (2014). Modeling of mass transfer performance of hot air drying of sweet potato (Ipomoea batatas L.) slices. Chemical Industry & Chemical Engineering Quarterly. 20(2): 171-181. | spa |
dcterms.references | Zhu, F., Yang, X., Cai, Y., Bertoft, E. and Corke, H. (2011). Physicochemical properties of sweet potato starch. Starch/Stärke. 63: 249-259. | spa |
dcterms.references | Zhu, F. and Wang, S. (2014). Physicochemical properties, molecular structure, and uses of sweet potato starch. Trends in Food Science & Technology. 36 (issue 2): 68-78. | spa |
dcterms.references | Zogzas, N., Maroulis, Z. and Marinos-Kouris, D. (1994). Densities, shrinkage and porosity of some vegetables during air-drying. Drying Technology. 12: 1653-1666. | spa |
dcterms.references | Zogzas, N., Maroulis, Z. and Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in food stuffs. Drying Technology-An International Journal. 14: 2225-2253. | spa |
dcterms.references | Zotarelli, M., Mattar, B. and Borges, J. 2015. Effect of process variables on the drying rate of mango pulp by Refractance window. Food Research International. 69: 410–417. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- padillaferiacesardavid - montalvolambrañoheynedejesus.pdf
- Tamaño:
- 2.49 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Autorización Publicación .pdf
- Tamaño:
- 783.28 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: