Show simple item record

dc.contributor.advisorTique Salleg, Vaneza
dc.contributor.advisorSoto López, Maryoris
dc.contributor.authorBarriosnuevo Pérez, Kevin Alberto
dc.date.accessioned2021-01-19T15:45:16Z
dc.date.available2021-01-19T15:45:16Z
dc.date.issued2020-12-14
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3879
dc.description.abstractLos bacteriófagos son considerados agentes biológicos naturales que controlan las poblaciones de bacterias existentes en casi todos los ecosistemas del planeta, estos han sido estudiados por su potencial bactericida como alternativa antimicrobiana para combatir la resistencia bacteriana a los antibióticos en humanos y en el sector agropecuario, ya que esta es cada vez más elevada en los países de altos ingresos como los de bajos ingresos. Los rangos de resistencia a los antibióticos más utilizados estudiado en 22 países por la OMS van desde 0% al 82%, en el caso de las penicilinas el rango de resistencia oscila 0 a 51% y en la ciprofloxacina de 8 a 65%. El uso de la fagoterapia apunta a ser una de las alternativas más viables para el control de agentes bacterianos resistentes a antibióticos alcanzando una efectividad al tratamiento hasta de un 75% y que puede llegar 100% en comparación con otras alternativas. En el ámbito de las ciencias veterinarias los fagos estudiados han demostrado ser efectivos en las industrias avícola, acuícola y ganadera.spa
dc.description.tableofcontents1. INTRODUCCIÓN.................................................................................... 8spa
dc.description.tableofcontents2. JUSTIFICACIÓN .................................................................................... 9spa
dc.description.tableofcontents3. METODOLOGÍA................................................................................... 10spa
dc.description.tableofcontents4. OBJETIVOS ......................................................................................... 11spa
dc.description.tableofcontents4.1 GENERAL ..................................................................................................... 11spa
dc.description.tableofcontents4.2 ESPECÍFICOS ................................................................................................ 11spa
dc.description.tableofcontents5. ESTADO DEL ARTE............................................................................ 12spa
dc.description.tableofcontents5.1TAXONOMÍA DE LOS BACTERIÓFAGOS............................................................... 12spa
dc.description.tableofcontents5.2 ESTRUCTURA DE LOS BACTERIÓFAGOS ........................................................... 12spa
dc.description.tableofcontents5.3 ULTRAESTRUCTURA DE LOS FAGOS................................................................. 13spa
dc.description.tableofcontents5.4 CICLOS DE REPLICACIÓN FÁGICA..................................................................... 14spa
dc.description.tableofcontents5.4.1 Ciclo lítico........................................................................................... 14spa
dc.description.tableofcontents5.4.2 Ciclo Lisogénico ................................................................................. 17spa
dc.description.tableofcontents5.4.3 Ciclo pseudolisogénico....................................................................... 18spa
dc.description.tableofcontents5.4.4 Ciclo de infección crónica................................................................... 18spa
dc.description.tableofcontents6. LA FAGOTERAPIA ................................................................................ 19spa
dc.description.tableofcontents6.1 VENTAJAS DE LA FAGOTERAPIA....................................................................... 21spa
dc.description.tableofcontents6.2 DESVENTAJAS DE LA FAGOTERAPIA ................................................................. 22spa
dc.description.tableofcontents6.3 LA FAGOTERAPIA EN MEDICINA VETERINARIA Y PRODUCCIÓN ANIMAL................... 22spa
dc.description.tableofcontents6.3.1 Avicultura ........................................................................................... 23spa
dc.description.tableofcontents6.3.2 Producción Bovina ............................................................................. 24spa
dc.description.tableofcontents6.3.3 Acuicultura ......................................................................................... 25spa
dc.description.tableofcontents6.3.4 Porcicultura ........................................................................................ 26spa
dc.description.tableofcontents6.3.5 Estudios en otras especies Equino, Caninos y Conejos ..................... 26spa
dc.description.tableofcontents6.3.6 Los bacteriófagos y el tratamiento del COVID 19. .............................. 27spa
dc.description.tableofcontents7. CONCLUSIÓN...................................................................................... 29spa
dc.description.tableofcontents8. BIBLIOGRAFÍA.................................................................................... 30spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleBacteriófagos como alternativa antimicrobiana y su aplicación en la medicina veterinaria y zootecnia.spa
dc.typeTrabajo de grado - Pregradospa
dcterms.references1. Segundo N, Hernández B, Lopez O, Torres O. Los bacteriófagos como una alternativa en el tratamiento de enfermedades infecciosas Bacterianas ( Fagoterapia ). Rev Mex Ciencias Farm. 2010;41(3).spa
dcterms.references2. Ramirez B. Tesis Doctoral Aislamiento, caracterización y estudios de actividad de bacteriófagos líticos sobre enterococcus spp. En modelos in vivo e in vitro. Fac Cenciencias Exactas, Univ Nac la Plata. 2016;spa
dcterms.references3. Lopardo H. Fagoterapia: la multirresistencia nos obliga a revisar el pasado. Rev Argent microbiol. 2017;49(1):1–2.spa
dcterms.references4. Sprenger M, Pessoa-Silva C. Datos recientes revelan los altos niveles de resistencia a los antibioticos en todo el mundo [Internet]. Organizacion mundial de la salud. 2018. Available from: https://www.who.int/mediacentre/news/relaases/2018/antibiotic-resistancefound/es/spa
dcterms.references5. Cordeiro M, Uber A, De Souza L, Helbel C. Fagoterapia : Uma alternativa simples e barata para o tratamento de infecções bacterianas resistentes á antibioticoterapia. Rev UNINGÁ Rev. 2016;26(2):31–4.spa
dcterms.references6. Sybesma W, Zbinden R, Chanishvili N, Kutateladze M, Chkhotua A, Ujmajuridze A, et al. Bacteriophages as potential treatment for urinary tract infections. Front Microbiol. 2016;7(465).spa
dcterms.references7. Prada-Peñarada C, Holguín-Moreno A, González-Barrio A, Vives-Flórez M. Fagoterapia, alternativa para el control de las infecciones bacterianas. Perspectivas en Colombia. Univ Sci. 2015;20(1):43–59.spa
dcterms.references8. Jiménez M, Galas M, Corso A, Hormazábal J, Duarte C, Salgado N, et al. Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes. Revi Panam Salud Pública. 2019;43.spa
dcterms.references9. Rocha C, Reynolds N, Simons M. Resistencia emergente a los antibioticos: Una amenaza global y un problema critico en el cuidado de la salud. REV PERU MED EXP SALUD PUBLICA. 2015;32(1):139–45.spa
dcterms.references10. Adriaenssens E, Sullivan M, Knezevic P, Van Zyl L, Sarkar B, Dutilh B, et al. Toxonomy of prokaryotic viruses: 2018-2018 update from the ICTV bacterial and archaeal viruses subcommittee. Arch Virol. 2020;(165):1253–60.spa
dcterms.references11. Salmond GPC, Fineran PC. A century of the phage: Past, present and future. Nat Rev Microbiol [Internet]. 2015;13(12):777–86. Available from: http://dx.doi.org/10.1038/nrmicro3564spa
dcterms.references12. Flores G. Tesis Pregrado Caracterización de bacteriófagos líticos de Salmonella enterica aislados de muestras de pollos. Fac Ciencias Biológicas, Univ Nac Mayor San Marcos. 2017;spa
dcterms.references13. No Title. Available from: https://talk.ictvonline.org/taxonomy/spa
dcterms.references14. Aties L, Duret Y, Tabares M, Fernández S. Los enzibióticos como alternativa terapéutica contra las enfermedades bacterianas. Medisan. 2017;21(10):3077–83.spa
dcterms.references15. Martínez M. Bacteriófagos en lugar de antibióticos. Milen Cienc y arte. 2018;(13).spa
dcterms.references16. Castaño J. Bacteriófagos : aspectos generales y aplicaciones clínicas. Hechos Microbiol. 2015;6(1–2):36–51.spa
dcterms.references17. Portela-díaz D. Importancia de la interacción de bacteriófagos y bacterias ruminales en el desarrollo productivo del rumiante. Rev Ciencias Agropecu. 2019;4(2):41–5.spa
dcterms.references18. Fernández P. Los bacteriófagos como elementos de transmisión genética horizontal de resistencias a antibióticos y toxinas Stx. Tesis Dr Univ Barcelona. 2018;spa
dcterms.references19. Lopez D. Tesis Pregrado “Bacteriofagos como alternativa para eliminar cepas de Acinetobacter baumanni resiatente a antibioticos presentes en tres hospitales del Ecuador.” Fac Ciencias Ambient Univ Int Sek. 2015;spa
dcterms.references20. Patel S, Kumar A, Chandra V, Reddy M, Nath G. Bacteriophage therapy--Looking back in to the future. Battle Against Microb Pathog Basic Sci Technol Adv Educ Programs ( A MendezVilas, Ed). 2015;284–94.spa
dcterms.references21. Kakasis A, Panitsa G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. Int J Antimicrob Agents. 2019;53:16–21.spa
dcterms.references22. Segundo-Arizmendi N, Gómez-Garcia J, Flores-Cuevas K, Duque-Montaño B, López-Villegas E, Baltarzar-Hernández E, et al. Caracterización parcial del bacteriófago S 1 , lítico contra Salmonella enterica , con posible uso farmacéutico. Rev Mex Ciencias Farm. 2017;48(2).spa
dcterms.references23. Borrego J. ¿ Se comunican los virus ? Fac Ciencias, Univ málaga. 2019;XII(168):7–8.spa
dcterms.references24. Alegre A. Aislamiento y caracterización de un bacteriófago lítico de Listeria monocytogenes. Fac Ciencias Biológicas, Univ Nac Mayor San Marcos. 2019;spa
dcterms.references25. Morales G. Caracterizacion molecular de Salmonella enterica mediante electroforesis en gel de campos pulsados ( PFGS) y su aplicacion para el aislamiento de bacteriófagos espeficos. Fac Med Vet y Zootec , Univerdad mMchoacana San Nicolás Hidalgo. 2017;spa
dcterms.references26. Penadés J, Chen J, Quiles-Puchalt N, Carpena N, Novick R. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol. 2015;23:171–8.spa
dcterms.references27. Gandon S. Why Be Temperate : Lessons from Bacteriophage. Trends Microbiol [Internet]. 2016;10. Available from: http://dx.doi.org/10.1016/j.tim.2016.02.008spa
dcterms.references28. Imamovic L, Ballesté E, Martínez-Castillo A, García-Aljaro C, Muniesa M. Heterogeneity in phage induction enables the survival of the lysogenic population. Environ Microbiol. 2016;18(3):957–69.spa
dcterms.references29. Harrison E, Brockhurst M. Ecological and evolutionary benefits of temperate phage : What does or doesn ’ t kill you makes you stronger. BioEssays. 2017;spa
dcterms.references30. Fraleon J. Caracterizacao molecular de um virus com genoma de ADN que infecta Ralstonia solanacearum e caracterizacao de proteina H-NS e sua funcao na regulacao do sistema crispr-cas. Univerdade Fed Vicosa. 2017;spa
dcterms.references31. Oliveira E. Terapia Fágica : Passado, Presente e Futuro. Fac Ciencias da Saude, Univerdade Fernando Pessoa. 2012;spa
dcterms.references32. Cardoso J. Multirresistencia bacteriana- uma “nova” terapeutica: Bacteriófagos. Univ da Beira Inter. 2015;spa
dcterms.references33. Cooper I. A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption. J Microbiol Methods [Internet]. 2016;130:38–47. Available from: http://dx.doi.org/10.1016/j.mimet.2016.07.027spa
dcterms.references34. Reina J, Reina N. Fagoterapia ¿ una alternativa a la antibiticoterapia? Rev Esp Quim. 2018;31(2):101–4.spa
dcterms.references35. Huh H, Wong S, Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: Therapuetic applications. Adv Drug Deliv Rev. 2019;(145):4–17.spa
dcterms.references36. Cisek A, Dąbrowska I, Gregorczyk K, Wyżewski Z. Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages. Curr Microbiol. 2017;74:277–83.spa
dcterms.references37. Abedon S, García P, Mullany P, Aminov R. Editorial : Phage Therapy : Past , Present and Future. Front Microbiol. 2017;8:1–7.spa
dcterms.references38. Buttimer C, McAuliffe O, Ross R, Hill C, O’Mahony J, Coffey A. Bacteriophages and Bacterial Plant Diseases. Front Microbiol. 2017;spa
dcterms.references39. Górski A, Miedzybrodzki R, Weber-Dabrowska B, Fortuna W, Letkiewicz S, Rogóz P, et al. Phage therapy: Combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol. 2016;1515.spa
dcterms.references40. Criscuolo E, Spadini S, Lamanna J, Ferro M, Burioni R. Bacteriophages and Their Immunological Applications against Infectious Threats. J Immunol Res. 2017;spa
dcterms.references41. FSIS Directives [Internet]. 2020. Available from: http://www.fsis.usda.gov/wps/portal/fsis/topics/regulations/directives/fsis-directivesspa
dcterms.references42. Doffkay Z, Dömötör D, Kovács T, Rákhely G. Bacteriophage therapy against plant, animal and human pathogens. Acta Biol Szeged. 2015;59:291–302.spa
dcterms.references43. Dufour N, Debarbieux L. La phagothérapie. Médecine/Sciences. 2017;33:410–6.spa
dcterms.references44. Hernández M, Reyes R. Caracterización de un cóctel de bacteriófagos capaces de rescatar de la muerte a ratones infectados con klebsiella pneumoniae. Jovenes en la Cienc. 2016;2(1):450–4.spa
dcterms.references45. Subirats J, Sànchez-Melsió A, Borrego C, Balcázar J, Simonet P. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes. Int J Antimicrob Agents [Internet]. 2016; Available from: http://dx.doi.org/10.1016/j.ijantimicag.2016.04.028spa
dcterms.references46. Hodgson K. Bacteriophage therapy. Microbiol Aust. 2013;spa
dcterms.references47. Jorquera D, Galarce N, Borie C. El desafío de controlar las enfermedades transmitidas por alimentos: bacteriófagos como una nueva herramienta biotecnológica. Rev Chil Infectol. 33 2015;32(6):678–88.spa
dcterms.references48. Hodgson K. Bacteriophage therapy. Microbiol Aust. 2013;spa
dcterms.references49. Yang Y, Xie X, Tang M, Liu J, Tuo H, Gu J, et al. Exploriring the profile of antimicrobial resistance ganes harboring by bacteriophage in chicken faces. Sci Total Environ. 2020;spa
dcterms.references50. Wernicki A, Nowaczek A, Urban-chmiel R. Bacteriophage therapy to combat bacterial infections in poultry. Virol J. 2017;14:179.spa
dcterms.references51. Ortiz X, Barrios B. Evaluación de diferentes vías de administración de un fago lítico en gallinas comerciales infectadas experimentalmente con salmonella gallinarum. Univ Nac Luján. 2017;spa
dcterms.references52. Nabil N, Tawakol M, Hassan H. Assessing the impact of bacteriophages in the treatment of Salmonella in broiler chickens. Infect Ecol Epidemiol [Internet]. 2018; Available from: https://doi.org/10.1080/20008686.2018.1539056spa
dcterms.references53. Tawakol M, Nabil N, Samy A. Evaluation of bacteriophage efficacy in reducing the impact of single and mixed infections with Escherichia coli and infectious bronchitis in chickens. Infect Ecol Epidemiol [Internet]. 2019;9. Available from: https://doi.org/10.1080/20008686.2019.1686822spa
dcterms.references54. Luiz C, Voss-Rech D, Alves L, Coldebella A, Brentano L, Trevisol I. Effect of time of therapy with wild-type lype lytic bacteriophages on the raduction of salmonella enteritidis in broiler chinckens. Vererinary Microbiol. 2020;spa
dcterms.references55. Naveen R, Bhima B, Uday P, Ghosh S. Bio-control of Salmonella spp. in carrot salad and raw chicken skin usang lytic bacterophages. El Sevier. 2020;122:2–8.spa
dcterms.references56. Hee S, Waite-Causic J, Huang E. Control of Salmonella in Chicken meat using a combination of a commercial bacteriophage and plant-based essential oils. Food Control. 2020;spa
dcterms.references57. Gomes F, Henriques M. Control of bovine mastitis : old and recent therapeutic approaches. Curr Microbiol. 2016;72:377–82.spa
dcterms.references58. Sankar P. New therapeutic strategies to control and treatment of bovine mastitis. Vet Med Open J. 2016;spa
dcterms.references59. Basdew IH, Laing MD. Investigation of the lytic ability of South African bacteriophages specific for Staphylococcus aureus, associated with bovine mastitis. Biocontrol Sci Technol. 2015;25(4):429–43.spa
dcterms.references60. Glazunov E. Studyng of preventive effectiveness of bacteriophages preparation at endometritis of cows in the conditions of lactic and commodity farm. RJOAS. 2016;5(53).spa
dcterms.references61. Vander N, Meyer E. Potential therapeutic application of bacteriophages and phage-derived endolysins as alternative treatment of bovine mastitis. Fac Vet Med Ghent Univ. 2018;spa
dcterms.references62. Noguda T. Isolation and characterization of lytic bacteriophages , a potential alternative for bovine mastitis control. Univ Free State. 2018;spa
dcterms.references63. Porter J, Anderson J, Carter L, Donjacour E, Paros M. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J Dairy Sci [Internet]. 34 2016;99(3). Available from: http://dx.doi.org/10.3168/jds.2015-9748spa
dcterms.references64. Titze I, Lehnherr T, Lehnherr H, Krömker V. Efficacy of bacteriophages against Staphylococcus aureus isolates from bovine mastitis. Pharmaceuticals. 2020;13(35).spa
dcterms.references65. Kalatzis P, Castillo D, Katharios P, Middelboe M. Bacteriophage interactions with marine pathogenic vibrios : Implications for phage therapy. Antibiotiocs. 2018;7(15).spa
dcterms.references66. Le S, Kurtboke I. Bacteriophages as biocontrol agents in aquaculture. Microbiol Aust. 2019;37–41.spa
dcterms.references67. Kalatzis P, Bastías R, Kokkari C, Katharios P. Isolation and Characterization of Two Lytic Bacteriophages , φ St2 and φ Grn1 ; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds. PLoS One. 2016;spa
dcterms.references68. Huang K, Nitin N. Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture [Internet]. 2019;502:18–25. Available from: https://doi.org/10.1016/j.aquaculture.2018.12.026spa
dcterms.references69. Akmal M, Rahimi-Midani A, Hafeez-Ur-rehman M, Hussain A, Choi T. Isolation, characterization, and application of a bacteriophage infecting the fish pathogen aeromonas hydrophila. Pathogens. 2020;9(3):215.spa
dcterms.references70. Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Cunha Â, et al. Bacteriophages with potential to inactivate Salmonella Typhimurium: Use of single phage suspensions and phage cocktails. Virus Res [Internet]. 2016;220:179–92. Available from: http://dx.doi.org/10.1016/j.virusres.2016.04.020spa
dcterms.references71. Verstappen K, Tulinski P, Duim B, Fluit A, Carney J, Van Nes A, et al. The effectiveness of bacteriophages against methicillin-resistant Staphylococcus aureus ST398 nasal colonization in pigs. PLoS One. 2016;11(8):1–10.spa
dcterms.references72. Hosseindoust A, Lee S, Kim J, Choi Y, Noh H, Lee J, et al. Dietary bacteriophages as an alternative for zinc oxide or organic acids to control diarrhoea and improve the performance of weanling piglets. Vet Med (Praha). 2017;62(02):53–61.spa
dcterms.references73. Skaradzińska A, Śliwka P, Kuźmińska-Bajor M, Skaradziński G, Rzasa A, Friese A, et al. The efficacy of isolated bacteriophages from pig farms against ESBL/AmpC-producing Escherichia coli from pig and Turkey farms. Front Microbiol. 2017;8(530):1–7.spa
dcterms.references74. Seo B, Song E, Lee K, Kim J, Jeong C, Moon S, et al. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium. J Vet Med Sci. 2018;80(6):851–60.spa
dcterms.references75. Agarwal R, Priyadarshini A, Kumar S, Anjay D. Therapeutic Efficacy of Lytic Bacteriophage PSAE-1 against Salmonella Abortusequi in Guinea Pig Model Therapeutic Efficacy of Lytic Bacteriophage PSAE-1 against Salmonella Abortusequi in Guinea Pig Model. 2015;(November):1–8.spa
dcterms.references76. Furusawa T, Iwano H, Higuchi H, Yokota H, Usui M, Tamura Y. Bacteriolysis Activity of Bacteriophages. J Vet Med Sci. 2016;spa
dcterms.references77. Furusawa T, Iwano H, Hiyashimizu Y, Matsubara K, Higuchi H, Nagahata H, et al. Phage 35 therapy is effective in a mouse model of bacterial equine keratitis. Am Soc Microbiol. 2016;82(17).spa
dcterms.references78. Soffer N, Abuladze T, Woolston J, Li M, Hanna L, Heyse S, et al. Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients. Bacteriophage [Internet]. 2016;6(3). Available from: https://doi.org/10.1080/21597081.2016.1220347spa
dcterms.references79. Zhao J, Liu Y, Xiao C, He S, Yao H, Bao G. Efficacy of phage therapy in controlling rabbit colibacillosis and Changes in cecal microbiota. Front Microbiol. 2017;spa
dcterms.references80. Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, Gorski A. Bacterial viruses against viruses pathogenic for man? Virus Res. 2005;110(1–2):1–8.spa
dcterms.references81. Mishra V, Kumari N, Pathak A, Chaturvedi R, Gupta A, Chaurasia R. Possible Role for Bacteriophages in the Treatment of SARS-CoV-2 Infection. Int J Microbiol. 2020;2–6.spa
dcterms.references82. Górski A, Dąbrowska K, Miȩdzybrodzki R, Weber-Dąbrowska B, Łusiak-Szelachowska M, Jończyk-Matysiak E, et al. Phages and immunomodulation. Future Microbiol. 2017;12(10):905–14.spa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalFagoterapiaspa
dc.subject.proposalResistencia bacterianaspa
dc.subject.proposalProducción animalspa
dc.subject.proposalSector agropecuariospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dc.subject.keywordsPhage therapyeng
dc.subject.keywordsBacterial resistanceeng
dc.subject.keywordsAnimal productioneng
dc.subject.keywordsAgricultural sectoreng
dc.description.degreelevelPregradospa
dc.description.degreenameMédico(a) Veterinario(a) y Zootecniaspa
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecniaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMedicina Veterinaria y Zootecniaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.description.modalityMonografíasspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2020
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2020