Publicación: Bacteriófagos como alternativa antimicrobiana y su aplicación en la medicina veterinaria y zootecnia.
dc.contributor.advisor | Tique Salleg, Vaneza | |
dc.contributor.advisor | Soto López, Maryoris | |
dc.contributor.author | Barriosnuevo Pérez, Kevin Alberto | |
dc.date.accessioned | 2021-01-19T15:45:16Z | |
dc.date.available | 2021-01-19T15:45:16Z | |
dc.date.issued | 2020-12-14 | |
dc.description.abstract | Los bacteriófagos son considerados agentes biológicos naturales que controlan las poblaciones de bacterias existentes en casi todos los ecosistemas del planeta, estos han sido estudiados por su potencial bactericida como alternativa antimicrobiana para combatir la resistencia bacteriana a los antibióticos en humanos y en el sector agropecuario, ya que esta es cada vez más elevada en los países de altos ingresos como los de bajos ingresos. Los rangos de resistencia a los antibióticos más utilizados estudiado en 22 países por la OMS van desde 0% al 82%, en el caso de las penicilinas el rango de resistencia oscila 0 a 51% y en la ciprofloxacina de 8 a 65%. El uso de la fagoterapia apunta a ser una de las alternativas más viables para el control de agentes bacterianos resistentes a antibióticos alcanzando una efectividad al tratamiento hasta de un 75% y que puede llegar 100% en comparación con otras alternativas. En el ámbito de las ciencias veterinarias los fagos estudiados han demostrado ser efectivos en las industrias avícola, acuícola y ganadera. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Médico(a) Veterinario(a) y Zootecnia | spa |
dc.description.modality | Monografías | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN.................................................................................... 8 | spa |
dc.description.tableofcontents | 2. JUSTIFICACIÓN .................................................................................... 9 | spa |
dc.description.tableofcontents | 3. METODOLOGÍA................................................................................... 10 | spa |
dc.description.tableofcontents | 4. OBJETIVOS ......................................................................................... 11 | spa |
dc.description.tableofcontents | 4.1 GENERAL ..................................................................................................... 11 | spa |
dc.description.tableofcontents | 4.2 ESPECÍFICOS ................................................................................................ 11 | spa |
dc.description.tableofcontents | 5. ESTADO DEL ARTE............................................................................ 12 | spa |
dc.description.tableofcontents | 5.1TAXONOMÍA DE LOS BACTERIÓFAGOS............................................................... 12 | spa |
dc.description.tableofcontents | 5.2 ESTRUCTURA DE LOS BACTERIÓFAGOS ........................................................... 12 | spa |
dc.description.tableofcontents | 5.3 ULTRAESTRUCTURA DE LOS FAGOS................................................................. 13 | spa |
dc.description.tableofcontents | 5.4 CICLOS DE REPLICACIÓN FÁGICA..................................................................... 14 | spa |
dc.description.tableofcontents | 5.4.1 Ciclo lítico........................................................................................... 14 | spa |
dc.description.tableofcontents | 5.4.2 Ciclo Lisogénico ................................................................................. 17 | spa |
dc.description.tableofcontents | 5.4.3 Ciclo pseudolisogénico....................................................................... 18 | spa |
dc.description.tableofcontents | 5.4.4 Ciclo de infección crónica................................................................... 18 | spa |
dc.description.tableofcontents | 6. LA FAGOTERAPIA ................................................................................ 19 | spa |
dc.description.tableofcontents | 6.1 VENTAJAS DE LA FAGOTERAPIA....................................................................... 21 | spa |
dc.description.tableofcontents | 6.2 DESVENTAJAS DE LA FAGOTERAPIA ................................................................. 22 | spa |
dc.description.tableofcontents | 6.3 LA FAGOTERAPIA EN MEDICINA VETERINARIA Y PRODUCCIÓN ANIMAL................... 22 | spa |
dc.description.tableofcontents | 6.3.1 Avicultura ........................................................................................... 23 | spa |
dc.description.tableofcontents | 6.3.2 Producción Bovina ............................................................................. 24 | spa |
dc.description.tableofcontents | 6.3.3 Acuicultura ......................................................................................... 25 | spa |
dc.description.tableofcontents | 6.3.4 Porcicultura ........................................................................................ 26 | spa |
dc.description.tableofcontents | 6.3.5 Estudios en otras especies Equino, Caninos y Conejos ..................... 26 | spa |
dc.description.tableofcontents | 6.3.6 Los bacteriófagos y el tratamiento del COVID 19. .............................. 27 | spa |
dc.description.tableofcontents | 7. CONCLUSIÓN...................................................................................... 29 | spa |
dc.description.tableofcontents | 8. BIBLIOGRAFÍA.................................................................................... 30 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/3879 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Medicina Veterinaria y Zootecnia | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Medicina Veterinaria y Zootecnia | spa |
dc.rights | Copyright Universidad de Córdoba, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Phage therapy | eng |
dc.subject.keywords | Bacterial resistance | eng |
dc.subject.keywords | Animal production | eng |
dc.subject.keywords | Agricultural sector | eng |
dc.subject.proposal | Fagoterapia | spa |
dc.subject.proposal | Resistencia bacteriana | spa |
dc.subject.proposal | Producción animal | spa |
dc.subject.proposal | Sector agropecuario | spa |
dc.title | Bacteriófagos como alternativa antimicrobiana y su aplicación en la medicina veterinaria y zootecnia. | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | 1. Segundo N, Hernández B, Lopez O, Torres O. Los bacteriófagos como una alternativa en el tratamiento de enfermedades infecciosas Bacterianas ( Fagoterapia ). Rev Mex Ciencias Farm. 2010;41(3). | spa |
dcterms.references | 2. Ramirez B. Tesis Doctoral Aislamiento, caracterización y estudios de actividad de bacteriófagos líticos sobre enterococcus spp. En modelos in vivo e in vitro. Fac Cenciencias Exactas, Univ Nac la Plata. 2016; | spa |
dcterms.references | 3. Lopardo H. Fagoterapia: la multirresistencia nos obliga a revisar el pasado. Rev Argent microbiol. 2017;49(1):1–2. | spa |
dcterms.references | 4. Sprenger M, Pessoa-Silva C. Datos recientes revelan los altos niveles de resistencia a los antibioticos en todo el mundo [Internet]. Organizacion mundial de la salud. 2018. Available from: https://www.who.int/mediacentre/news/relaases/2018/antibiotic-resistancefound/es/ | spa |
dcterms.references | 5. Cordeiro M, Uber A, De Souza L, Helbel C. Fagoterapia : Uma alternativa simples e barata para o tratamento de infecções bacterianas resistentes á antibioticoterapia. Rev UNINGÁ Rev. 2016;26(2):31–4. | spa |
dcterms.references | 6. Sybesma W, Zbinden R, Chanishvili N, Kutateladze M, Chkhotua A, Ujmajuridze A, et al. Bacteriophages as potential treatment for urinary tract infections. Front Microbiol. 2016;7(465). | spa |
dcterms.references | 7. Prada-Peñarada C, Holguín-Moreno A, González-Barrio A, Vives-Flórez M. Fagoterapia, alternativa para el control de las infecciones bacterianas. Perspectivas en Colombia. Univ Sci. 2015;20(1):43–59. | spa |
dcterms.references | 8. Jiménez M, Galas M, Corso A, Hormazábal J, Duarte C, Salgado N, et al. Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes. Revi Panam Salud Pública. 2019;43. | spa |
dcterms.references | 9. Rocha C, Reynolds N, Simons M. Resistencia emergente a los antibioticos: Una amenaza global y un problema critico en el cuidado de la salud. REV PERU MED EXP SALUD PUBLICA. 2015;32(1):139–45. | spa |
dcterms.references | 10. Adriaenssens E, Sullivan M, Knezevic P, Van Zyl L, Sarkar B, Dutilh B, et al. Toxonomy of prokaryotic viruses: 2018-2018 update from the ICTV bacterial and archaeal viruses subcommittee. Arch Virol. 2020;(165):1253–60. | spa |
dcterms.references | 11. Salmond GPC, Fineran PC. A century of the phage: Past, present and future. Nat Rev Microbiol [Internet]. 2015;13(12):777–86. Available from: http://dx.doi.org/10.1038/nrmicro3564 | spa |
dcterms.references | 12. Flores G. Tesis Pregrado Caracterización de bacteriófagos líticos de Salmonella enterica aislados de muestras de pollos. Fac Ciencias Biológicas, Univ Nac Mayor San Marcos. 2017; | spa |
dcterms.references | 13. No Title. Available from: https://talk.ictvonline.org/taxonomy/ | spa |
dcterms.references | 14. Aties L, Duret Y, Tabares M, Fernández S. Los enzibióticos como alternativa terapéutica contra las enfermedades bacterianas. Medisan. 2017;21(10):3077–83. | spa |
dcterms.references | 15. Martínez M. Bacteriófagos en lugar de antibióticos. Milen Cienc y arte. 2018;(13). | spa |
dcterms.references | 16. Castaño J. Bacteriófagos : aspectos generales y aplicaciones clínicas. Hechos Microbiol. 2015;6(1–2):36–51. | spa |
dcterms.references | 17. Portela-díaz D. Importancia de la interacción de bacteriófagos y bacterias ruminales en el desarrollo productivo del rumiante. Rev Ciencias Agropecu. 2019;4(2):41–5. | spa |
dcterms.references | 18. Fernández P. Los bacteriófagos como elementos de transmisión genética horizontal de resistencias a antibióticos y toxinas Stx. Tesis Dr Univ Barcelona. 2018; | spa |
dcterms.references | 19. Lopez D. Tesis Pregrado “Bacteriofagos como alternativa para eliminar cepas de Acinetobacter baumanni resiatente a antibioticos presentes en tres hospitales del Ecuador.” Fac Ciencias Ambient Univ Int Sek. 2015; | spa |
dcterms.references | 20. Patel S, Kumar A, Chandra V, Reddy M, Nath G. Bacteriophage therapy--Looking back in to the future. Battle Against Microb Pathog Basic Sci Technol Adv Educ Programs ( A MendezVilas, Ed). 2015;284–94. | spa |
dcterms.references | 21. Kakasis A, Panitsa G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. Int J Antimicrob Agents. 2019;53:16–21. | spa |
dcterms.references | 22. Segundo-Arizmendi N, Gómez-Garcia J, Flores-Cuevas K, Duque-Montaño B, López-Villegas E, Baltarzar-Hernández E, et al. Caracterización parcial del bacteriófago S 1 , lítico contra Salmonella enterica , con posible uso farmacéutico. Rev Mex Ciencias Farm. 2017;48(2). | spa |
dcterms.references | 23. Borrego J. ¿ Se comunican los virus ? Fac Ciencias, Univ málaga. 2019;XII(168):7–8. | spa |
dcterms.references | 24. Alegre A. Aislamiento y caracterización de un bacteriófago lítico de Listeria monocytogenes. Fac Ciencias Biológicas, Univ Nac Mayor San Marcos. 2019; | spa |
dcterms.references | 25. Morales G. Caracterizacion molecular de Salmonella enterica mediante electroforesis en gel de campos pulsados ( PFGS) y su aplicacion para el aislamiento de bacteriófagos espeficos. Fac Med Vet y Zootec , Univerdad mMchoacana San Nicolás Hidalgo. 2017; | spa |
dcterms.references | 26. Penadés J, Chen J, Quiles-Puchalt N, Carpena N, Novick R. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol. 2015;23:171–8. | spa |
dcterms.references | 27. Gandon S. Why Be Temperate : Lessons from Bacteriophage. Trends Microbiol [Internet]. 2016;10. Available from: http://dx.doi.org/10.1016/j.tim.2016.02.008 | spa |
dcterms.references | 28. Imamovic L, Ballesté E, Martínez-Castillo A, García-Aljaro C, Muniesa M. Heterogeneity in phage induction enables the survival of the lysogenic population. Environ Microbiol. 2016;18(3):957–69. | spa |
dcterms.references | 29. Harrison E, Brockhurst M. Ecological and evolutionary benefits of temperate phage : What does or doesn ’ t kill you makes you stronger. BioEssays. 2017; | spa |
dcterms.references | 30. Fraleon J. Caracterizacao molecular de um virus com genoma de ADN que infecta Ralstonia solanacearum e caracterizacao de proteina H-NS e sua funcao na regulacao do sistema crispr-cas. Univerdade Fed Vicosa. 2017; | spa |
dcterms.references | 31. Oliveira E. Terapia Fágica : Passado, Presente e Futuro. Fac Ciencias da Saude, Univerdade Fernando Pessoa. 2012; | spa |
dcterms.references | 32. Cardoso J. Multirresistencia bacteriana- uma “nova” terapeutica: Bacteriófagos. Univ da Beira Inter. 2015; | spa |
dcterms.references | 33. Cooper I. A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption. J Microbiol Methods [Internet]. 2016;130:38–47. Available from: http://dx.doi.org/10.1016/j.mimet.2016.07.027 | spa |
dcterms.references | 34. Reina J, Reina N. Fagoterapia ¿ una alternativa a la antibiticoterapia? Rev Esp Quim. 2018;31(2):101–4. | spa |
dcterms.references | 35. Huh H, Wong S, Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: Therapuetic applications. Adv Drug Deliv Rev. 2019;(145):4–17. | spa |
dcterms.references | 36. Cisek A, Dąbrowska I, Gregorczyk K, Wyżewski Z. Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages. Curr Microbiol. 2017;74:277–83. | spa |
dcterms.references | 37. Abedon S, García P, Mullany P, Aminov R. Editorial : Phage Therapy : Past , Present and Future. Front Microbiol. 2017;8:1–7. | spa |
dcterms.references | 38. Buttimer C, McAuliffe O, Ross R, Hill C, O’Mahony J, Coffey A. Bacteriophages and Bacterial Plant Diseases. Front Microbiol. 2017; | spa |
dcterms.references | 39. Górski A, Miedzybrodzki R, Weber-Dabrowska B, Fortuna W, Letkiewicz S, Rogóz P, et al. Phage therapy: Combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol. 2016;1515. | spa |
dcterms.references | 40. Criscuolo E, Spadini S, Lamanna J, Ferro M, Burioni R. Bacteriophages and Their Immunological Applications against Infectious Threats. J Immunol Res. 2017; | spa |
dcterms.references | 41. FSIS Directives [Internet]. 2020. Available from: http://www.fsis.usda.gov/wps/portal/fsis/topics/regulations/directives/fsis-directives | spa |
dcterms.references | 42. Doffkay Z, Dömötör D, Kovács T, Rákhely G. Bacteriophage therapy against plant, animal and human pathogens. Acta Biol Szeged. 2015;59:291–302. | spa |
dcterms.references | 43. Dufour N, Debarbieux L. La phagothérapie. Médecine/Sciences. 2017;33:410–6. | spa |
dcterms.references | 44. Hernández M, Reyes R. Caracterización de un cóctel de bacteriófagos capaces de rescatar de la muerte a ratones infectados con klebsiella pneumoniae. Jovenes en la Cienc. 2016;2(1):450–4. | spa |
dcterms.references | 45. Subirats J, Sànchez-Melsió A, Borrego C, Balcázar J, Simonet P. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes. Int J Antimicrob Agents [Internet]. 2016; Available from: http://dx.doi.org/10.1016/j.ijantimicag.2016.04.028 | spa |
dcterms.references | 46. Hodgson K. Bacteriophage therapy. Microbiol Aust. 2013; | spa |
dcterms.references | 47. Jorquera D, Galarce N, Borie C. El desafío de controlar las enfermedades transmitidas por alimentos: bacteriófagos como una nueva herramienta biotecnológica. Rev Chil Infectol. 33 2015;32(6):678–88. | spa |
dcterms.references | 48. Hodgson K. Bacteriophage therapy. Microbiol Aust. 2013; | spa |
dcterms.references | 49. Yang Y, Xie X, Tang M, Liu J, Tuo H, Gu J, et al. Exploriring the profile of antimicrobial resistance ganes harboring by bacteriophage in chicken faces. Sci Total Environ. 2020; | spa |
dcterms.references | 50. Wernicki A, Nowaczek A, Urban-chmiel R. Bacteriophage therapy to combat bacterial infections in poultry. Virol J. 2017;14:179. | spa |
dcterms.references | 51. Ortiz X, Barrios B. Evaluación de diferentes vías de administración de un fago lítico en gallinas comerciales infectadas experimentalmente con salmonella gallinarum. Univ Nac Luján. 2017; | spa |
dcterms.references | 52. Nabil N, Tawakol M, Hassan H. Assessing the impact of bacteriophages in the treatment of Salmonella in broiler chickens. Infect Ecol Epidemiol [Internet]. 2018; Available from: https://doi.org/10.1080/20008686.2018.1539056 | spa |
dcterms.references | 53. Tawakol M, Nabil N, Samy A. Evaluation of bacteriophage efficacy in reducing the impact of single and mixed infections with Escherichia coli and infectious bronchitis in chickens. Infect Ecol Epidemiol [Internet]. 2019;9. Available from: https://doi.org/10.1080/20008686.2019.1686822 | spa |
dcterms.references | 54. Luiz C, Voss-Rech D, Alves L, Coldebella A, Brentano L, Trevisol I. Effect of time of therapy with wild-type lype lytic bacteriophages on the raduction of salmonella enteritidis in broiler chinckens. Vererinary Microbiol. 2020; | spa |
dcterms.references | 55. Naveen R, Bhima B, Uday P, Ghosh S. Bio-control of Salmonella spp. in carrot salad and raw chicken skin usang lytic bacterophages. El Sevier. 2020;122:2–8. | spa |
dcterms.references | 56. Hee S, Waite-Causic J, Huang E. Control of Salmonella in Chicken meat using a combination of a commercial bacteriophage and plant-based essential oils. Food Control. 2020; | spa |
dcterms.references | 57. Gomes F, Henriques M. Control of bovine mastitis : old and recent therapeutic approaches. Curr Microbiol. 2016;72:377–82. | spa |
dcterms.references | 58. Sankar P. New therapeutic strategies to control and treatment of bovine mastitis. Vet Med Open J. 2016; | spa |
dcterms.references | 59. Basdew IH, Laing MD. Investigation of the lytic ability of South African bacteriophages specific for Staphylococcus aureus, associated with bovine mastitis. Biocontrol Sci Technol. 2015;25(4):429–43. | spa |
dcterms.references | 60. Glazunov E. Studyng of preventive effectiveness of bacteriophages preparation at endometritis of cows in the conditions of lactic and commodity farm. RJOAS. 2016;5(53). | spa |
dcterms.references | 61. Vander N, Meyer E. Potential therapeutic application of bacteriophages and phage-derived endolysins as alternative treatment of bovine mastitis. Fac Vet Med Ghent Univ. 2018; | spa |
dcterms.references | 62. Noguda T. Isolation and characterization of lytic bacteriophages , a potential alternative for bovine mastitis control. Univ Free State. 2018; | spa |
dcterms.references | 63. Porter J, Anderson J, Carter L, Donjacour E, Paros M. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J Dairy Sci [Internet]. 34 2016;99(3). Available from: http://dx.doi.org/10.3168/jds.2015-9748 | spa |
dcterms.references | 64. Titze I, Lehnherr T, Lehnherr H, Krömker V. Efficacy of bacteriophages against Staphylococcus aureus isolates from bovine mastitis. Pharmaceuticals. 2020;13(35). | spa |
dcterms.references | 65. Kalatzis P, Castillo D, Katharios P, Middelboe M. Bacteriophage interactions with marine pathogenic vibrios : Implications for phage therapy. Antibiotiocs. 2018;7(15). | spa |
dcterms.references | 66. Le S, Kurtboke I. Bacteriophages as biocontrol agents in aquaculture. Microbiol Aust. 2019;37–41. | spa |
dcterms.references | 67. Kalatzis P, Bastías R, Kokkari C, Katharios P. Isolation and Characterization of Two Lytic Bacteriophages , φ St2 and φ Grn1 ; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds. PLoS One. 2016; | spa |
dcterms.references | 68. Huang K, Nitin N. Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture [Internet]. 2019;502:18–25. Available from: https://doi.org/10.1016/j.aquaculture.2018.12.026 | spa |
dcterms.references | 69. Akmal M, Rahimi-Midani A, Hafeez-Ur-rehman M, Hussain A, Choi T. Isolation, characterization, and application of a bacteriophage infecting the fish pathogen aeromonas hydrophila. Pathogens. 2020;9(3):215. | spa |
dcterms.references | 70. Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Cunha Â, et al. Bacteriophages with potential to inactivate Salmonella Typhimurium: Use of single phage suspensions and phage cocktails. Virus Res [Internet]. 2016;220:179–92. Available from: http://dx.doi.org/10.1016/j.virusres.2016.04.020 | spa |
dcterms.references | 71. Verstappen K, Tulinski P, Duim B, Fluit A, Carney J, Van Nes A, et al. The effectiveness of bacteriophages against methicillin-resistant Staphylococcus aureus ST398 nasal colonization in pigs. PLoS One. 2016;11(8):1–10. | spa |
dcterms.references | 72. Hosseindoust A, Lee S, Kim J, Choi Y, Noh H, Lee J, et al. Dietary bacteriophages as an alternative for zinc oxide or organic acids to control diarrhoea and improve the performance of weanling piglets. Vet Med (Praha). 2017;62(02):53–61. | spa |
dcterms.references | 73. Skaradzińska A, Śliwka P, Kuźmińska-Bajor M, Skaradziński G, Rzasa A, Friese A, et al. The efficacy of isolated bacteriophages from pig farms against ESBL/AmpC-producing Escherichia coli from pig and Turkey farms. Front Microbiol. 2017;8(530):1–7. | spa |
dcterms.references | 74. Seo B, Song E, Lee K, Kim J, Jeong C, Moon S, et al. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium. J Vet Med Sci. 2018;80(6):851–60. | spa |
dcterms.references | 75. Agarwal R, Priyadarshini A, Kumar S, Anjay D. Therapeutic Efficacy of Lytic Bacteriophage PSAE-1 against Salmonella Abortusequi in Guinea Pig Model Therapeutic Efficacy of Lytic Bacteriophage PSAE-1 against Salmonella Abortusequi in Guinea Pig Model. 2015;(November):1–8. | spa |
dcterms.references | 76. Furusawa T, Iwano H, Higuchi H, Yokota H, Usui M, Tamura Y. Bacteriolysis Activity of Bacteriophages. J Vet Med Sci. 2016; | spa |
dcterms.references | 77. Furusawa T, Iwano H, Hiyashimizu Y, Matsubara K, Higuchi H, Nagahata H, et al. Phage 35 therapy is effective in a mouse model of bacterial equine keratitis. Am Soc Microbiol. 2016;82(17). | spa |
dcterms.references | 78. Soffer N, Abuladze T, Woolston J, Li M, Hanna L, Heyse S, et al. Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients. Bacteriophage [Internet]. 2016;6(3). Available from: https://doi.org/10.1080/21597081.2016.1220347 | spa |
dcterms.references | 79. Zhao J, Liu Y, Xiao C, He S, Yao H, Bao G. Efficacy of phage therapy in controlling rabbit colibacillosis and Changes in cecal microbiota. Front Microbiol. 2017; | spa |
dcterms.references | 80. Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, Gorski A. Bacterial viruses against viruses pathogenic for man? Virus Res. 2005;110(1–2):1–8. | spa |
dcterms.references | 81. Mishra V, Kumari N, Pathak A, Chaturvedi R, Gupta A, Chaurasia R. Possible Role for Bacteriophages in the Treatment of SARS-CoV-2 Infection. Int J Microbiol. 2020;2–6. | spa |
dcterms.references | 82. Górski A, Dąbrowska K, Miȩdzybrodzki R, Weber-Dąbrowska B, Łusiak-Szelachowska M, Jończyk-Matysiak E, et al. Phages and immunomodulation. Future Microbiol. 2017;12(10):905–14. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: