Show simple item record

dc.contributor.advisorOrtega López, Cesarspa
dc.contributor.advisorMurillo García, Jean Fredspa
dc.contributor.authorHumánez Tobar, Ángelspa
dc.coverage.spatialMontería, Córdobaspa
dc.date.accessioned2020-10-20T21:28:51Zspa
dc.date.available2020-10-20T21:28:51Zspa
dc.date.issued2020-06-21spa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3454spa
dc.description.abstractSe estudian las propiedades estructurales, electrónicas y la estabilidad energética de los dióxidos VO2, CrO2, MoO2 y WO2 en la fase estructural 2H en volumen y de las monocapas ternarias basadas en dióxidos de metales de transición MTxV1-xO2 (con MT=Cr, Mo y W; x= 0, 0.25, 0.50, 0.75 y 1) en estructura H, mediante la Teoría del Funcional de la Densidad (Density Functional Theory: DFT) usando pseudopotenciales ultrasuaves y una base de ondas planas como se implementa en el paquete Quantum-ESPRESSO. Para la interacción electrón-electrón se usó la aproximación de Gradiente Generalizado (GGA) de Perdew-Burke-Ernzerhof (PBE). Se determina, que tanto los sistemas volumétricos como las aleaciones bidimensionales son energéticamente estables, siendo los volumétricos más estables que sus monocapas correspondientes, como era de esperarse. A través de la densidad de estados y el diagrama de bandas electrónicas, se establece que: a) la monocapa original o pura (prístina) VO2 es metálica y magnética, mientras que las monocapas originales CrO2, MoO2 y WO2 son semiconductoras y no magnéticas; b) Las aleaciones Mo0.25V0.75O2 y W0.25V0.75O2 son metálicas y magnéticas, mientras que la aleación Cr0.25V0.75O2 es semimetálico (half-metallic) y magnética. Esta magnetización débil, con valores de 0.08µB/átomo, 0.03 µB/átomo, y 0.09 µB/átomo para el Cr0.25V0.75O2, el Mo0.25V0.75O2 y el W0.25V0.75O2 respectivamente, se debe principalmente a la hibridación de los orbitales p-O y d-V (o más preciso, a la interacción de intercambio entre los momentos magnéticos atómicos vecinos para alinearse paralelamente entre sí: ferromagnetismo) en las aleaciones precitadas, respectivamente. Las aleaciones con concentraciones x=0.50 y 0.75 muestran magnetización nula, debido a la compensación de los orbitales arriba (up) y abajo (down) para condiciones ricas en Cr, Mo, W y moderadas en V. El comportamiento metálico de las aleaciones, es causado, principalmente, por los orbitales p del Oxígeno (p-O), y por el orbital d del vanadio, cromo, molibdeno y tungsteno, es decir, d-V, d-Cr, d-Mo y d-W, en cada aleación respectiva.spa
dc.description.tableofcontentsResumen ...............................................................................................................................................9spa
dc.description.tableofcontents1. Introducción ...............................................................................................................................10spa
dc.description.tableofcontents2. Antecedentes ..............................................................................................................................11spa
dc.description.tableofcontents3. Justificación ...............................................................................................................................13spa
dc.description.tableofcontents4. Planteamiento del problema .......................................................................................................15spa
dc.description.tableofcontents5. Objetivos ....................................................................................................................................16spa
dc.description.tableofcontents5.1. Objetivo general .................................................................................................................16spa
dc.description.tableofcontents5.2. Objetivos específicos .........................................................................................................16spa
dc.description.tableofcontents6. Referente teórico ........................................................................................................................17spa
dc.description.tableofcontents6.1. Hamiltoniano del problema ................................................................................................17spa
dc.description.tableofcontents6.2. Teoría del funcional de la densidad (DFT) ........................................................................18spa
dc.description.tableofcontents6.2.1. Aproximación de densidad local (LDA) ..........................................................................19spa
dc.description.tableofcontents6.2.2. Aproximación de gradiente generalizado (GGA) ............................................................19spa
dc.description.tableofcontents6.3. Pseudopotenciales y Ondas Planas ....................................................................................20spa
dc.description.tableofcontents6.3.1. Pseudopotenciales que conservan la norma .....................................................................20spa
dc.description.tableofcontents6.3.2. Pseudopotenciales ultrasuaves .........................................................................................20spa
dc.description.tableofcontents6.4. Ciclo de autoconsistencia ...................................................................................................21spa
dc.description.tableofcontents7. Metodología ...............................................................................................................................23spa
dc.description.tableofcontents8. Análisis de los resultados ...........................................................................................................25spa
dc.description.tableofcontents8.1. Dióxidos VO2, CrO2, MoO2 y WO2 en el volumen ............................................................25spa
dc.description.tableofcontents8.1.1. Resultados estructurales y estabilidad energética en el volumen .....................................26spa
dc.description.tableofcontents8.1.2. Carácter electrónico en el volumen ..................................................................................29spa
dc.description.tableofcontents8.2. Monocapas prístinas VO2, CrO2, MoO2 y WO2 ................................................................33spa
dc.description.tableofcontents8.2.1. Resultados estructurales y estabilidad energética monocapas prístinas ...........................34spa
dc.description.tableofcontents8.2.2. Carácter electrónico de las monocapas prístinas ..............................................................36spa
dc.description.tableofcontents8.3. Aleaciones 2D MTxV1-xO2 con MT: Cr, Mo y W; x: 0.25, 0.50 y 0.75 ............................38spa
dc.description.tableofcontents8.3.1. Resultados estructurales de las aleaciones .......................................................................38spa
dc.description.tableofcontents8.3.2. Carácter electrónico de las aleaciones..............................................................................44spa
dc.description.tableofcontents9. Conclusiones ..............................................................................................................................53spa
dc.description.tableofcontentsAnexos ...............................................................................................................................................55spa
dc.description.tableofcontentsAnexo A: Los grupos espaciales considerados ..............................................................................55spa
dc.description.tableofcontentsA1. Grupo espacial P-6m2 (#187) .............................................................................................55spa
dc.description.tableofcontentsA2. Grupo espacial P63/mmc (#194) .........................................................................................55spa
dc.description.tableofcontentsAnexo B: Optimizaciones ..............................................................................................................56spa
dc.description.tableofcontentsAnexo C: Archivos de entrada .......................................................................................................59spa
dc.description.tableofcontentsReferencias bibliográficas ..................................................................................................................71spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherFinanciado parcialmente por el grupo GAMASCO de la Universidad de Córdobaspa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleNuevas aleaciones ternarias 2D basadas en dióxidos de metales de transiciónspa
dc.typeTrabajo de grado - Pregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.relation.references[1] Jie Dang, Yijie Wu, Zepeng Lv, Xuewei Lv. Preparation of tungsten carbides by reducing and carbonizing WO 2 with CO. Journal of Alloys and Compounds 745 (2018) 421e429 DOI: https://doi.org/10.1016/j.jallcom.2018.02.224spa
dc.relation.references[2] Zeng Fan, Zhang Wei-Bing, and Tang Bi-Yu. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX 2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study. Chin. Phys. B Vol. 24, No. 9 (2015) 097103 DOI: 10.1088/1674-1056/24/9/097103spa
dc.relation.references[3] Z. Chen, J. Cao, L. Yang, W. Yin and X. Wei. The unique photocatalysis properties of 2D vertical MoO 2 /WO 2 heterostructure: A first-principles study. Journal of Physics D: Applied Physics, 51, 26 (2018) https://doi.org/10.1088/1361-6463/aac7d5spa
dc.relation.references[4] N. Dukstiene, D. Sinkeviciute, A. Guobiene. Morphological, structural and optical properties of MoO2 films electrodeposited on SnO2∣glass plate. Cent. Eur. J. Chem. 10(4) (2012) 1106-1118 DOI: 10.2478/s11532-012-0012-7spa
dc.relation.references[5] Jingyan NIAN, Liwei CHEN, Zhiguang GUO, Weimin LIU. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum. Friction 5(1): 23–31 (2017). DOI 10.1007/s40544-016-0128-4spa
dc.relation.references[6] A. Anguelouch, A. Gupta, Xiao Gang, D.W. Abraham, Y. Ji, S. Ingvarsson, C. L. Chien. Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys Rev B 2001, 64:180408R. DOI: https://doi.org/10.1103/PhysRevB.64.180408spa
dc.relation.references[7] V. Srivastava, S. Sanyal, M. Rajagopalan. First principles study of pressure induced magnetic trasition in CrO2. Indian Journal of Pure & Applied Physics. 46. 2008. 397-399.spa
dc.relation.references[8] K. Suzuki and P. M. Tedrow. Resistivity and magnetotransport in CrO2 films. Phys. Rev. B 58, (1998) 11597 DOI: https://doi.org/10.1103/PhysRevB.58.11597spa
dc.relation.references[9] M. Soltani, A. B. Kaye. Chapter 13. Properties and Applications of Thermochromic Vanadium Dioxide Smart Coating. Intelligent Coatings for Corrosion Control, pp.461-490 (2015) DOI: 10.1016/B978-0-12-411467-8.00013-1spa
dc.relation.references[10] M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri. Optical switching in VO2 films by below-gap excitation. Appl. Phys. Lett. 92, 181904 (2008); https://doi.org/10.1063/1.2921784spa
dc.relation.references[11] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 306 (5696) : 666-9. (2004). DOI:10.1126/science.1102896spa
dc.relation.references[12] M. A. K. L. Dissanayake and L. L. Chase. Optical properties of CrO2, MoO2, and WO2 in the range 0.2-6 eV. Phys. Rev. B 18, 6872 (1978) DOI https://doi.org/10.1103/PhysRevB.18.6872spa
dc.relation.references[13] R.S. Patil, M.D. Uplane and P.S. Patil. Structural and optical properties of electrodeposited molybdenum oxide thin films. Applied Surface Science 252, 8050–8056. (2006) DOI: https://doi.org/10.1016/j.apsusc.2005.10.016spa
dc.relation.references[14] R. Prakash, D. M. Phase, R. J. Choudhary and R. Kumar. Structural, electrical, and magnetic properties of Mo1−xFexO2 (x=0–0.05) thin films grown by pulsed laser ablation. Journal of Applied Physics 103, 043712 (2008) DOI: https://doi.org/10.1063/1.2885143spa
dc.relation.references[15] E. Pu, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, and J. Miao. Ultrathin MoO 2 nanosheets with good thermal stability and high conductivity. AIP Advances 7, 025015 (2017) DOI: https://doi.org/10.1063/1.4977543spa
dc.relation.references[16] H. Zhang, L. Zeng, X. Wu, L. Lian, M. Wei. Synthesis of MoO 2 nanosheets by an ionic liquid route and its electrochemical properties. Journal of Alloys and Compounds 580, 358–362 (2013). DOI: http://dx.doi.org/10.1016/j.jallcom.2013.06.100spa
dc.relation.references[17] J. Ni, Y. Zhao, L. Li, L. Mai. Ultrathin MoO 2 nanosheets for superior lithium storage. Nano Energy 11, 129–135 (2015). Doi: http://dx.doi.org/10.1016/j.nanoen.2014.10.027spa
dc.relation.references[18] D. Çakr, F. M. Peeters, and C. Sevik. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. Applied Physics Letters 104, 203110 (2014); DOI: https://aip.scitation.org/doi/10.1063/1.4879543spa
dc.relation.references[19] M. Menderes, Y. Aierken, Deniz Çakır, Francois M. Peeters, and Cem Sevik. Promising Piezoelectric Performance of Single Layer Transition- Metal Dichalcogenides and Dioxides. J. Phys. Chem. C 2015, 119, 23231−23237. DOI: 10.1021/acs.jpcc.5b06428spa
dc.relation.references[20] J. A. Reyes and F. Cervantes. Spin-orbital effects in metal- dichalcogenide semiconducting monolayers. Scientific RepoRts, 6:24093, (2016) DOI: 10.1038/srep24093spa
dc.relation.references[21] M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu and J. Aarts. Long-range supercurrents through half-metallic ferromagnetic CrO2. Physical review B 82, 100501 (R) (2010) DOI: https://doi.org/10.1103/PhysRevB.82.100501spa
dc.relation.references[22] G. X. Miao, P. LeClair and A. Gupta. Magnetic tunnel junctions based on CrO2/SnO2 epitaxial bilayers. APPLIED PHYSICS LETTERS 89, 022511 (2006) DOI: http://dx.doi.org/10.1063/1.2216109spa
dc.relation.references[23] S. Choudhary and M. Varshney. First-Principles Study of Spin Transport in CrO 2 –CNT–CrO 2 Magnetic Tunnel Junction. J. Supercond Nov Magn 28:3141–3145 (2015). DOI: https://doi.org/10.1007/s10948-015-3142-2spa
dc.relation.references[24] R. B. Rakhi, D. H. Nagaraju, P. Beaujuge and H. N. Alshareef. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte, Electrochimica Acta, 220, 601-608 (2016). DOI: http://dx.doi.org/10.1016/j.electacta.2016.10.109spa
dc.relation.references[25] K. G. West, J. W. Lu, L. He, D. Kirkwood, W. Chen, T. P. Adl, M. S. Osofsky, S. B. Qadri, R. Hull and S. A. Wolf. Ferromagnetism in rutile structure Cr doped VO 2 thin films prepared by reactive bias target ion beam deposition. J Superconductivity Novel Magn 21 : 87–92 (2008). DOI: https://doi.org/10.1007/s10948-007-0303-yspa
dc.relation.references[26] B. L. Brown, M. Lee, P. G. Clem, C. D. Nordquist, T. S. Jordan, S. L. Wolfley, D. Leonhardt, C. Edney, and J. A. Custer. Electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO2 thin films. Journal of Applied Physics 113, 173704 (2013) DOI: http://dx.doi.org/10.1063/1.4803551spa
dc.relation.references[27] G. R. Khan, K. Asokan and B. Ahmad. Room temperature tunability of Mo-doped VO 2 nanofilms across semiconductor to metal phase transition. Thin Solid Films 625, 155–162 (2017). DOI: http://dx.doi.org/10.1016/j.tsf.2017.02.006spa
dc.relation.references[28] P. Phoempoon and L. Sikong. Synthesis of Thermochromic Mo-Doped VO 2 Particles. Materials Science Forum. ISSN: 1662-9752, Vol. 867, pp 88-92 (2016) DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.867.88spa
dc.relation.references[29] D. Liu, H. Cheng, X. Xing, C. Zhang and W. Zheng. Thermochromic properties of W-doped VO 2 thin films deposited by aqueous sol-gel method for adaptive infrared stealth application. Infrared Physics & Technology 77, 339–343 (2016). DOI: http://dx.doi.org/10.1016/j.infrared.2016.06.019spa
dc.relation.references[30] G. Pan, J. Yin, K. Ji, X. Li, X. Cheng, H. Jin and J. Liu. Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method. Scientific Reports 7: 6132 (2017). DOI: 10.1038/s41598-017-05229-9spa
dc.relation.references[31] J. Zou, X. Chen and L. Xiao. Phase transition performance recovery of W-doped VO2 by annealing treatment. Mater. Res. Express 5, 065055 (2018). DOI: https://doi.org/10.1088/2053-1591/aacd8cspa
dc.relation.references[32] C. Ataca, H. Şahin, and S. Ciraci. Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure . J. Phys. Chem. C, 116, 8983−8999 (2012). DOI: dx.doi.org/10.1021/jp212558pspa
dc.relation.references[33] F. A. Rasmussen and K. S. Thygesen. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. Phys. Chem. C (2015).119:13169-13183 DOI: 10.1021/acs.jpcc.5b02950spa
dc.relation.references[34] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev, 136(3B): B 864, (1964) DOI: https://doi.org/10.1103/PhysRev.136.B864spa
dc.relation.references[35] W. Kohn and L. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev, 140 (4A): A1133, (1965) DOI: https://doi.org/10.1103/PhysRev.140.A1133spa
dc.relation.references[36] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21 395502 (2009); http://www.quantum-espresso.org, doi:10.1088/0953-8984/21/39/395502spa
dc.relation.references[37] M. Born; J. R. Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457–484. doi:10.1002/andp.19273892002spa
dc.relation.references[38] K. Burke and Friends. The ABC of DFT. Department of Chemistry, University of California, Irvine, CA 92697 (2007) Recuperado de: http://dft.uci.edu/doc/g1.pdfspa
dc.relation.references[39] J. P. Perdew, a. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B Volume 23, number 10 -15 (1981) DOI: https://doi.org/10.1103/PhysRevB.23.5048spa
dc.relation.references[40] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters 77, 18, 3865-3868 (1996). DOI: 10.1103/PhysRevLett.77.3865spa
dc.relation.references[41] D. R. Hamann, M. Schlüter and C. Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 43: 1194, (1979) DOI: https://doi.org/10.1103/PhysRevLett.43.1494spa
dc.relation.references[42] G. B. Bachelet, D. R. Hamann and M. Schlüter. Pseudopotentials that work: From H to Pu. Phys. Rev. B, 26: 4199, (1982) DOI: https://doi.org/10.1103/PhysRevB.26.4199spa
dc.relation.references[43] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892, (1990). DOI: https://doi.org/10.1103/PhysRevB.41.7892spa
dc.relation.references[44] K. Laasonen, R. Car, C. Lee and D. Vanderbilt. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, (1991) DOI: https://doi.org/10.1103/PhysRevB.43.6796spa
dc.relation.references[45] K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, (1993) DOI:https://doi.org/10.1103/PhysRevB.47.10142spa
dc.relation.references[46] C. Ortega López, Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN, Tesis Doctoral, Universidad Nacional de Colombia, Departamento de Física, Sede Bogotá, 2009.spa
dc.relation.references[47] M. Methfessel and A.T. Paxton, Ibid., 40, No. 6, 3616 (1989).Google Scholar. 8. R. N. Silver and H. Röder, Int. J. Mod. Phys. C, 5, 735 (1994).spa
dc.relation.references[48] P. E. Blöchl, O. Jepsen, and O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 – Published 15 June 1994spa
dc.relation.references[49] S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, ``A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu'', J. Chem. Phys. 132, 154104 (2010).spa
dc.relation.references[50] Charles Kittel. (2005) Introduction to Solid State Physics, Jhon Wiley & Sons, Inc. 8th Edition, ISBN: 978-0-471-41526-8 pg. 50spa
dc.relation.references[51] M. Javaid, S. P. Russo, K. Kalantar, A. D. Greentree, and D. W. Drumm. Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides. Electron. Struct. 1 (2019) 015005 DOI: https://doi.org/10.1088/2516-1075/aadf44spa
dc.relation.references[52] Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. (1990). "Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3". Physical Review B. 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. doi:10.1103/physrevb.41.4993.spa
dc.relation.references[53] G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, M. Ohlinger. "Chromium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. p-168-169, doi:10.1002/14356007.a07_067.spa
dc.relation.references[54] A. Bolzan, B. Kennedy and C. Howard. Neutron Powder Diffraction Study of Molybdenum and Tungsten Dioxides. Australian Journal of Chemistry 48(8) 1473 - 1477 (1995) DOI: https://doi.org/10.1071/CH9951473spa
dc.relation.references[55] J. Jung, C. H. Park, J. Ihm. A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Lett., 18, 5, 2759-2765 (2018) DOI: 10.1021/acs.nanolett.7b04201spa
dc.relation.references[56] Yu Li Huang, Yifeng Chen, Wenjing Zhang, Su Ying Quek, Chang-Hsiao Chen, Lain-Jong, Wei-Ting Hsu, Wen-Hao Chang, Yu Jie Zheng, Wei Chen & Andrew T.S. Wee. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications 6:6298 · February 2015 DOI: 10.1038/ncomms7298spa
dc.relation.references[57] Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS 2 . Phys. Rev. B 83, 245213 (2011). DOI: https://doi.org/10.1103/PhysRevB.83.245213spa
dc.relation.references[58] P. Manchanda and R. Skomski. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism. (2016) J. Phys.: Condens. Matter 28 064002. DOI: 10.1088/0953-8984/28/6/064002spa
dc.relation.references[59] N.F. Andriambelaza, R.E. Mapasha, N. Chetty. Band Gap Engineering of a MoS 2 Monolayer through Oxygen Alloying: an Ab-Initio Study. Nanotechnology, 29: 50 (2018) DOI:10.1088/1361-6528/aae1e4spa
dc.relation.references[60] Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik, Volume 5, Issue 1, pp.17-26 (1921) DOI: 10.1007/BF01349680spa
dc.relation.references[61] Denton, A.R. and Ashcroft, N.W. Vegard’s Law. Physical Review A, 43, 3161-3164. (1991) http://dx.doi.org/10.1103/PhysRevA.43.3161spa
dc.relation.references[62] E. Clementi, D. L. Raimondi, and W. P. Reinhardt. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. J. Chem. Phys. 47, 1300 (1967); doi: 10.1063/1.1712084spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalAleacionesspa
dc.subject.proposalMonocapasspa
dc.subject.proposalPropiedades electrónicasspa
dc.subject.proposalEstabilidad energéticaspa
dc.subject.proposalDFTspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.subject.keywordsAlloyseng
dc.subject.keywordsMonolayerseng
dc.subject.keywordsElectronic propertieseng
dc.subject.keywordsEnergy stabilityeng
dc.subject.keywordsDFTeng
dc.description.degreelevelPosgradospa
dc.description.degreenameMagíster en Ciencias Físicasspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.programMaestría en Ciencias Físicasspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2020
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2020