Publicación:
Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición

dc.contributor.advisorOrtega López, Cesarspa
dc.contributor.advisorMurillo García, Jean Fredspa
dc.contributor.authorHumánez Tobar, Ángelspa
dc.coverage.spatialMontería, Córdobaspa
dc.date.accessioned2020-10-20T21:28:51Zspa
dc.date.available2020-10-20T21:28:51Zspa
dc.date.issued2020-06-21spa
dc.description.abstractSe estudian las propiedades estructurales, electrónicas y la estabilidad energética de los dióxidos VO2, CrO2, MoO2 y WO2 en la fase estructural 2H en volumen y de las monocapas ternarias basadas en dióxidos de metales de transición MTxV1-xO2 (con MT=Cr, Mo y W; x= 0, 0.25, 0.50, 0.75 y 1) en estructura H, mediante la Teoría del Funcional de la Densidad (Density Functional Theory: DFT) usando pseudopotenciales ultrasuaves y una base de ondas planas como se implementa en el paquete Quantum-ESPRESSO. Para la interacción electrón-electrón se usó la aproximación de Gradiente Generalizado (GGA) de Perdew-Burke-Ernzerhof (PBE). Se determina, que tanto los sistemas volumétricos como las aleaciones bidimensionales son energéticamente estables, siendo los volumétricos más estables que sus monocapas correspondientes, como era de esperarse. A través de la densidad de estados y el diagrama de bandas electrónicas, se establece que: a) la monocapa original o pura (prístina) VO2 es metálica y magnética, mientras que las monocapas originales CrO2, MoO2 y WO2 son semiconductoras y no magnéticas; b) Las aleaciones Mo0.25V0.75O2 y W0.25V0.75O2 son metálicas y magnéticas, mientras que la aleación Cr0.25V0.75O2 es semimetálico (half-metallic) y magnética. Esta magnetización débil, con valores de 0.08µB/átomo, 0.03 µB/átomo, y 0.09 µB/átomo para el Cr0.25V0.75O2, el Mo0.25V0.75O2 y el W0.25V0.75O2 respectivamente, se debe principalmente a la hibridación de los orbitales p-O y d-V (o más preciso, a la interacción de intercambio entre los momentos magnéticos atómicos vecinos para alinearse paralelamente entre sí: ferromagnetismo) en las aleaciones precitadas, respectivamente. Las aleaciones con concentraciones x=0.50 y 0.75 muestran magnetización nula, debido a la compensación de los orbitales arriba (up) y abajo (down) para condiciones ricas en Cr, Mo, W y moderadas en V. El comportamiento metálico de las aleaciones, es causado, principalmente, por los orbitales p del Oxígeno (p-O), y por el orbital d del vanadio, cromo, molibdeno y tungsteno, es decir, d-V, d-Cr, d-Mo y d-W, en cada aleación respectiva.spa
dc.description.degreelevelPosgradospa
dc.description.degreenameMagíster en Ciencias Físicasspa
dc.description.tableofcontentsResumen ...............................................................................................................................................9spa
dc.description.tableofcontents1. Introducción ...............................................................................................................................10spa
dc.description.tableofcontents2. Antecedentes ..............................................................................................................................11spa
dc.description.tableofcontents3. Justificación ...............................................................................................................................13spa
dc.description.tableofcontents4. Planteamiento del problema .......................................................................................................15spa
dc.description.tableofcontents5. Objetivos ....................................................................................................................................16spa
dc.description.tableofcontents5.1. Objetivo general .................................................................................................................16spa
dc.description.tableofcontents5.2. Objetivos específicos .........................................................................................................16spa
dc.description.tableofcontents6. Referente teórico ........................................................................................................................17spa
dc.description.tableofcontents6.1. Hamiltoniano del problema ................................................................................................17spa
dc.description.tableofcontents6.2. Teoría del funcional de la densidad (DFT) ........................................................................18spa
dc.description.tableofcontents6.2.1. Aproximación de densidad local (LDA) ..........................................................................19spa
dc.description.tableofcontents6.2.2. Aproximación de gradiente generalizado (GGA) ............................................................19spa
dc.description.tableofcontents6.3. Pseudopotenciales y Ondas Planas ....................................................................................20spa
dc.description.tableofcontents6.3.1. Pseudopotenciales que conservan la norma .....................................................................20spa
dc.description.tableofcontents6.3.2. Pseudopotenciales ultrasuaves .........................................................................................20spa
dc.description.tableofcontents6.4. Ciclo de autoconsistencia ...................................................................................................21spa
dc.description.tableofcontents7. Metodología ...............................................................................................................................23spa
dc.description.tableofcontents8. Análisis de los resultados ...........................................................................................................25spa
dc.description.tableofcontents8.1. Dióxidos VO2, CrO2, MoO2 y WO2 en el volumen ............................................................25spa
dc.description.tableofcontents8.1.1. Resultados estructurales y estabilidad energética en el volumen .....................................26spa
dc.description.tableofcontents8.1.2. Carácter electrónico en el volumen ..................................................................................29spa
dc.description.tableofcontents8.2. Monocapas prístinas VO2, CrO2, MoO2 y WO2 ................................................................33spa
dc.description.tableofcontents8.2.1. Resultados estructurales y estabilidad energética monocapas prístinas ...........................34spa
dc.description.tableofcontents8.2.2. Carácter electrónico de las monocapas prístinas ..............................................................36spa
dc.description.tableofcontents8.3. Aleaciones 2D MTxV1-xO2 con MT: Cr, Mo y W; x: 0.25, 0.50 y 0.75 ............................38spa
dc.description.tableofcontents8.3.1. Resultados estructurales de las aleaciones .......................................................................38spa
dc.description.tableofcontents8.3.2. Carácter electrónico de las aleaciones..............................................................................44spa
dc.description.tableofcontents9. Conclusiones ..............................................................................................................................53spa
dc.description.tableofcontentsAnexos ...............................................................................................................................................55spa
dc.description.tableofcontentsAnexo A: Los grupos espaciales considerados ..............................................................................55spa
dc.description.tableofcontentsA1. Grupo espacial P-6m2 (#187) .............................................................................................55spa
dc.description.tableofcontentsA2. Grupo espacial P63/mmc (#194) .........................................................................................55spa
dc.description.tableofcontentsAnexo B: Optimizaciones ..............................................................................................................56spa
dc.description.tableofcontentsAnexo C: Archivos de entrada .......................................................................................................59spa
dc.description.tableofcontentsReferencias bibliográficas ..................................................................................................................71spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3454spa
dc.language.isospaspa
dc.publisherFinanciado parcialmente por el grupo GAMASCO de la Universidad de Córdobaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.programMaestría en Ciencias Físicasspa
dc.relation.references[1] Jie Dang, Yijie Wu, Zepeng Lv, Xuewei Lv. Preparation of tungsten carbides by reducing and carbonizing WO 2 with CO. Journal of Alloys and Compounds 745 (2018) 421e429 DOI: https://doi.org/10.1016/j.jallcom.2018.02.224spa
dc.relation.references[2] Zeng Fan, Zhang Wei-Bing, and Tang Bi-Yu. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX 2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study. Chin. Phys. B Vol. 24, No. 9 (2015) 097103 DOI: 10.1088/1674-1056/24/9/097103spa
dc.relation.references[3] Z. Chen, J. Cao, L. Yang, W. Yin and X. Wei. The unique photocatalysis properties of 2D vertical MoO 2 /WO 2 heterostructure: A first-principles study. Journal of Physics D: Applied Physics, 51, 26 (2018) https://doi.org/10.1088/1361-6463/aac7d5spa
dc.relation.references[4] N. Dukstiene, D. Sinkeviciute, A. Guobiene. Morphological, structural and optical properties of MoO2 films electrodeposited on SnO2∣glass plate. Cent. Eur. J. Chem. 10(4) (2012) 1106-1118 DOI: 10.2478/s11532-012-0012-7spa
dc.relation.references[5] Jingyan NIAN, Liwei CHEN, Zhiguang GUO, Weimin LIU. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum. Friction 5(1): 23–31 (2017). DOI 10.1007/s40544-016-0128-4spa
dc.relation.references[6] A. Anguelouch, A. Gupta, Xiao Gang, D.W. Abraham, Y. Ji, S. Ingvarsson, C. L. Chien. Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys Rev B 2001, 64:180408R. DOI: https://doi.org/10.1103/PhysRevB.64.180408spa
dc.relation.references[7] V. Srivastava, S. Sanyal, M. Rajagopalan. First principles study of pressure induced magnetic trasition in CrO2. Indian Journal of Pure & Applied Physics. 46. 2008. 397-399.spa
dc.relation.references[8] K. Suzuki and P. M. Tedrow. Resistivity and magnetotransport in CrO2 films. Phys. Rev. B 58, (1998) 11597 DOI: https://doi.org/10.1103/PhysRevB.58.11597spa
dc.relation.references[9] M. Soltani, A. B. Kaye. Chapter 13. Properties and Applications of Thermochromic Vanadium Dioxide Smart Coating. Intelligent Coatings for Corrosion Control, pp.461-490 (2015) DOI: 10.1016/B978-0-12-411467-8.00013-1spa
dc.relation.references[10] M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri. Optical switching in VO2 films by below-gap excitation. Appl. Phys. Lett. 92, 181904 (2008); https://doi.org/10.1063/1.2921784spa
dc.relation.references[11] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 306 (5696) : 666-9. (2004). DOI:10.1126/science.1102896spa
dc.relation.references[12] M. A. K. L. Dissanayake and L. L. Chase. Optical properties of CrO2, MoO2, and WO2 in the range 0.2-6 eV. Phys. Rev. B 18, 6872 (1978) DOI https://doi.org/10.1103/PhysRevB.18.6872spa
dc.relation.references[13] R.S. Patil, M.D. Uplane and P.S. Patil. Structural and optical properties of electrodeposited molybdenum oxide thin films. Applied Surface Science 252, 8050–8056. (2006) DOI: https://doi.org/10.1016/j.apsusc.2005.10.016spa
dc.relation.references[14] R. Prakash, D. M. Phase, R. J. Choudhary and R. Kumar. Structural, electrical, and magnetic properties of Mo1−xFexO2 (x=0–0.05) thin films grown by pulsed laser ablation. Journal of Applied Physics 103, 043712 (2008) DOI: https://doi.org/10.1063/1.2885143spa
dc.relation.references[15] E. Pu, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, and J. Miao. Ultrathin MoO 2 nanosheets with good thermal stability and high conductivity. AIP Advances 7, 025015 (2017) DOI: https://doi.org/10.1063/1.4977543spa
dc.relation.references[16] H. Zhang, L. Zeng, X. Wu, L. Lian, M. Wei. Synthesis of MoO 2 nanosheets by an ionic liquid route and its electrochemical properties. Journal of Alloys and Compounds 580, 358–362 (2013). DOI: http://dx.doi.org/10.1016/j.jallcom.2013.06.100spa
dc.relation.references[17] J. Ni, Y. Zhao, L. Li, L. Mai. Ultrathin MoO 2 nanosheets for superior lithium storage. Nano Energy 11, 129–135 (2015). Doi: http://dx.doi.org/10.1016/j.nanoen.2014.10.027spa
dc.relation.references[18] D. Çakr, F. M. Peeters, and C. Sevik. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. Applied Physics Letters 104, 203110 (2014); DOI: https://aip.scitation.org/doi/10.1063/1.4879543spa
dc.relation.references[19] M. Menderes, Y. Aierken, Deniz Çakır, Francois M. Peeters, and Cem Sevik. Promising Piezoelectric Performance of Single Layer Transition- Metal Dichalcogenides and Dioxides. J. Phys. Chem. C 2015, 119, 23231−23237. DOI: 10.1021/acs.jpcc.5b06428spa
dc.relation.references[20] J. A. Reyes and F. Cervantes. Spin-orbital effects in metal- dichalcogenide semiconducting monolayers. Scientific RepoRts, 6:24093, (2016) DOI: 10.1038/srep24093spa
dc.relation.references[21] M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu and J. Aarts. Long-range supercurrents through half-metallic ferromagnetic CrO2. Physical review B 82, 100501 (R) (2010) DOI: https://doi.org/10.1103/PhysRevB.82.100501spa
dc.relation.references[22] G. X. Miao, P. LeClair and A. Gupta. Magnetic tunnel junctions based on CrO2/SnO2 epitaxial bilayers. APPLIED PHYSICS LETTERS 89, 022511 (2006) DOI: http://dx.doi.org/10.1063/1.2216109spa
dc.relation.references[23] S. Choudhary and M. Varshney. First-Principles Study of Spin Transport in CrO 2 –CNT–CrO 2 Magnetic Tunnel Junction. J. Supercond Nov Magn 28:3141–3145 (2015). DOI: https://doi.org/10.1007/s10948-015-3142-2spa
dc.relation.references[24] R. B. Rakhi, D. H. Nagaraju, P. Beaujuge and H. N. Alshareef. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte, Electrochimica Acta, 220, 601-608 (2016). DOI: http://dx.doi.org/10.1016/j.electacta.2016.10.109spa
dc.relation.references[25] K. G. West, J. W. Lu, L. He, D. Kirkwood, W. Chen, T. P. Adl, M. S. Osofsky, S. B. Qadri, R. Hull and S. A. Wolf. Ferromagnetism in rutile structure Cr doped VO 2 thin films prepared by reactive bias target ion beam deposition. J Superconductivity Novel Magn 21 : 87–92 (2008). DOI: https://doi.org/10.1007/s10948-007-0303-yspa
dc.relation.references[26] B. L. Brown, M. Lee, P. G. Clem, C. D. Nordquist, T. S. Jordan, S. L. Wolfley, D. Leonhardt, C. Edney, and J. A. Custer. Electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO2 thin films. Journal of Applied Physics 113, 173704 (2013) DOI: http://dx.doi.org/10.1063/1.4803551spa
dc.relation.references[27] G. R. Khan, K. Asokan and B. Ahmad. Room temperature tunability of Mo-doped VO 2 nanofilms across semiconductor to metal phase transition. Thin Solid Films 625, 155–162 (2017). DOI: http://dx.doi.org/10.1016/j.tsf.2017.02.006spa
dc.relation.references[28] P. Phoempoon and L. Sikong. Synthesis of Thermochromic Mo-Doped VO 2 Particles. Materials Science Forum. ISSN: 1662-9752, Vol. 867, pp 88-92 (2016) DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.867.88spa
dc.relation.references[29] D. Liu, H. Cheng, X. Xing, C. Zhang and W. Zheng. Thermochromic properties of W-doped VO 2 thin films deposited by aqueous sol-gel method for adaptive infrared stealth application. Infrared Physics & Technology 77, 339–343 (2016). DOI: http://dx.doi.org/10.1016/j.infrared.2016.06.019spa
dc.relation.references[30] G. Pan, J. Yin, K. Ji, X. Li, X. Cheng, H. Jin and J. Liu. Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method. Scientific Reports 7: 6132 (2017). DOI: 10.1038/s41598-017-05229-9spa
dc.relation.references[31] J. Zou, X. Chen and L. Xiao. Phase transition performance recovery of W-doped VO2 by annealing treatment. Mater. Res. Express 5, 065055 (2018). DOI: https://doi.org/10.1088/2053-1591/aacd8cspa
dc.relation.references[32] C. Ataca, H. Şahin, and S. Ciraci. Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure . J. Phys. Chem. C, 116, 8983−8999 (2012). DOI: dx.doi.org/10.1021/jp212558pspa
dc.relation.references[33] F. A. Rasmussen and K. S. Thygesen. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. Phys. Chem. C (2015).119:13169-13183 DOI: 10.1021/acs.jpcc.5b02950spa
dc.relation.references[34] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev, 136(3B): B 864, (1964) DOI: https://doi.org/10.1103/PhysRev.136.B864spa
dc.relation.references[35] W. Kohn and L. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev, 140 (4A): A1133, (1965) DOI: https://doi.org/10.1103/PhysRev.140.A1133spa
dc.relation.references[36] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21 395502 (2009); http://www.quantum-espresso.org, doi:10.1088/0953-8984/21/39/395502spa
dc.relation.references[37] M. Born; J. R. Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457–484. doi:10.1002/andp.19273892002spa
dc.relation.references[38] K. Burke and Friends. The ABC of DFT. Department of Chemistry, University of California, Irvine, CA 92697 (2007) Recuperado de: http://dft.uci.edu/doc/g1.pdfspa
dc.relation.references[39] J. P. Perdew, a. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B Volume 23, number 10 -15 (1981) DOI: https://doi.org/10.1103/PhysRevB.23.5048spa
dc.relation.references[40] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters 77, 18, 3865-3868 (1996). DOI: 10.1103/PhysRevLett.77.3865spa
dc.relation.references[41] D. R. Hamann, M. Schlüter and C. Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 43: 1194, (1979) DOI: https://doi.org/10.1103/PhysRevLett.43.1494spa
dc.relation.references[42] G. B. Bachelet, D. R. Hamann and M. Schlüter. Pseudopotentials that work: From H to Pu. Phys. Rev. B, 26: 4199, (1982) DOI: https://doi.org/10.1103/PhysRevB.26.4199spa
dc.relation.references[43] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892, (1990). DOI: https://doi.org/10.1103/PhysRevB.41.7892spa
dc.relation.references[44] K. Laasonen, R. Car, C. Lee and D. Vanderbilt. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, (1991) DOI: https://doi.org/10.1103/PhysRevB.43.6796spa
dc.relation.references[45] K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, (1993) DOI:https://doi.org/10.1103/PhysRevB.47.10142spa
dc.relation.references[46] C. Ortega López, Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN, Tesis Doctoral, Universidad Nacional de Colombia, Departamento de Física, Sede Bogotá, 2009.spa
dc.relation.references[47] M. Methfessel and A.T. Paxton, Ibid., 40, No. 6, 3616 (1989).Google Scholar. 8. R. N. Silver and H. Röder, Int. J. Mod. Phys. C, 5, 735 (1994).spa
dc.relation.references[48] P. E. Blöchl, O. Jepsen, and O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 – Published 15 June 1994spa
dc.relation.references[49] S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, ``A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu'', J. Chem. Phys. 132, 154104 (2010).spa
dc.relation.references[50] Charles Kittel. (2005) Introduction to Solid State Physics, Jhon Wiley & Sons, Inc. 8th Edition, ISBN: 978-0-471-41526-8 pg. 50spa
dc.relation.references[51] M. Javaid, S. P. Russo, K. Kalantar, A. D. Greentree, and D. W. Drumm. Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides. Electron. Struct. 1 (2019) 015005 DOI: https://doi.org/10.1088/2516-1075/aadf44spa
dc.relation.references[52] Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. (1990). "Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3". Physical Review B. 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. doi:10.1103/physrevb.41.4993.spa
dc.relation.references[53] G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, M. Ohlinger. "Chromium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. p-168-169, doi:10.1002/14356007.a07_067.spa
dc.relation.references[54] A. Bolzan, B. Kennedy and C. Howard. Neutron Powder Diffraction Study of Molybdenum and Tungsten Dioxides. Australian Journal of Chemistry 48(8) 1473 - 1477 (1995) DOI: https://doi.org/10.1071/CH9951473spa
dc.relation.references[55] J. Jung, C. H. Park, J. Ihm. A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Lett., 18, 5, 2759-2765 (2018) DOI: 10.1021/acs.nanolett.7b04201spa
dc.relation.references[56] Yu Li Huang, Yifeng Chen, Wenjing Zhang, Su Ying Quek, Chang-Hsiao Chen, Lain-Jong, Wei-Ting Hsu, Wen-Hao Chang, Yu Jie Zheng, Wei Chen & Andrew T.S. Wee. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications 6:6298 · February 2015 DOI: 10.1038/ncomms7298spa
dc.relation.references[57] Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS 2 . Phys. Rev. B 83, 245213 (2011). DOI: https://doi.org/10.1103/PhysRevB.83.245213spa
dc.relation.references[58] P. Manchanda and R. Skomski. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism. (2016) J. Phys.: Condens. Matter 28 064002. DOI: 10.1088/0953-8984/28/6/064002spa
dc.relation.references[59] N.F. Andriambelaza, R.E. Mapasha, N. Chetty. Band Gap Engineering of a MoS 2 Monolayer through Oxygen Alloying: an Ab-Initio Study. Nanotechnology, 29: 50 (2018) DOI:10.1088/1361-6528/aae1e4spa
dc.relation.references[60] Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik, Volume 5, Issue 1, pp.17-26 (1921) DOI: 10.1007/BF01349680spa
dc.relation.references[61] Denton, A.R. and Ashcroft, N.W. Vegard’s Law. Physical Review A, 43, 3161-3164. (1991) http://dx.doi.org/10.1103/PhysRevA.43.3161spa
dc.relation.references[62] E. Clementi, D. L. Raimondi, and W. P. Reinhardt. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. J. Chem. Phys. 47, 1300 (1967); doi: 10.1063/1.1712084spa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.keywordsAlloyseng
dc.subject.keywordsMonolayerseng
dc.subject.keywordsElectronic propertieseng
dc.subject.keywordsEnergy stabilityeng
dc.subject.keywordsDFTeng
dc.subject.proposalAleacionesspa
dc.subject.proposalMonocapasspa
dc.subject.proposalPropiedades electrónicasspa
dc.subject.proposalEstabilidad energéticaspa
dc.subject.proposalDFTspa
dc.titleNuevas aleaciones ternarias 2D basadas en dióxidos de metales de transiciónspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
HumanezTobarÁngel.pdf
Tamaño:
4.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado de Maestría en Ciencias Físicas basado en la Teoría del Funcional de la Densidad
No hay miniatura disponible
Nombre:
Formato de Autorización Publicación en Repositorio.pdf
Tamaño:
489.96 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones