Publicación: Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición
dc.contributor.advisor | Ortega López, Cesar | spa |
dc.contributor.advisor | Murillo García, Jean Fred | spa |
dc.contributor.author | Humánez Tobar, Ángel | spa |
dc.coverage.spatial | Montería, Córdoba | spa |
dc.date.accessioned | 2020-10-20T21:28:51Z | spa |
dc.date.available | 2020-10-20T21:28:51Z | spa |
dc.date.issued | 2020-06-21 | spa |
dc.description.abstract | Se estudian las propiedades estructurales, electrónicas y la estabilidad energética de los dióxidos VO2, CrO2, MoO2 y WO2 en la fase estructural 2H en volumen y de las monocapas ternarias basadas en dióxidos de metales de transición MTxV1-xO2 (con MT=Cr, Mo y W; x= 0, 0.25, 0.50, 0.75 y 1) en estructura H, mediante la Teoría del Funcional de la Densidad (Density Functional Theory: DFT) usando pseudopotenciales ultrasuaves y una base de ondas planas como se implementa en el paquete Quantum-ESPRESSO. Para la interacción electrón-electrón se usó la aproximación de Gradiente Generalizado (GGA) de Perdew-Burke-Ernzerhof (PBE). Se determina, que tanto los sistemas volumétricos como las aleaciones bidimensionales son energéticamente estables, siendo los volumétricos más estables que sus monocapas correspondientes, como era de esperarse. A través de la densidad de estados y el diagrama de bandas electrónicas, se establece que: a) la monocapa original o pura (prístina) VO2 es metálica y magnética, mientras que las monocapas originales CrO2, MoO2 y WO2 son semiconductoras y no magnéticas; b) Las aleaciones Mo0.25V0.75O2 y W0.25V0.75O2 son metálicas y magnéticas, mientras que la aleación Cr0.25V0.75O2 es semimetálico (half-metallic) y magnética. Esta magnetización débil, con valores de 0.08µB/átomo, 0.03 µB/átomo, y 0.09 µB/átomo para el Cr0.25V0.75O2, el Mo0.25V0.75O2 y el W0.25V0.75O2 respectivamente, se debe principalmente a la hibridación de los orbitales p-O y d-V (o más preciso, a la interacción de intercambio entre los momentos magnéticos atómicos vecinos para alinearse paralelamente entre sí: ferromagnetismo) en las aleaciones precitadas, respectivamente. Las aleaciones con concentraciones x=0.50 y 0.75 muestran magnetización nula, debido a la compensación de los orbitales arriba (up) y abajo (down) para condiciones ricas en Cr, Mo, W y moderadas en V. El comportamiento metálico de las aleaciones, es causado, principalmente, por los orbitales p del Oxígeno (p-O), y por el orbital d del vanadio, cromo, molibdeno y tungsteno, es decir, d-V, d-Cr, d-Mo y d-W, en cada aleación respectiva. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Físicas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Resumen ...............................................................................................................................................9 | spa |
dc.description.tableofcontents | 1. Introducción ...............................................................................................................................10 | spa |
dc.description.tableofcontents | 2. Antecedentes ..............................................................................................................................11 | spa |
dc.description.tableofcontents | 3. Justificación ...............................................................................................................................13 | spa |
dc.description.tableofcontents | 4. Planteamiento del problema .......................................................................................................15 | spa |
dc.description.tableofcontents | 5. Objetivos ....................................................................................................................................16 | spa |
dc.description.tableofcontents | 5.1. Objetivo general .................................................................................................................16 | spa |
dc.description.tableofcontents | 5.2. Objetivos específicos .........................................................................................................16 | spa |
dc.description.tableofcontents | 6. Referente teórico ........................................................................................................................17 | spa |
dc.description.tableofcontents | 6.1. Hamiltoniano del problema ................................................................................................17 | spa |
dc.description.tableofcontents | 6.2. Teoría del funcional de la densidad (DFT) ........................................................................18 | spa |
dc.description.tableofcontents | 6.2.1. Aproximación de densidad local (LDA) ..........................................................................19 | spa |
dc.description.tableofcontents | 6.2.2. Aproximación de gradiente generalizado (GGA) ...............................19 | spa |
dc.description.tableofcontents | 6.3. Pseudopotenciales y Ondas Planas ....................................................................................20 | spa |
dc.description.tableofcontents | 6.3.1. Pseudopotenciales que conservan la norma .............................20 | spa |
dc.description.tableofcontents | 6.3.2. Pseudopotenciales ultrasuaves .........................................................................................20 | spa |
dc.description.tableofcontents | 6.4. Ciclo de autoconsistencia ...................................................................................................21 | spa |
dc.description.tableofcontents | 7. Metodología ...............................................................................................................................23 | spa |
dc.description.tableofcontents | 8. Análisis de los resultados ...........................................................................................................25 | spa |
dc.description.tableofcontents | 8.1. Dióxidos VO2, CrO2, MoO2 y WO2 en el volumen ............................................................25 | spa |
dc.description.tableofcontents | 8.1.1. Resultados estructurales y estabilidad energética en el volumen .....................................26 | spa |
dc.description.tableofcontents | 8.1.2. Carácter electrónico en el volumen ..................................................................................29 | spa |
dc.description.tableofcontents | 8.2. Monocapas prístinas VO2, CrO2, MoO2 y WO2 ................................................................33 | spa |
dc.description.tableofcontents | 8.2.1. Resultados estructurales y estabilidad energética monocapas prístinas ...........................34 | spa |
dc.description.tableofcontents | 8.2.2. Carácter electrónico de las monocapas prístinas .................36 | spa |
dc.description.tableofcontents | 8.3. Aleaciones 2D MTxV1-xO2 con MT: Cr, Mo y W; x: 0.25, 0.50 y 0.75 ......38 | spa |
dc.description.tableofcontents | 8.3.1. Resultados estructurales de las aleaciones ..............38 | spa |
dc.description.tableofcontents | 8.3.2. Carácter electrónico de las aleaciones..............................................................................44 | spa |
dc.description.tableofcontents | 9. Conclusiones ..............................................................................................................................53 | spa |
dc.description.tableofcontents | Anexos ...............................................................................................................................................55 | spa |
dc.description.tableofcontents | Anexo A: Los grupos espaciales considerados ....................................55 | spa |
dc.description.tableofcontents | A1. Grupo espacial P-6m2 (#187) .............................................................................................55 | spa |
dc.description.tableofcontents | A2. Grupo espacial P63/mmc (#194) .........................................................................................55 | spa |
dc.description.tableofcontents | Anexo B: Optimizaciones ..............................................................................................................56 | spa |
dc.description.tableofcontents | Anexo C: Archivos de entrada .......................................................................................................59 | spa |
dc.description.tableofcontents | Referencias bibliográficas ..................................................................................................................71 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/3454 | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.program | Maestría en Ciencias Físicas | spa |
dc.relation.references | [1] Jie Dang, Yijie Wu, Zepeng Lv, Xuewei Lv. Preparation of tungsten carbides by reducing and carbonizing WO 2 with CO. Journal of Alloys and Compounds 745 (2018) 421e429 DOI: https://doi.org/10.1016/j.jallcom.2018.02.224 | spa |
dc.relation.references | [2] Zeng Fan, Zhang Wei-Bing, and Tang Bi-Yu. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX 2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study. Chin. Phys. B Vol. 24, No. 9 (2015) 097103 DOI: 10.1088/1674-1056/24/9/097103 | spa |
dc.relation.references | [3] Z. Chen, J. Cao, L. Yang, W. Yin and X. Wei. The unique photocatalysis properties of 2D vertical MoO 2 /WO 2 heterostructure: A first-principles study. Journal of Physics D: Applied Physics, 51, 26 (2018) https://doi.org/10.1088/1361-6463/aac7d5 | spa |
dc.relation.references | [4] N. Dukstiene, D. Sinkeviciute, A. Guobiene. Morphological, structural and optical properties of MoO2 films electrodeposited on SnO2∣glass plate. Cent. Eur. J. Chem. 10(4) (2012) 1106-1118 DOI: 10.2478/s11532-012-0012-7 | spa |
dc.relation.references | [5] Jingyan NIAN, Liwei CHEN, Zhiguang GUO, Weimin LIU. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum. Friction 5(1): 23–31 (2017). DOI 10.1007/s40544-016-0128-4 | spa |
dc.relation.references | [6] A. Anguelouch, A. Gupta, Xiao Gang, D.W. Abraham, Y. Ji, S. Ingvarsson, C. L. Chien. Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys Rev B 2001, 64:180408R. DOI: https://doi.org/10.1103/PhysRevB.64.180408 | spa |
dc.relation.references | [7] V. Srivastava, S. Sanyal, M. Rajagopalan. First principles study of pressure induced magnetic trasition in CrO2. Indian Journal of Pure & Applied Physics. 46. 2008. 397-399. | spa |
dc.relation.references | [8] K. Suzuki and P. M. Tedrow. Resistivity and magnetotransport in CrO2 films. Phys. Rev. B 58, (1998) 11597 DOI: https://doi.org/10.1103/PhysRevB.58.11597 | spa |
dc.relation.references | [9] M. Soltani, A. B. Kaye. Chapter 13. Properties and Applications of Thermochromic Vanadium Dioxide Smart Coating. Intelligent Coatings for Corrosion Control, pp.461-490 (2015) DOI: 10.1016/B978-0-12-411467-8.00013-1 | spa |
dc.relation.references | [10] M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri. Optical switching in VO2 films by below-gap excitation. Appl. Phys. Lett. 92, 181904 (2008); https://doi.org/10.1063/1.2921784 | spa |
dc.relation.references | [11] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 306 (5696) : 666-9. (2004). DOI:10.1126/science.1102896 | spa |
dc.relation.references | [12] M. A. K. L. Dissanayake and L. L. Chase. Optical properties of CrO2, MoO2, and WO2 in the range 0.2-6 eV. Phys. Rev. B 18, 6872 (1978) DOI https://doi.org/10.1103/PhysRevB.18.6872 | spa |
dc.relation.references | [13] R.S. Patil, M.D. Uplane and P.S. Patil. Structural and optical properties of electrodeposited molybdenum oxide thin films. Applied Surface Science 252, 8050–8056. (2006) DOI: https://doi.org/10.1016/j.apsusc.2005.10.016 | spa |
dc.relation.references | [14] R. Prakash, D. M. Phase, R. J. Choudhary and R. Kumar. Structural, electrical, and magnetic properties of Mo1−xFexO2 (x=0–0.05) thin films grown by pulsed laser ablation. Journal of Applied Physics 103, 043712 (2008) DOI: https://doi.org/10.1063/1.2885143 | spa |
dc.relation.references | [15] E. Pu, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, and J. Miao. Ultrathin MoO 2 nanosheets with good thermal stability and high conductivity. AIP Advances 7, 025015 (2017) DOI: https://doi.org/10.1063/1.4977543 | spa |
dc.relation.references | [16] H. Zhang, L. Zeng, X. Wu, L. Lian, M. Wei. Synthesis of MoO 2 nanosheets by an ionic liquid route and its electrochemical properties. Journal of Alloys and Compounds 580, 358–362 (2013). DOI: http://dx.doi.org/10.1016/j.jallcom.2013.06.100 | spa |
dc.relation.references | [17] J. Ni, Y. Zhao, L. Li, L. Mai. Ultrathin MoO 2 nanosheets for superior lithium storage. Nano Energy 11, 129–135 (2015). Doi: http://dx.doi.org/10.1016/j.nanoen.2014.10.027 | spa |
dc.relation.references | [18] D. Çakr, F. M. Peeters, and C. Sevik. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. Applied Physics Letters 104, 203110 (2014); DOI: https://aip.scitation.org/doi/10.1063/1.4879543 | spa |
dc.relation.references | [19] M. Menderes, Y. Aierken, Deniz Çakır, Francois M. Peeters, and Cem Sevik. Promising Piezoelectric Performance of Single Layer Transition- Metal Dichalcogenides and Dioxides. J. Phys. Chem. C 2015, 119, 23231−23237. DOI: 10.1021/acs.jpcc.5b06428 | spa |
dc.relation.references | [20] J. A. Reyes and F. Cervantes. Spin-orbital effects in metal- dichalcogenide semiconducting monolayers. Scientific RepoRts, 6:24093, (2016) DOI: 10.1038/srep24093 | spa |
dc.relation.references | [21] M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu and J. Aarts. Long-range supercurrents through half-metallic ferromagnetic CrO2. Physical review B 82, 100501 (R) (2010) DOI: https://doi.org/10.1103/PhysRevB.82.100501 | spa |
dc.relation.references | [22] G. X. Miao, P. LeClair and A. Gupta. Magnetic tunnel junctions based on CrO2/SnO2 epitaxial bilayers. APPLIED PHYSICS LETTERS 89, 022511 (2006) DOI: http://dx.doi.org/10.1063/1.2216109 | spa |
dc.relation.references | [23] S. Choudhary and M. Varshney. First-Principles Study of Spin Transport in CrO 2 –CNT–CrO 2 Magnetic Tunnel Junction. J. Supercond Nov Magn 28:3141–3145 (2015). DOI: https://doi.org/10.1007/s10948-015-3142-2 | spa |
dc.relation.references | [24] R. B. Rakhi, D. H. Nagaraju, P. Beaujuge and H. N. Alshareef. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte, Electrochimica Acta, 220, 601-608 (2016). DOI: http://dx.doi.org/10.1016/j.electacta.2016.10.109 | spa |
dc.relation.references | [25] K. G. West, J. W. Lu, L. He, D. Kirkwood, W. Chen, T. P. Adl, M. S. Osofsky, S. B. Qadri, R. Hull and S. A. Wolf. Ferromagnetism in rutile structure Cr doped VO 2 thin films prepared by reactive bias target ion beam deposition. J Superconductivity Novel Magn 21 : 87–92 (2008). DOI: https://doi.org/10.1007/s10948-007-0303-y | spa |
dc.relation.references | [26] B. L. Brown, M. Lee, P. G. Clem, C. D. Nordquist, T. S. Jordan, S. L. Wolfley, D. Leonhardt, C. Edney, and J. A. Custer. Electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO2 thin films. Journal of Applied Physics 113, 173704 (2013) DOI: http://dx.doi.org/10.1063/1.4803551 | spa |
dc.relation.references | [27] G. R. Khan, K. Asokan and B. Ahmad. Room temperature tunability of Mo-doped VO 2 nanofilms across semiconductor to metal phase transition. Thin Solid Films 625, 155–162 (2017). DOI: http://dx.doi.org/10.1016/j.tsf.2017.02.006 | spa |
dc.relation.references | [28] P. Phoempoon and L. Sikong. Synthesis of Thermochromic Mo-Doped VO 2 Particles. Materials Science Forum. ISSN: 1662-9752, Vol. 867, pp 88-92 (2016) DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.867.88 | spa |
dc.relation.references | [29] D. Liu, H. Cheng, X. Xing, C. Zhang and W. Zheng. Thermochromic properties of W-doped VO 2 thin films deposited by aqueous sol-gel method for adaptive infrared stealth application. Infrared Physics & Technology 77, 339–343 (2016). DOI: http://dx.doi.org/10.1016/j.infrared.2016.06.019 | spa |
dc.relation.references | [30] G. Pan, J. Yin, K. Ji, X. Li, X. Cheng, H. Jin and J. Liu. Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method. Scientific Reports 7: 6132 (2017). DOI: 10.1038/s41598-017-05229-9 | spa |
dc.relation.references | [31] J. Zou, X. Chen and L. Xiao. Phase transition performance recovery of W-doped VO2 by annealing treatment. Mater. Res. Express 5, 065055 (2018). DOI: https://doi.org/10.1088/2053-1591/aacd8c | spa |
dc.relation.references | [32] C. Ataca, H. Şahin, and S. Ciraci. Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure . J. Phys. Chem. C, 116, 8983−8999 (2012). DOI: dx.doi.org/10.1021/jp212558p | spa |
dc.relation.references | [33] F. A. Rasmussen and K. S. Thygesen. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. Phys. Chem. C (2015).119:13169-13183 DOI: 10.1021/acs.jpcc.5b02950 | spa |
dc.relation.references | [34] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev, 136(3B): B 864, (1964) DOI: https://doi.org/10.1103/PhysRev.136.B864 | spa |
dc.relation.references | [35] W. Kohn and L. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev, 140 (4A): A1133, (1965) DOI: https://doi.org/10.1103/PhysRev.140.A1133 | spa |
dc.relation.references | [36] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21 395502 (2009); http://www.quantum-espresso.org, doi:10.1088/0953-8984/21/39/395502 | spa |
dc.relation.references | [37] M. Born; J. R. Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457–484. doi:10.1002/andp.19273892002 | spa |
dc.relation.references | [38] K. Burke and Friends. The ABC of DFT. Department of Chemistry, University of California, Irvine, CA 92697 (2007) Recuperado de: http://dft.uci.edu/doc/g1.pdf | spa |
dc.relation.references | [39] J. P. Perdew, a. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B Volume 23, number 10 -15 (1981) DOI: https://doi.org/10.1103/PhysRevB.23.5048 | spa |
dc.relation.references | [40] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters 77, 18, 3865-3868 (1996). DOI: 10.1103/PhysRevLett.77.3865 | spa |
dc.relation.references | [41] D. R. Hamann, M. Schlüter and C. Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 43: 1194, (1979) DOI: https://doi.org/10.1103/PhysRevLett.43.1494 | spa |
dc.relation.references | [42] G. B. Bachelet, D. R. Hamann and M. Schlüter. Pseudopotentials that work: From H to Pu. Phys. Rev. B, 26: 4199, (1982) DOI: https://doi.org/10.1103/PhysRevB.26.4199 | spa |
dc.relation.references | [43] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892, (1990). DOI: https://doi.org/10.1103/PhysRevB.41.7892 | spa |
dc.relation.references | [44] K. Laasonen, R. Car, C. Lee and D. Vanderbilt. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, (1991) DOI: https://doi.org/10.1103/PhysRevB.43.6796 | spa |
dc.relation.references | [45] K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, (1993) DOI:https://doi.org/10.1103/PhysRevB.47.10142 | spa |
dc.relation.references | [46] C. Ortega López, Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN, Tesis Doctoral, Universidad Nacional de Colombia, Departamento de Física, Sede Bogotá, 2009. | spa |
dc.relation.references | [47] M. Methfessel and A.T. Paxton, Ibid., 40, No. 6, 3616 (1989).Google Scholar. 8. R. N. Silver and H. Röder, Int. J. Mod. Phys. C, 5, 735 (1994). | spa |
dc.relation.references | [48] P. E. Blöchl, O. Jepsen, and O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 – Published 15 June 1994 | spa |
dc.relation.references | [49] S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, ``A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu'', J. Chem. Phys. 132, 154104 (2010). | spa |
dc.relation.references | [50] Charles Kittel. (2005) Introduction to Solid State Physics, Jhon Wiley & Sons, Inc. 8th Edition, ISBN: 978-0-471-41526-8 pg. 50 | spa |
dc.relation.references | [51] M. Javaid, S. P. Russo, K. Kalantar, A. D. Greentree, and D. W. Drumm. Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides. Electron. Struct. 1 (2019) 015005 DOI: https://doi.org/10.1088/2516-1075/aadf44 | spa |
dc.relation.references | [52] Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. (1990). "Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3". Physical Review B. 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. doi:10.1103/physrevb.41.4993. | spa |
dc.relation.references | [53] G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, M. Ohlinger. "Chromium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. p-168-169, doi:10.1002/14356007.a07_067. | spa |
dc.relation.references | [54] A. Bolzan, B. Kennedy and C. Howard. Neutron Powder Diffraction Study of Molybdenum and Tungsten Dioxides. Australian Journal of Chemistry 48(8) 1473 - 1477 (1995) DOI: https://doi.org/10.1071/CH9951473 | spa |
dc.relation.references | [55] J. Jung, C. H. Park, J. Ihm. A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Lett., 18, 5, 2759-2765 (2018) DOI: 10.1021/acs.nanolett.7b04201 | spa |
dc.relation.references | [56] Yu Li Huang, Yifeng Chen, Wenjing Zhang, Su Ying Quek, Chang-Hsiao Chen, Lain-Jong, Wei-Ting Hsu, Wen-Hao Chang, Yu Jie Zheng, Wei Chen & Andrew T.S. Wee. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications 6:6298 · February 2015 DOI: 10.1038/ncomms7298 | spa |
dc.relation.references | [57] Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS 2 . Phys. Rev. B 83, 245213 (2011). DOI: https://doi.org/10.1103/PhysRevB.83.245213 | spa |
dc.relation.references | [58] P. Manchanda and R. Skomski. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism. (2016) J. Phys.: Condens. Matter 28 064002. DOI: 10.1088/0953-8984/28/6/064002 | spa |
dc.relation.references | [59] N.F. Andriambelaza, R.E. Mapasha, N. Chetty. Band Gap Engineering of a MoS 2 Monolayer through Oxygen Alloying: an Ab-Initio Study. Nanotechnology, 29: 50 (2018) DOI:10.1088/1361-6528/aae1e4 | spa |
dc.relation.references | [60] Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik, Volume 5, Issue 1, pp.17-26 (1921) DOI: 10.1007/BF01349680 | spa |
dc.relation.references | [61] Denton, A.R. and Ashcroft, N.W. Vegard’s Law. Physical Review A, 43, 3161-3164. (1991) http://dx.doi.org/10.1103/PhysRevA.43.3161 | spa |
dc.relation.references | [62] E. Clementi, D. L. Raimondi, and W. P. Reinhardt. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. J. Chem. Phys. 47, 1300 (1967); doi: 10.1063/1.1712084 | spa |
dc.rights | Copyright Universidad de Córdoba, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.keywords | Alloys | eng |
dc.subject.keywords | Monolayers | eng |
dc.subject.keywords | Electronic properties | eng |
dc.subject.keywords | Energy stability | eng |
dc.subject.keywords | DFT | eng |
dc.subject.proposal | Aleaciones | spa |
dc.subject.proposal | Monocapas | spa |
dc.subject.proposal | Propiedades electrónicas | spa |
dc.subject.proposal | Estabilidad energética | spa |
dc.subject.proposal | DFT | spa |
dc.title | Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_16ec | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- HumanezTobarÁngel.pdf
- Tamaño:
- 4.22 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado de Maestría en Ciencias Físicas basado en la Teoría del Funcional de la Densidad
No hay miniatura disponible
- Nombre:
- Formato de Autorización Publicación en Repositorio.pdf
- Tamaño:
- 489.96 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: