Show simple item record

dc.contributor.advisorCuadro Bautista, Walter José
dc.contributor.authorVélez Peinado, Gerson Joséspa
dc.coverage.spatialMontería, Córdobaspa
dc.date.accessioned2020-07-06T13:57:00Zspa
dc.date.available2020-07-06T13:57:00Zspa
dc.date.issued2020-07-04spa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3082spa
dc.description.abstractEl alto consumo energético de algunas tecnologías usadas en dispositivos de visualización e iluminación ha generado la búsqueda de nuevas alternativas que permitan un mayor rendimiento con un menor consumo, por lo que se han tomado medidas para tratar de mitigar este problema y así evitar un déficit de energía global. Los OLEDs han sido una de las tecnologías que permiten que la energía se aproveche de una forma más eficiente, ya que cuentan con una estructura de área única y tienen una gran eficiencia tanto en el campo de visualización, como en la parte de iluminación. En el siguiente trabajo, se expone el camino que se ha tenido que recorrer para lograr dispositivos OLED tal y como los conocemos hoy. También, se discuten las ventajas y desventajas de los tipos de OLED y los métodos de fabricación empleados, así como las propiedades de cada uno de ellos. Además, se da a conocer cuáles son los retos que enfrentan actualmente los OLEDs, los cuales una vez sean superados, permitirían que los OLEDs se puedan expandir mucho más en el campo de la iluminación.spa
dc.description.tableofcontents1. RESUMEN .............................................................................................................................................. 1spa
dc.description.tableofcontents2. ABSTRACT .............................................................................................................................................. 2spa
dc.description.tableofcontents3. INTRODUCCIÓN ..................................................................................................................................... 3spa
dc.description.tableofcontents4. OBJETIVOS ............................................................................................................................................. 5spa
dc.description.tableofcontents5. COMPUESTOS ORGÁNICOS: ASPECTOS GENERALES .............................................................................. 6spa
dc.description.tableofcontents5.1. SEMICONDUCTORES ORGÁNICOS ............................................................................................................ 7spa
dc.description.tableofcontents6. CLASIFICACIÓN DE LOS OLEDS ............................................................................................................. 10spa
dc.description.tableofcontents6.1. SM-OLED ..................................................................................................................................... 10spa
dc.description.tableofcontents6.2. PLED ............................................................................................................................................ 10spa
dc.description.tableofcontents6.3. TOLED .......................................................................................................................................... 11spa
dc.description.tableofcontents6.4. SOLED .......................................................................................................................................... 11spa
dc.description.tableofcontents6.5. WOLED ........................................................................................................................................ 11spa
dc.description.tableofcontents6.6. IMPLEMENTACIÓN DE MATRICES .......................................................................................................... 12spa
dc.description.tableofcontents6.6.1. PMOLED .............................................................................................................................. 12spa
dc.description.tableofcontents6.6.2. AMOLED.............................................................................................................................. 13spa
dc.description.tableofcontents7. EVOLUCIÓN DE LOS OLEDS .................................................................................................................. 13spa
dc.description.tableofcontents7.1. TUBOS DE RAYOS CATÓDICOS (CRT) ..................................................................................................... 14spa
dc.description.tableofcontents7.2. PANTALLAS DE CRISTAL LÍQUIDO (LCD) .................................................................................................. 16spa
dc.description.tableofcontents7.3. PANTALLA DE EMISIÓN DE CAMPO (FED) ............................................................................................... 21spa
dc.description.tableofcontents7.4. DIODOS EMISORES DE LUZ (LED) ......................................................................................................... 22spa
dc.description.tableofcontents7.5. DIODOS EMISORES DE LUZ ORGÁNICOS (OLEDS) ..................................................................................... 24spa
dc.description.tableofcontents8. ESTRUCTURAS DE UN OLED ................................................................................................................. 25spa
dc.description.tableofcontents8.1. CAPAS Y MATERIALES DE UN OLED ....................................................................................................... 26spa
dc.description.tableofcontents8.1.1. Ánodo ................................................................................................................................. 27spa
dc.description.tableofcontents8.1.2. Compuestos para la inyección de huecos (HIL) ..................................................................... 28spa
dc.description.tableofcontents8.1.3. Compuestos para el transporte de huecos (HTL) .................................................................. 28spa
dc.description.tableofcontents8.2. COMPUESTOS EMISIVOS ..................................................................................................................... 29spa
dc.description.tableofcontents8.2.1. Moléculas pequeñas ............................................................................................................ 29spa
dc.description.tableofcontents8.2.2. Polímeros conductores ........................................................................................................ 30spa
dc.description.tableofcontents8.2.3. Dendrímeros conjugados ..................................................................................................... 32spa
dc.description.tableofcontents8.2.4. Materiales que emiten en el rojo ......................................................................................... 32spa
dc.description.tableofcontents8.2.5. Materiales que emiten en el verde ...................................................................................... 33spa
dc.description.tableofcontents8.2.6. Materiales que emiten en el azul ......................................................................................... 34spa
dc.description.tableofcontents8.2.7. Materiales que emiten blanco ............................................................................................. 36spa
dc.description.tableofcontents8.3. CÁTODO ......................................................................................................................................... 38spa
dc.description.tableofcontents8.3.1. Compuestos para el transporte de electrones ...................................................................... 38spa
dc.description.tableofcontents9. MÉTODOS PRINCIPALES DE FABRICACIÓN DE UN DISPOSITIVO OLED ................................................ 38spa
dc.description.tableofcontents9.1. EVAPORACIÓN TÉRMICA AL VACÍO (TVE) ............................................................................................... 39spa
dc.description.tableofcontents9.2. DEPOSICIÓN FÍSICA AL VACÍO (PVD) ..................................................................................................... 39spa
dc.description.tableofcontents9.3. MÉTODOS EN SOLUCIONES ................................................................................................................. 40spa
dc.description.tableofcontents9.3.1. Impresión por chorro de tinta .............................................................................................. 40spa
dc.description.tableofcontents9.3.2. Método de impresión por serigrafía (Screen Printing) .......................................................... 41spa
dc.description.tableofcontents9.3.3. Método de recubrimiento por centrifugación ...................................................................... 42spa
dc.description.tableofcontents10. ENCAPSULADO DE UN OLED............................................................................................................ 42spa
dc.description.tableofcontents11. ESTADO ACTUAL DE LA TECNOLOGÍA OLED .................................................................................... 44spa
dc.description.tableofcontents12. CONCLUSIONES ............................................................................................................................... 45spa
dc.description.tableofcontents13. REFERENCIAS ................................................................................................................................... 46spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleDiodos emisores de luz orgánicos (Oleds): una alternativa para dispositivos de visualización e iluminaciónspa
dc.typeTrabajo de grado - Pregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.relation.referencesKato, K., Iwasaki, T. & Tsujimura, T. Over 130 lm/W All-Phosphorescent White OLEDs for Next-generation Lighting. J. Photopolym. Sci. Technol. 28, 335–340 (2015).spa
dc.relation.referencesCarvajal, R. Fabricación, estudio y caracterización de capas emisoras para su posible uso en diodos orgánicos emisores de luz (OLED). (Universidad Nacional de Colombia, 2018).spa
dc.relation.referencesHistory of OLEDs. in OLED Displays and Lighting 1–11 (John Wiley & Sons, Ltd, 2017). doi:10.1002/9781119040477.ch1.spa
dc.relation.referencesJou, J.-H., He, Z.-K., Su, Y.-T., Tsai, Y.-F. & Wu, C.-H. Approach for fabricating healthy OLED light sources with visual quality and energy-saving character. Org. Electron. 38, 396–400 (2016).spa
dc.relation.referencesPercino, M. J. et al. A low molecular weight OLED material: 2-(4-((2-hydroxyethyl)(methyl) amino) benzylidene) malononitrile. Synthesis, crystal structure, thin film morphology, spectroscopic characterization and DFT calculations. RSC Adv. 9, 28704–28717 (2019).spa
dc.relation.referencesKane, D. & Bertalmío, M. System gamma as a function of image-and monitor-dynamic range. J. Vis. 16, 4 (2016).spa
dc.relation.referencesFang, J. & Kim, Y. J. 78‐2: A Matrix‐Based Method of Color Correction for Metamerism Failure between LCD and OLED. in SID Symposium Digest of Technical Papers vol. 49 1044–1047 (Wiley Online Library, 2018).spa
dc.relation.referencesTsai, Y.-H. et al. P‐202: A Flexible Transparent OLED Display with FlexUPTM Technology. in SID Symposium Digest of Technical Papers vol. 48 2021–2024 (Wiley Online Library, 2017).spa
dc.relation.referencesPark, C. Il et al. World’s first large size 77‐inch transparent flexible OLED display. J. Soc. Inf. Disp. 26, 287–295 (2018).spa
dc.relation.referencesKaji, H. et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 6, 8476 (2015).spa
dc.relation.referencesWong, M. Y. & Zysman‐Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light‐emitting diodes. Adv. Mater. 29, 1605444 (2017).spa
dc.relation.referencesMcKelvey, J. P. Solid state and semiconductor physics. (Harper & Row, 2018).spa
dc.relation.referencesKubo, T. et al. Suppressing molecular vibrations in organic semiconductors by inducing strain. Nat. Commun. 7, 1–7 (2016).spa
dc.relation.referencesHuang, H., Yang, L., Facchetti, A. & Marks, T. J. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev. 117, 10291–10318 (2017).spa
dc.relation.referencesHoang, M. H. et al. Molecular-weight engineering of high-performing diketopyrrolopyrrole-based copolymer bearing high π-extended long donating units. Polymer (Guildf). 83, 77–84 (2016).spa
dc.relation.referencesZhu, C. OLED Technology Research Progress and Prospects for Future Application. IJERT, ISSN 181–2278.spa
dc.relation.referencesWong, M. Y. Recent advances in polymer organic light-emitting diodes (PLED) using non-conjugated polymers as the emitting layer and contrasting them with conjugated counterparts. J. Electron. Mater. 46, 6246–6281 (2017).spa
dc.relation.referencesZhang, M., Höfle, S., Czolk, J., Mertens, A. & Colsmann, A. All-solution processed transparent organic light emitting diodes. Nanoscale 7, 20009–20014 (2015).spa
dc.relation.referencesFröbel, M. et al. Three-terminal RGB full-color OLED pixels for ultrahigh density displays. Sci. Rep. 8, 9684 (2018).spa
dc.relation.referencesBui, T.-T., Goubard, F., Ibrahim-Ouali, M., Gigmes, D. & Dumur, F. Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs). Beilstein J. Org. Chem. 14, 282–308 (2018).spa
dc.relation.referencesPérez, E. PhOLED, SmOLED, TOLED, FOLED: cuántos tipos de paneles OLED hay y en qué se diferencian. https://www.xataka.com/componentes/pholed-smoled-toled-foled-cuantos-tipos-paneles-oled-hay-que-se-diferencian (2019).spa
dc.relation.referencesEstructura de la matriz activa de un oled (amoled). https://mx.depositphotos.com/vector-images/amoled.html?qview=244078482.spa
dc.relation.referencesKuan, P. Aharonov–Bohm effect in CRT experiment. (2015).spa
dc.relation.referencesPrajapat, N., SharwanKumar, R. M., Mayal, P. K. & Kumar, R. Theory and Application of Electrostatics. (2017).spa
dc.relation.referencesChen, H.-W., Lee, J.-H., Lin, B.-Y., Chen, S. & Wu, S.-T. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7, 17168 (2018).spa
dc.relation.referencesKoden, M. OLED Display. in OLED Displays and Lighting (ed. John Wiley & Sons, L.) 127–146 (IEEE, 2017). doi:10.1002/9781119040477.ch8.spa
dc.relation.referencesChristopher Gear, Kenneth Diest, Vladimir Liberman, and M. R. Engineered liquid crystal anchoring energies with nanopatterned surfaces. Opt. Soc. 23, 807–814 (2015).spa
dc.relation.referencesInc, J. D. LCD Basics. https://www.j-display.com/english/technology/lcdbasic.html (2020).spa
dc.relation.referencesZhao, D. et al. Light-emitting liquid crystal displays based on an aggregation-induced emission luminogen. Adv. Opt. Mater. 3, 199–202 (2015).spa
dc.relation.referencesSchadt, M. Nematic liquid crystals and twisted-nematic LCDs. Liq. Cryst. 42, 646–652 (2015).spa
dc.relation.referencesSmirnov, B. M. Theory of gas discharge plasma. (Springer, 2015).spa
dc.relation.referencesPlasma Displays. https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Optical_Properties/Plasma_Displays (2020).spa
dc.relation.referencesMikoshiba, S. Plasma Display Panel (PDP). Handb. Digit. Imaging 1–52 (2015).spa
dc.relation.referencesIndian Institute of Technology. www.iitk.ac.in.spa
dc.relation.referencesZulkifli, Z., Kalita, G. & Tanemura, M. Fabrication of transparent and flexible carbon-doped ZnO field emission display on plastic substrate. Phys. Status Solidi - Rapid Res. Lett. 9, 145–148 (2015).spa
dc.relation.referencesY la luz azul se hizo – Premio Nobel de Física 2014. (2014).spa
dc.relation.referencesHeld, G. Introduction to light emitting diode technology and applications. (CRC press, 2016).spa
dc.relation.referencesChakraborty, A. Encapsulation for phosphor-converted white light emitting diode. (2016).spa
dc.relation.referencesFundamentals of OLEDs. in OLED Displays and Lighting 12–16 (John Wiley & Sons, Ltd, 2017). doi:10.1002/9781119040477.ch2.spa
dc.relation.referencesZaier, R., Hajaji, S., Kozaki, M. & Ayachi, S. DFT and TD-DFT studies on the electronic and optical properties of linear π-conjugated cyclopentadithiophene (CPDT) dimer for efficient blue OLED. Opt. Mater. (Amst). 91, 108–114 (2019).spa
dc.relation.referencesMora, J. et al. Organic Light Emitting Diodes (OLEDs) and their technological bases. Sci. Tech. XVI, 199 (2011).spa
dc.relation.referencesKoden, M. OLED Devices. in OLED Displays and Lighting (ed. Wiley - IEEE) 75–102 (John Wiley & Sons, Ltd, 2017). doi:10.1002/9781119040477.ch5.spa
dc.relation.referencesMorales‐Masis, M. et al. An Indium‐Free Anode for Large‐Area Flexible OLEDs: Defect‐Free Transparent Conductive Zinc Tin Oxide. Adv. Funct. Mater. 26, 384–392 (2016).spa
dc.relation.referencesLiu, Y.-F. et al. Improved efficiency of indium-tin-oxide-free organic light-emitting devices using PEDOT: PSS/graphene oxide composite anode. Org. Electron. 26, 81–85 (2015).spa
dc.relation.referencesWu, W.-T. et al. Dominating factors for efficiency enhancement of AZO embedded OLEDs. in 2016 5th International Symposium on Next-Generation Electronics (ISNE) 1–2 (IEEE, 2016).spa
dc.relation.referencesDoetz, F. et al. Phenacene compounds for organic electronics. (2016).spa
dc.relation.referencesGade, L., Martens, S. & Geib, S. Tetraazaperopyrene compounds and their use as n-type semiconductors. (2015).spa
dc.relation.referencesGaspar, D. J. & Polikarpov, E. OLED fundamentals: materials, devices, and processing of organic light-emitting diodes. (CRC press, 2015).spa
dc.relation.referencesLi, Y.-H. et al. Cu-Doped nickel oxide prepared using a low-temperature combustion method as a hole-injection layer for high-performance OLEDs. J. Mater. Chem. C 5, 11751–11757 (2017).spa
dc.relation.referencesThejo Kalyani, N. & Dhoble, S. J. Organic light emitting diodes: Energy saving lighting technology - A review. Renew. Sustain. Energy Rev. 16, 2696–2723 (2012).spa
dc.relation.referencesKamata, T., Sasabe, H., Igarashi, M. & Kido, J. A novel sterically bulky hole transporter to remarkably improve the lifetime of thermally activated delayed fluorescent OLEDs at high brightness. Chem. Eur. J. 24, 4590–4596 (2018).spa
dc.relation.referencesNeogi, I. et al. Organic amorphous hole-transporting materials based on Tröger’s Base: alternatives to NPB. RSC Adv. 5, 26806–26810 (2015).spa
dc.relation.referencesKim, J. H. et al. Carrier injection efficiencies and energy level alignments of multilayer graphene anodes for organic light-emitting diodes with different hole injection layers. Carbon N. Y. 79, 623–630 (2014).spa
dc.relation.referencesHuang, J. et al. Robust luminescent small molecules with aggregation-induced delayed fluorescence for efficient solution-processed OLEDs. J. Mater. Chem. C 7, 330–339 (2019).spa
dc.relation.referencesChen, Y. et al. Triazatruxene-based small molecules with thermally activated delayed fluorescence, aggregation-induced emission and mechanochromic luminescence properties for solution-processable nondoped OLEDs. J. Mater. Chem. C 6, 12503–12508 (2018).spa
dc.relation.referencesDumur, F. Carbazole-based polymers as hosts for solution-processed organic light-emitting diodes: Simplicity, efficacy. Org. Electron. 25, 345–361 (2015).spa
dc.relation.referencesStoltzfus, D. M., Jiang, W., Brewer, A. M. & Burn, P. L. Twisted dendrons for highly luminescent green emissive phosphorescent dendrimers. J. Mater. Chem. C 6, 10315–10326 (2018).spa
dc.relation.referencesNi, T. et al. Red emissive organic light-emitting diodes based on codeposited inexpensive Cu I complexes. J. Mater. Chem. C 3, 5835–5843 (2015).spa
dc.relation.referencesChi, Y., Chang, T.-K., Ganesan, P. & Rajakannu, P. Emissive bis-tridentate Ir (III) metal complexes: Tactics, photophysics and applications. Coord. Chem. Rev. 346, 91–100 (2017).spa
dc.relation.referencesKim, J. Y. et al. Save energy on OLED lighting by a simple yet powerful technique. RSC Adv. 5, 8415–8421 (2015).spa
dc.relation.referencesLiu, J. et al. High-efficient sky-blue and green emissive OLEDs based on FIrpic and FIrdfpic. Synth. Met. 234, 111–116 (2017).spa
dc.relation.referencesZhou, P. et al. Chromatic-stability white organic light emitting diodes based on phosphorescence doped electron transport layer. Solid. State. Electron. 94, 6–10 (2014).spa
dc.relation.referencesKomatsu, R., Sasabe, H., Inomata, S., Pu, Y. J. & Kido, J. High efficiency solution processed OLEDs using a thermally activated delayed fluorescence emitter. Synth. Met. 202, 165–168 (2015).spa
dc.relation.referencesDerue, L. et al. All-solution-processed organic light-emitting diodes based on photostable photo-cross-linkable fluorescent small molecules. ACS Appl. Mater. Interfaces 8, 16207–16217 (2016).spa
dc.relation.referencesFurukawa, T., Nakanotani, H., Inoue, M. & Adachi, C. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Sci. Rep. 5, 8429 (2015).spa
dc.relation.referencesWu, J., Zhang, H. & Du, S. Tunable luminescence and white light emission of mixed lanthanide–organic frameworks based on polycarboxylate ligands. J. Mater. Chem. C 4, 3364–3374 (2016).spa
dc.relation.referencesLiu, X.-K. et al. High-performance, simplified fluorescence and phosphorescence hybrid white organic light-emitting devices allowing complete triplet harvesting. ACS Appl. Mater. Interfaces 8, 26135–26142 (2016).spa
dc.relation.referencesRostami, A., Noori, M. & Matloub, S. Layer optimization in wight organic light emitting diodes (WOLEDs) to reduce the portion of guided waves in ITO/Glass interface. Optik (Stuttg). 124, 6582–6585 (2013).spa
dc.relation.referencesYin, X. et al. Benzobisoxazole-based electron transporting materials with high Tg and ambipolar property: High efficiency deep-red phosphorescent OLEDs. J. Mater. Chem. C 3, 7589–7596 (2015).spa
dc.relation.referencesXu, Q.-L. et al. Efficient OLEDs with low efficiency roll-off using iridium complexes possessing good electron mobility. J. Mater. Chem. C 3, 3694–3701 (2015).spa
dc.relation.referencesGuedes, A. F. S., Tartari, S., Guedes, V. P. & Cunha, I. J. Flexible Optoelectronic Technology Applied in Organic Light Emitting Diode (OLED). J. Syst. Cybern. Informatics 15, 90–92 (2017).spa
dc.relation.referencesCho, D.-H. et al. Flexible integrated OLED substrates prepared by printing and plating process. Org. Electron. 50, 170–176 (2017).spa
dc.relation.referencesOlivier, S., Ishow, E., Della-Gatta, S. M. & Maindron, T. Inkjet deposition of a hole-transporting small molecule to realize a hybrid solution-evaporation green top-emitting OLED. Org. Electron. 49, 24–32 (2017).spa
dc.relation.referencesSocol, M. et al. Heterostructures based on small molecules organic compounds. Dig. J. Nanomater. Biostructures 10, 1383–1392 (2015).spa
dc.relation.referencesRibeiro, J. F. et al. A chemically stable PVD multilayer encapsulation for lithium microbatteries. J. Phys. D. Appl. Phys. 48, 395306 (2015).spa
dc.relation.referencesWu, J. et al. Efficient multi-barrier thin film encapsulation of OLED using alternating Al 2 O 3 and polymer layers. RSC Adv. 8, 5721–5727 (2018).spa
dc.relation.referencesTyagi, P., Srivastava, R., Giri, L. I., Tuli, S. & Lee, C. Degradation of organic light emitting diode: Heat related issues and solutions. Synth. Met. 216, 40–50 (2016).spa
dc.relation.referencesZaier, R., Hajaji, S., Kozaki, M. & Ayachi, S. Designing New Small Molecules from Cyclopentadithiophene ( CPDT ) Derviatives for Highly Efficient Blue Emitters in OLEDs : DFT Computational Modeling. 2508, 195–207 (2019).spa
dc.relation.referencesShin, H. et al. 7.1: Invited Paper: Novel OLED display technologies for large‐size UHD OLED TVs. in SID Symposium Digest of Technical Papers vol. 46 53–56 (Wiley Online Library, 2015).spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalOLEDspa
dc.subject.proposalSemiconductores orgánicosspa
dc.subject.proposalPolímeros conductoresspa
dc.subject.proposalComplejos organometálicosspa
dc.subject.proposalRGBspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versionInfo:eu-repo/semantics/publishedVersionspa
dc.subject.keywordsOLEDspa
dc.subject.keywordsOrganic semiconductorsspa
dc.subject.keywordsConductive polymersspa
dc.subject.keywordsOrganometallic complexesspa
dc.subject.keywordsRGBspa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico(a)spa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.programQuímicaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.description.modalityTrabajo de Investigación y/o Extensión


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2020
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2020