Publicación: Diodos emisores de luz orgánicos (Oleds): una alternativa para dispositivos de visualización e iluminación
dc.contributor.advisor | Cuadro Bautista, Walter José | |
dc.contributor.author | Vélez Peinado, Gerson José | spa |
dc.coverage.spatial | Montería, Córdoba | spa |
dc.date.accessioned | 2020-07-06T13:57:00Z | spa |
dc.date.available | 2020-07-06T13:57:00Z | spa |
dc.date.issued | 2020-07-04 | spa |
dc.description.abstract | El alto consumo energético de algunas tecnologías usadas en dispositivos de visualización e iluminación ha generado la búsqueda de nuevas alternativas que permitan un mayor rendimiento con un menor consumo, por lo que se han tomado medidas para tratar de mitigar este problema y así evitar un déficit de energía global. Los OLEDs han sido una de las tecnologías que permiten que la energía se aproveche de una forma más eficiente, ya que cuentan con una estructura de área única y tienen una gran eficiencia tanto en el campo de visualización, como en la parte de iluminación. En el siguiente trabajo, se expone el camino que se ha tenido que recorrer para lograr dispositivos OLED tal y como los conocemos hoy. También, se discuten las ventajas y desventajas de los tipos de OLED y los métodos de fabricación empleados, así como las propiedades de cada uno de ellos. Además, se da a conocer cuáles son los retos que enfrentan actualmente los OLEDs, los cuales una vez sean superados, permitirían que los OLEDs se puedan expandir mucho más en el campo de la iluminación. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.modality | Trabajo de Investigación y/o Extensión | |
dc.description.tableofcontents | 1. RESUMEN .............................................................................................................................................. 1 | spa |
dc.description.tableofcontents | 2. ABSTRACT .............................................................................................................................................. 2 | spa |
dc.description.tableofcontents | 3. INTRODUCCIÓN ..................................................................................................................................... 3 | spa |
dc.description.tableofcontents | 4. OBJETIVOS ............................................................................................................................................. 5 | spa |
dc.description.tableofcontents | 5. COMPUESTOS ORGÁNICOS: ASPECTOS GENERALES .............................................................................. 6 | spa |
dc.description.tableofcontents | 5.1. SEMICONDUCTORES ORGÁNICOS ............................................................................................................ 7 | spa |
dc.description.tableofcontents | 6. CLASIFICACIÓN DE LOS OLEDS ............................................................................................................. 10 | spa |
dc.description.tableofcontents | 6.1. SM-OLED ..................................................................................................................................... 10 | spa |
dc.description.tableofcontents | 6.2. PLED ............................................................................................................................................ 10 | spa |
dc.description.tableofcontents | 6.3. TOLED .......................................................................................................................................... 11 | spa |
dc.description.tableofcontents | 6.4. SOLED .......................................................................................................................................... 11 | spa |
dc.description.tableofcontents | 6.5. WOLED ........................................................................................................................................ 11 | spa |
dc.description.tableofcontents | 6.6. IMPLEMENTACIÓN DE MATRICES .......................................................................................................... 12 | spa |
dc.description.tableofcontents | 6.6.1. PMOLED .............................................................................................................................. 12 | spa |
dc.description.tableofcontents | 6.6.2. AMOLED.............................................................................................................................. 13 | spa |
dc.description.tableofcontents | 7. EVOLUCIÓN DE LOS OLEDS .................................................................................................................. 13 | spa |
dc.description.tableofcontents | 7.1. TUBOS DE RAYOS CATÓDICOS (CRT) ..................................................................................................... 14 | spa |
dc.description.tableofcontents | 7.2. PANTALLAS DE CRISTAL LÍQUIDO (LCD) .................................................................................................. 16 | spa |
dc.description.tableofcontents | 7.3. PANTALLA DE EMISIÓN DE CAMPO (FED) ............................................................................................... 21 | spa |
dc.description.tableofcontents | 7.4. DIODOS EMISORES DE LUZ (LED) ......................................................................................................... 22 | spa |
dc.description.tableofcontents | 7.5. DIODOS EMISORES DE LUZ ORGÁNICOS (OLEDS) ..................................................................................... 24 | spa |
dc.description.tableofcontents | 8. ESTRUCTURAS DE UN OLED ................................................................................................................. 25 | spa |
dc.description.tableofcontents | 8.1. CAPAS Y MATERIALES DE UN OLED ....................................................................................................... 26 | spa |
dc.description.tableofcontents | 8.1.1. Ánodo ................................................................................................................................. 27 | spa |
dc.description.tableofcontents | 8.1.2. Compuestos para la inyección de huecos (HIL) ..................................................................... 28 | spa |
dc.description.tableofcontents | 8.1.3. Compuestos para el transporte de huecos (HTL) .................................................................. 28 | spa |
dc.description.tableofcontents | 8.2. COMPUESTOS EMISIVOS ..................................................................................................................... 29 | spa |
dc.description.tableofcontents | 8.2.1. Moléculas pequeñas ............................................................................................................ 29 | spa |
dc.description.tableofcontents | 8.2.2. Polímeros conductores ........................................................................................................ 30 | spa |
dc.description.tableofcontents | 8.2.3. Dendrímeros conjugados ..................................................................................................... 32 | spa |
dc.description.tableofcontents | 8.2.4. Materiales que emiten en el rojo ......................................................................................... 32 | spa |
dc.description.tableofcontents | 8.2.5. Materiales que emiten en el verde ...................................................................................... 33 | spa |
dc.description.tableofcontents | 8.2.6. Materiales que emiten en el azul ......................................................................................... 34 | spa |
dc.description.tableofcontents | 8.2.7. Materiales que emiten blanco ............................................................................................. 36 | spa |
dc.description.tableofcontents | 8.3. CÁTODO ......................................................................................................................................... 38 | spa |
dc.description.tableofcontents | 8.3.1. Compuestos para el transporte de electrones ...................................................................... 38 | spa |
dc.description.tableofcontents | 9. MÉTODOS PRINCIPALES DE FABRICACIÓN DE UN DISPOSITIVO OLED ................................................ 38 | spa |
dc.description.tableofcontents | 9.1. EVAPORACIÓN TÉRMICA AL VACÍO (TVE) ............................................................................................... 39 | spa |
dc.description.tableofcontents | 9.2. DEPOSICIÓN FÍSICA AL VACÍO (PVD) ..................................................................................................... 39 | spa |
dc.description.tableofcontents | 9.3. MÉTODOS EN SOLUCIONES ................................................................................................................. 40 | spa |
dc.description.tableofcontents | 9.3.1. Impresión por chorro de tinta .............................................................................................. 40 | spa |
dc.description.tableofcontents | 9.3.2. Método de impresión por serigrafía (Screen Printing) .......................................................... 41 | spa |
dc.description.tableofcontents | 9.3.3. Método de recubrimiento por centrifugación ...................................................................... 42 | spa |
dc.description.tableofcontents | 10. ENCAPSULADO DE UN OLED............................................................................................................ 42 | spa |
dc.description.tableofcontents | 11. ESTADO ACTUAL DE LA TECNOLOGÍA OLED .................................................................................... 44 | spa |
dc.description.tableofcontents | 12. CONCLUSIONES ............................................................................................................................... 45 | spa |
dc.description.tableofcontents | 13. REFERENCIAS ................................................................................................................................... 46 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/3082 | spa |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.program | Química | spa |
dc.relation.references | Kato, K., Iwasaki, T. & Tsujimura, T. Over 130 lm/W All-Phosphorescent White OLEDs for Next-generation Lighting. J. Photopolym. Sci. Technol. 28, 335–340 (2015). | spa |
dc.relation.references | Carvajal, R. Fabricación, estudio y caracterización de capas emisoras para su posible uso en diodos orgánicos emisores de luz (OLED). (Universidad Nacional de Colombia, 2018). | spa |
dc.relation.references | History of OLEDs. in OLED Displays and Lighting 1–11 (John Wiley & Sons, Ltd, 2017). doi:10.1002/9781119040477.ch1. | spa |
dc.relation.references | Jou, J.-H., He, Z.-K., Su, Y.-T., Tsai, Y.-F. & Wu, C.-H. Approach for fabricating healthy OLED light sources with visual quality and energy-saving character. Org. Electron. 38, 396–400 (2016). | spa |
dc.relation.references | Percino, M. J. et al. A low molecular weight OLED material: 2-(4-((2-hydroxyethyl)(methyl) amino) benzylidene) malononitrile. Synthesis, crystal structure, thin film morphology, spectroscopic characterization and DFT calculations. RSC Adv. 9, 28704–28717 (2019). | spa |
dc.relation.references | Kane, D. & Bertalmío, M. System gamma as a function of image-and monitor-dynamic range. J. Vis. 16, 4 (2016). | spa |
dc.relation.references | Fang, J. & Kim, Y. J. 78‐2: A Matrix‐Based Method of Color Correction for Metamerism Failure between LCD and OLED. in SID Symposium Digest of Technical Papers vol. 49 1044–1047 (Wiley Online Library, 2018). | spa |
dc.relation.references | Tsai, Y.-H. et al. P‐202: A Flexible Transparent OLED Display with FlexUPTM Technology. in SID Symposium Digest of Technical Papers vol. 48 2021–2024 (Wiley Online Library, 2017). | spa |
dc.relation.references | Park, C. Il et al. World’s first large size 77‐inch transparent flexible OLED display. J. Soc. Inf. Disp. 26, 287–295 (2018). | spa |
dc.relation.references | Kaji, H. et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 6, 8476 (2015). | spa |
dc.relation.references | Wong, M. Y. & Zysman‐Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light‐emitting diodes. Adv. Mater. 29, 1605444 (2017). | spa |
dc.relation.references | McKelvey, J. P. Solid state and semiconductor physics. (Harper & Row, 2018). | spa |
dc.relation.references | Kubo, T. et al. Suppressing molecular vibrations in organic semiconductors by inducing strain. Nat. Commun. 7, 1–7 (2016). | spa |
dc.relation.references | Huang, H., Yang, L., Facchetti, A. & Marks, T. J. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev. 117, 10291–10318 (2017). | spa |
dc.relation.references | Hoang, M. H. et al. Molecular-weight engineering of high-performing diketopyrrolopyrrole-based copolymer bearing high π-extended long donating units. Polymer (Guildf). 83, 77–84 (2016). | spa |
dc.relation.references | Zhu, C. OLED Technology Research Progress and Prospects for Future Application. IJERT, ISSN 181–2278. | spa |
dc.relation.references | Wong, M. Y. Recent advances in polymer organic light-emitting diodes (PLED) using non-conjugated polymers as the emitting layer and contrasting them with conjugated counterparts. J. Electron. Mater. 46, 6246–6281 (2017). | spa |
dc.relation.references | Zhang, M., Höfle, S., Czolk, J., Mertens, A. & Colsmann, A. All-solution processed transparent organic light emitting diodes. Nanoscale 7, 20009–20014 (2015). | spa |
dc.relation.references | Fröbel, M. et al. Three-terminal RGB full-color OLED pixels for ultrahigh density displays. Sci. Rep. 8, 9684 (2018). | spa |
dc.relation.references | Bui, T.-T., Goubard, F., Ibrahim-Ouali, M., Gigmes, D. & Dumur, F. Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs). Beilstein J. Org. Chem. 14, 282–308 (2018). | spa |
dc.relation.references | Pérez, E. PhOLED, SmOLED, TOLED, FOLED: cuántos tipos de paneles OLED hay y en qué se diferencian. https://www.xataka.com/componentes/pholed-smoled-toled-foled-cuantos-tipos-paneles-oled-hay-que-se-diferencian (2019). | spa |
dc.relation.references | Estructura de la matriz activa de un oled (amoled). https://mx.depositphotos.com/vector-images/amoled.html?qview=244078482. | spa |
dc.relation.references | Kuan, P. Aharonov–Bohm effect in CRT experiment. (2015). | spa |
dc.relation.references | Prajapat, N., SharwanKumar, R. M., Mayal, P. K. & Kumar, R. Theory and Application of Electrostatics. (2017). | spa |
dc.relation.references | Chen, H.-W., Lee, J.-H., Lin, B.-Y., Chen, S. & Wu, S.-T. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7, 17168 (2018). | spa |
dc.relation.references | Koden, M. OLED Display. in OLED Displays and Lighting (ed. John Wiley & Sons, L.) 127–146 (IEEE, 2017). doi:10.1002/9781119040477.ch8. | spa |
dc.relation.references | Christopher Gear, Kenneth Diest, Vladimir Liberman, and M. R. Engineered liquid crystal anchoring energies with nanopatterned surfaces. Opt. Soc. 23, 807–814 (2015). | spa |
dc.relation.references | Inc, J. D. LCD Basics. https://www.j-display.com/english/technology/lcdbasic.html (2020). | spa |
dc.relation.references | Zhao, D. et al. Light-emitting liquid crystal displays based on an aggregation-induced emission luminogen. Adv. Opt. Mater. 3, 199–202 (2015). | spa |
dc.relation.references | Schadt, M. Nematic liquid crystals and twisted-nematic LCDs. Liq. Cryst. 42, 646–652 (2015). | spa |
dc.relation.references | Smirnov, B. M. Theory of gas discharge plasma. (Springer, 2015). | spa |
dc.relation.references | Plasma Displays. https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Optical_Properties/Plasma_Displays (2020). | spa |
dc.relation.references | Mikoshiba, S. Plasma Display Panel (PDP). Handb. Digit. Imaging 1–52 (2015). | spa |
dc.relation.references | Indian Institute of Technology. www.iitk.ac.in. | spa |
dc.relation.references | Zulkifli, Z., Kalita, G. & Tanemura, M. Fabrication of transparent and flexible carbon-doped ZnO field emission display on plastic substrate. Phys. Status Solidi - Rapid Res. Lett. 9, 145–148 (2015). | spa |
dc.relation.references | Y la luz azul se hizo – Premio Nobel de Física 2014. (2014). | spa |
dc.relation.references | Held, G. Introduction to light emitting diode technology and applications. (CRC press, 2016). | spa |
dc.relation.references | Chakraborty, A. Encapsulation for phosphor-converted white light emitting diode. (2016). | spa |
dc.relation.references | Fundamentals of OLEDs. in OLED Displays and Lighting 12–16 (John Wiley & Sons, Ltd, 2017). doi:10.1002/9781119040477.ch2. | spa |
dc.relation.references | Zaier, R., Hajaji, S., Kozaki, M. & Ayachi, S. DFT and TD-DFT studies on the electronic and optical properties of linear π-conjugated cyclopentadithiophene (CPDT) dimer for efficient blue OLED. Opt. Mater. (Amst). 91, 108–114 (2019). | spa |
dc.relation.references | Mora, J. et al. Organic Light Emitting Diodes (OLEDs) and their technological bases. Sci. Tech. XVI, 199 (2011). | spa |
dc.relation.references | Koden, M. OLED Devices. in OLED Displays and Lighting (ed. Wiley - IEEE) 75–102 (John Wiley & Sons, Ltd, 2017). doi:10.1002/9781119040477.ch5. | spa |
dc.relation.references | Morales‐Masis, M. et al. An Indium‐Free Anode for Large‐Area Flexible OLEDs: Defect‐Free Transparent Conductive Zinc Tin Oxide. Adv. Funct. Mater. 26, 384–392 (2016). | spa |
dc.relation.references | Liu, Y.-F. et al. Improved efficiency of indium-tin-oxide-free organic light-emitting devices using PEDOT: PSS/graphene oxide composite anode. Org. Electron. 26, 81–85 (2015). | spa |
dc.relation.references | Wu, W.-T. et al. Dominating factors for efficiency enhancement of AZO embedded OLEDs. in 2016 5th International Symposium on Next-Generation Electronics (ISNE) 1–2 (IEEE, 2016). | spa |
dc.relation.references | Doetz, F. et al. Phenacene compounds for organic electronics. (2016). | spa |
dc.relation.references | Gade, L., Martens, S. & Geib, S. Tetraazaperopyrene compounds and their use as n-type semiconductors. (2015). | spa |
dc.relation.references | Gaspar, D. J. & Polikarpov, E. OLED fundamentals: materials, devices, and processing of organic light-emitting diodes. (CRC press, 2015). | spa |
dc.relation.references | Li, Y.-H. et al. Cu-Doped nickel oxide prepared using a low-temperature combustion method as a hole-injection layer for high-performance OLEDs. J. Mater. Chem. C 5, 11751–11757 (2017). | spa |
dc.relation.references | Thejo Kalyani, N. & Dhoble, S. J. Organic light emitting diodes: Energy saving lighting technology - A review. Renew. Sustain. Energy Rev. 16, 2696–2723 (2012). | spa |
dc.relation.references | Kamata, T., Sasabe, H., Igarashi, M. & Kido, J. A novel sterically bulky hole transporter to remarkably improve the lifetime of thermally activated delayed fluorescent OLEDs at high brightness. Chem. Eur. J. 24, 4590–4596 (2018). | spa |
dc.relation.references | Neogi, I. et al. Organic amorphous hole-transporting materials based on Tröger’s Base: alternatives to NPB. RSC Adv. 5, 26806–26810 (2015). | spa |
dc.relation.references | Kim, J. H. et al. Carrier injection efficiencies and energy level alignments of multilayer graphene anodes for organic light-emitting diodes with different hole injection layers. Carbon N. Y. 79, 623–630 (2014). | spa |
dc.relation.references | Huang, J. et al. Robust luminescent small molecules with aggregation-induced delayed fluorescence for efficient solution-processed OLEDs. J. Mater. Chem. C 7, 330–339 (2019). | spa |
dc.relation.references | Chen, Y. et al. Triazatruxene-based small molecules with thermally activated delayed fluorescence, aggregation-induced emission and mechanochromic luminescence properties for solution-processable nondoped OLEDs. J. Mater. Chem. C 6, 12503–12508 (2018). | spa |
dc.relation.references | Dumur, F. Carbazole-based polymers as hosts for solution-processed organic light-emitting diodes: Simplicity, efficacy. Org. Electron. 25, 345–361 (2015). | spa |
dc.relation.references | Stoltzfus, D. M., Jiang, W., Brewer, A. M. & Burn, P. L. Twisted dendrons for highly luminescent green emissive phosphorescent dendrimers. J. Mater. Chem. C 6, 10315–10326 (2018). | spa |
dc.relation.references | Ni, T. et al. Red emissive organic light-emitting diodes based on codeposited inexpensive Cu I complexes. J. Mater. Chem. C 3, 5835–5843 (2015). | spa |
dc.relation.references | Chi, Y., Chang, T.-K., Ganesan, P. & Rajakannu, P. Emissive bis-tridentate Ir (III) metal complexes: Tactics, photophysics and applications. Coord. Chem. Rev. 346, 91–100 (2017). | spa |
dc.relation.references | Kim, J. Y. et al. Save energy on OLED lighting by a simple yet powerful technique. RSC Adv. 5, 8415–8421 (2015). | spa |
dc.relation.references | Liu, J. et al. High-efficient sky-blue and green emissive OLEDs based on FIrpic and FIrdfpic. Synth. Met. 234, 111–116 (2017). | spa |
dc.relation.references | Zhou, P. et al. Chromatic-stability white organic light emitting diodes based on phosphorescence doped electron transport layer. Solid. State. Electron. 94, 6–10 (2014). | spa |
dc.relation.references | Komatsu, R., Sasabe, H., Inomata, S., Pu, Y. J. & Kido, J. High efficiency solution processed OLEDs using a thermally activated delayed fluorescence emitter. Synth. Met. 202, 165–168 (2015). | spa |
dc.relation.references | Derue, L. et al. All-solution-processed organic light-emitting diodes based on photostable photo-cross-linkable fluorescent small molecules. ACS Appl. Mater. Interfaces 8, 16207–16217 (2016). | spa |
dc.relation.references | Furukawa, T., Nakanotani, H., Inoue, M. & Adachi, C. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Sci. Rep. 5, 8429 (2015). | spa |
dc.relation.references | Wu, J., Zhang, H. & Du, S. Tunable luminescence and white light emission of mixed lanthanide–organic frameworks based on polycarboxylate ligands. J. Mater. Chem. C 4, 3364–3374 (2016). | spa |
dc.relation.references | Liu, X.-K. et al. High-performance, simplified fluorescence and phosphorescence hybrid white organic light-emitting devices allowing complete triplet harvesting. ACS Appl. Mater. Interfaces 8, 26135–26142 (2016). | spa |
dc.relation.references | Rostami, A., Noori, M. & Matloub, S. Layer optimization in wight organic light emitting diodes (WOLEDs) to reduce the portion of guided waves in ITO/Glass interface. Optik (Stuttg). 124, 6582–6585 (2013). | spa |
dc.relation.references | Yin, X. et al. Benzobisoxazole-based electron transporting materials with high Tg and ambipolar property: High efficiency deep-red phosphorescent OLEDs. J. Mater. Chem. C 3, 7589–7596 (2015). | spa |
dc.relation.references | Xu, Q.-L. et al. Efficient OLEDs with low efficiency roll-off using iridium complexes possessing good electron mobility. J. Mater. Chem. C 3, 3694–3701 (2015). | spa |
dc.relation.references | Guedes, A. F. S., Tartari, S., Guedes, V. P. & Cunha, I. J. Flexible Optoelectronic Technology Applied in Organic Light Emitting Diode (OLED). J. Syst. Cybern. Informatics 15, 90–92 (2017). | spa |
dc.relation.references | Cho, D.-H. et al. Flexible integrated OLED substrates prepared by printing and plating process. Org. Electron. 50, 170–176 (2017). | spa |
dc.relation.references | Olivier, S., Ishow, E., Della-Gatta, S. M. & Maindron, T. Inkjet deposition of a hole-transporting small molecule to realize a hybrid solution-evaporation green top-emitting OLED. Org. Electron. 49, 24–32 (2017). | spa |
dc.relation.references | Socol, M. et al. Heterostructures based on small molecules organic compounds. Dig. J. Nanomater. Biostructures 10, 1383–1392 (2015). | spa |
dc.relation.references | Ribeiro, J. F. et al. A chemically stable PVD multilayer encapsulation for lithium microbatteries. J. Phys. D. Appl. Phys. 48, 395306 (2015). | spa |
dc.relation.references | Wu, J. et al. Efficient multi-barrier thin film encapsulation of OLED using alternating Al 2 O 3 and polymer layers. RSC Adv. 8, 5721–5727 (2018). | spa |
dc.relation.references | Tyagi, P., Srivastava, R., Giri, L. I., Tuli, S. & Lee, C. Degradation of organic light emitting diode: Heat related issues and solutions. Synth. Met. 216, 40–50 (2016). | spa |
dc.relation.references | Zaier, R., Hajaji, S., Kozaki, M. & Ayachi, S. Designing New Small Molecules from Cyclopentadithiophene ( CPDT ) Derviatives for Highly Efficient Blue Emitters in OLEDs : DFT Computational Modeling. 2508, 195–207 (2019). | spa |
dc.relation.references | Shin, H. et al. 7.1: Invited Paper: Novel OLED display technologies for large‐size UHD OLED TVs. in SID Symposium Digest of Technical Papers vol. 46 53–56 (Wiley Online Library, 2015). | spa |
dc.rights | Copyright Universidad de Córdoba, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.keywords | OLED | spa |
dc.subject.keywords | Organic semiconductors | spa |
dc.subject.keywords | Conductive polymers | spa |
dc.subject.keywords | Organometallic complexes | spa |
dc.subject.keywords | RGB | spa |
dc.subject.proposal | OLED | spa |
dc.subject.proposal | Semiconductores orgánicos | spa |
dc.subject.proposal | Polímeros conductores | spa |
dc.subject.proposal | Complejos organometálicos | spa |
dc.subject.proposal | RGB | spa |
dc.title | Diodos emisores de luz orgánicos (Oleds): una alternativa para dispositivos de visualización e iluminación | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | Info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_16ec | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: