Publicación: Desarrollo de recubrimientos inteligentes con propiedades antifouling basados en tierras diatomeas dopadas con nanopartículas metálicas
dc.contributor.advisor | Pérez Sotelo, Dairo E | spa |
dc.contributor.advisor | Meléndrez Castro, Manuel F | spa |
dc.contributor.author | Villalba Yépez, Clara Inés | spa |
dc.date.accessioned | 2023-02-17T14:48:56Z | |
dc.date.available | 2023-02-17T14:48:56Z | |
dc.date.issued | 2023-02-16 | |
dc.description.abstract | El océano como una industria importante para los seres humanos genera $ 1,5 billones en 2022 y se espera que se duplique para 2030, todavía es un tema complicado sobre la biodiversidad, la calidad del agua y la contaminación ambiental. Por un lado, el biofouling es una de las mayores pérdidas para la economía marina. Por otro lado, el consumo de combustible causado por la resistencia al biofouling también tiene un impacto negativo en el medio ambiente. Con la actualización de los estándares contra la contaminación, los materiales funcionales que conducen a la protección del medio ambiente están cambiando gradualmente a la primera opción. En consecuencia, se ha prestado más atención a los recubrimientos antifouling amigables con el medio ambiente. Este trabajo presenta una nueva alternativa de recubrimientos antifouling de dos tipos, látex y esmalte, que incorporan un aditivo orgánico a base de diatomeas dopadas con iones y nanopartículas metálicas. Para esto se modificó superficialmente las diatomeas mediante la saturación con iones Cu2+ y Ag+; y la adición de nanopartículas de CuO. La caracterización de dicho aditivo se llevó a cabo mediante técnicas microscópicas y espectroscópicas como SEM-EDS, FTIR-ATR, EAA, UV-VIS y BET. Una vez concluida esta etapa, se procedió a formular dos tipos de recubrimientos, látex y esmalte, que contaron con la adición del aditivo siendo caracterizados mediante ensayos de flexibilidad, adherencia, abrasión, poder cubriente y brillo. Finalmente, para medir su desempeño como antifouling y anticorrosivo se evaluaron mediante la exposición a ambiente salino, exposición en cámara de intemperismo y la técnica de espectroscopia de impedancia electroquímica (EIS). Los recubrimientos exhibieron buenas propiedades mecánicas y excelentes propiedades de película, con un rendimiento anticorrosivo con |Z| del orden de 107 y 109, para látex y esmalte, respectivamente. Estos ensayos permiten concluir que los recubrimientos tipo esmalte, con Cu2+ más nanopartículas de CuO sin molienda, tipo esmalte presentan mejor comportamiento frente al biofouling y la corrosión al compararlo con el resto de las formulaciones. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | Dedicatoria…………………………………………………………………………………iii | spa |
dc.description.tableofcontents | Agradecimientos……………………………………………………………………….......iv | spa |
dc.description.tableofcontents | Resumen……………………………………………………………………………………vi | spa |
dc.description.tableofcontents | Abstrac……………………………………………………………………………………..vii | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ....................................................... 16 | spa |
dc.description.tableofcontents | 2. HIPÓTESIS.......................................................19 | spa |
dc.description.tableofcontents | 3. OBJETIVOS...................................................19 | spa |
dc.description.tableofcontents | 4. ANTECEDENTES TEÓRICOS...........................................................20 | spa |
dc.description.tableofcontents | 5. Instrumentación........................................................45 | spa |
dc.description.tableofcontents | 6. METODOLOGÍA..........................................................57 | spa |
dc.description.tableofcontents | 7. Resultados y análisis de resultados..........................................................82 | spa |
dc.description.tableofcontents | 8. Conclusiones..................................................................114 | spa |
dc.description.tableofcontents | 9. Referencias............................................... 116 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7126 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Química | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Fouling | eng |
dc.subject.keywords | Coatings | eng |
dc.subject.keywords | Antifungal | eng |
dc.subject.keywords | Antibacterial | eng |
dc.subject.keywords | Antifouling | eng |
dc.subject.proposal | Incrustamiento | spa |
dc.subject.proposal | Recubrimiento | spa |
dc.subject.proposal | Antifúngico | spa |
dc.subject.proposal | Antibacteriano | spa |
dc.subject.proposal | Antiincrustante | spa |
dc.title | Desarrollo de recubrimientos inteligentes con propiedades antifouling basados en tierras diatomeas dopadas con nanopartículas metálicas | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] Hertiani, T., Edrada-Ebel, R., Ortlepp, S., van Soest, R. W. M., de Voogd, N. J., Wray, V., Hentschel, U., Kozytska, S., Müller, W. E. G., & Proksch, P. (2010). From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorganic & Medicinal Chemistry, 18(3), 1297–1311. https://doi.org/10.1016/j.bmc.2009.12.028 | spa |
dcterms.references | [2] Callow, M. E., & Callow, J. E. (2002). Marine biofouling: a sticky problem. Biologist (London, England), 49(1), 10–14. | spa |
dcterms.references | [3] Flemming, H.-C. (2011). Microbial biofouling: Unsolved problems, insufficient approaches, and possible solutions. In Springer Series on Biofilms (pp. 81–109). Springer Berlin Heidelberg. | spa |
dcterms.references | [4] Nerlović, V., Perić, L., Slišković, M., & Jelić Mrčelić, G. (2018). The invasive Anadara transversa (Say, 1822) (Mollusca: Bivalvia) in the biofouling community of northern Adriatic mariculture areas. Management of Biological Invasions: International Journal of Applied Research on Biological Invasions, 9(3), 239–251. https://doi.org/10.3391/mbi.2018.9.3.06 | spa |
dcterms.references | [5] Types of heat exchanger fouling. (2021). World Pumps, 2021(1), 20–22. https://doi.org/10.1016/s0262-1762(21)00022-5 | spa |
dcterms.references | [6] Fitridge, I., Dempster, T., Guenther, J., & de Nys, R. (2012). The impact and control of biofouling in marine aquaculture: a review. Biofouling, 28(7), 649–669. https://doi.org/10.1080/08927014.2012.700478 | spa |
dcterms.references | [7] Chen, L., Duan, Y., Cui, M., Huang, R., Su, R., Qi, W., & He, Z. (2021). Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. The Science of the Total Environment, 766(144469), 144469. https://doi.org/10.1016/j.scitotenv.2020.144469 | spa |
dcterms.references | [8] Steinberg, P. D., Schneider, R., & Kjelleberg, S. (1997). Biodegradation, 8(3), 211–220. https://doi.org/10.1023/a:1008236901790 | spa |
dcterms.references | [9] Alam, J., Riaz, U., & Ahmad, S. (2008). Development of nanostructured polyaniline dispersed smart anticorrosive composite coatings. Polymers for Advanced Technologies, 19(7), 882–888. https://doi.org/10.1002/pat.1054 | spa |
dcterms.references | [10] Armstrong, E., Boyd, K. G., Pisacane, A., Peppiatt, C. J., & Burgess, J. G. (2000). Marine microbial natural products in antifouling coatings. Biofouling, 16(2–4), 215–224. https://doi.org/10.1080/08927010009378446 | spa |
dcterms.references | [11] Tian, L., Jin, E., Yu, B., Sun, H., Shang, Y., & Bing, W. (2020). Novel anti-fouling strategies of live and dead soft corals (Sarcophyton trocheliophorum): Combined physical and chemical mechanisms. Journal of Bionic Engineering, 17(4), 677–685. https://doi.org/10.1007/s42235-020-0072-x | spa |
dcterms.references | [12] Kannan, K., Senthilkumar, K., Elliott, J. E., Feyk, L. A., & Giesy, J. P. (1998). Occurrence of butyltin compounds in tissues of water birds and seaducks from the united states and canada. Archives of Environmental Contamination and Toxicology, 35(1), 64–69. https://doi.org/10.1007/s002449900350 | spa |
dcterms.references | [13] Laughlin, R. B., Jr. (1996). Bioaccumulation of TBT by aquatic organisms. In Organotin (pp. 331–355). Springer Netherlands. | spa |
dcterms.references | [14] Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50(2), 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001 | spa |
dcterms.references | [15] Castro, Í. B., Iannacone, J., Santos, S., & Fillmann, G. (2018). TBT is still a matter of concern in Peru. Chemosphere, 205, 253–259. https://doi.org/10.1016/j.chemosphere.2018.04.097 | spa |
dcterms.references | [16] Williams, B. C. (2015). Plata a nanoescala para el control de infecciones. Nursing, 32(1), 59–60. https://doi.org/10.1016/j.nursi.2015.02.017 | spa |
dcterms.references | [17] Maeda, H., Aoyama, M., & Kasuga, T. (2021). Potential of diatoms as phase change materials. Materials Letters, 282(128673), 128673. https://doi.org/10.1016/j.matlet.2020.128673 | spa |
dcterms.references | [18] Guan, Y., Chen, R., Sun, G., Liu, Q., Liu, J., Yu, J., Lin, C., & Wang, J. (2021). Secretion mechanism and adhesive mechanism of diatoms: Direct evidence from the quantitative analysis. Micron (Oxford, England: 1993), 140(102951), 102951. https://doi.org/10.1016/j.micron.2020.102951 | spa |
dcterms.references | [19] Gültürk, E. A., Güden, M., & Taşdemirci, A. (2013). Calcined and natural frustules filled epoxy matrices: The effect of volume fraction on the tensile and compression behavior. Composites. Part B, Engineering, 44(1), 491–500. https://doi.org/10.1016/j.compositesb.2012.03.022 | spa |
dcterms.references | [20] Crawford, S. A., Higgins, M. J., Mulvaney, P., & Wetherbee, R. (2001). Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. Journal of Phycology, 37(4), 543–554. https://doi.org/10.1046/j.1529-8817.2001.037004543.x | spa |
dcterms.references | [21] De Stefano, L., Maddalena, P., Moretti, L., Rea, I., Rendina, I., De Tommasi, E., Mocella, V., & De Stefano, M. (2009). Nano-biosilica from marine diatoms: A brand new material for photonic applications. Superlattices and Microstructures, 46(1–2), 84–89. https://doi.org/10.1016/j.spmi.2008.10.031 | spa |
dcterms.references | [22] Gao, L., Wang, L., Yang, L., Zhao, Y., Shi, N., An, C., Sun, Y., Xie, J., Wang, H., Song, Y., & Ren, Y. (2019). Preparation, characterization and antibacterial activity of silver nanoparticle/graphene oxide/diatomite composite. Applied Surface Science, 484, 628–636. https://doi.org/10.1016/j.apsusc.2019.04.153 | spa |
dcterms.references | [23] Xia, Y., Jiang, X., Zhang, J., Lin, M., Tang, X., Zhang, J., & Liu, H. (2017). Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application. Applied Surface Science, 396, 1760–1764. https://doi.org/10.1016/j.apsusc.2016.11.222 | spa |
dcterms.references | [24] Nandakumar, K., & Yano, T. (2003). Biofouling and its prevention: A comprehensive overview. Biocontrol Science, 8(4), 133–144. https://doi.org/10.4265/bio.8.133 | spa |
dcterms.references | [25] Vinagre, P. A., Simas, T., Cruz, E., Pinori, E., & Svenson, J. (2020). Marine biofouling: A European database for the marine renewable energy sector. Journal of Marine Science and Engineering, 8(7), 495. https://doi.org/10.3390/jmse8070495 | spa |
dcterms.references | [26] Guerrero Correa, M., Martínez, F. B., Vidal, C. P., Streitt, C., Escrig, J., & de Dicastillo, C. L. (2020). Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein Journal of Nanotechnology, 11, 1450–1469. https://doi.org/10.3762/bjnano.11.129 | spa |
dcterms.references | [27] Aiman Syafiq Mohd Hamidi, N., Mohamad Ikhmal Wan Mohamad Kamaruzzaman, W., Amirah Mohd Nasir, N., Syaizwadi Shaifudin, M., & Sabri Mohd Ghazali, M. (2022). Potential application of plant-based derivatives as green components in functional coatings: A review. Cleaner Materials, 4(100097), 100097. https://doi.org/10.1016/j.clema.2022.100097 | spa |
dcterms.references | [28] Chen, L., Duan, Y., Cui, M., Huang, R., Su, R., Qi, W., & He, Z. (2021). Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. The Science of the Total Environment, 766(144469), 144469. https://doi.org/10.1016/j.scitotenv.2020.144469 | spa |
dcterms.references | [29] Sreekumari Nair, P., Revaprasadu, N., Radhakrishnan, T., & Kolawole, G. A. (2001). Preparation of CdS nanoparticles using the cadmium(II) complex of N,N′-bis(thiocarbamoyl)hydrazine as a simple single¬source precursor. Journal of Materials Chemistry, 11(6), 1555–1556. https://doi.org/10.1039/b100697p | spa |
dcterms.references | [30] Neinhuis, C. (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79(6), 667–677. https://doi.org/10.1006/anbo.1997.0400 | spa |
dcterms.references | [31] Terlizzi, A., Conte, E., Zupo, V., & Mazzella, L. (2000). Biological succession on silicone fouling‐release surfaces: Long‐term exposure tests in the harbour of ischia, Italy. Biofouling, 15(4), 327–342. https://doi.org/10.1080/08927010009386322 | spa |
dcterms.references | [32] Lagerström, M., Ytreberg, E., Wiklund, A.-K. E., & Granhag, L. (2020). Antifouling paints leach copper in excess – study of metal release rates and efficacy along a salinity gradient. Water Research, 186(116383), 116383. https://doi.org/10.1016/j.watres.2020.116383 | spa |
dcterms.references | [33] Kovalenko, V., Kotok, V., & Stathopoulos, V. N. (2022). Smart Coatings Against Corrosion. In Encyclopedia of Smart Materials (pp. 400–413). Elsevier. | spa |
dcterms.references | [34] Hosseini, M., & Hamdy Makhlouf, A.S. (2016). Industrial applications for intelligent polymers and coatings. https://doi.org/10.1007/978-3-319-26893-4 | spa |
dcterms.references | [35] Challener, C. (2017). Smart coatings: Reaching the big time with many more opportunities. American Coatings Association. https://www.paint.org/coatingstech-magazine/articles/smart-coatings-reaching-big-time-many-opportunities/ | spa |
dcterms.references | [36] Makhlouf, A. (2014). Handbook of Smart Coatings for Materials Protection., Woodhead Publishing Limited, Oxford, United Kingdom. http://doi.org/10.1533/9780857096883 | spa |
dcterms.references | [37] Ulaeto, S. B., Pancrecious, J. K., Rajan, T. P. D., & Pai, B. C. (2019). Smart Coatings. En Noble Metal-Metal Oxide Hybrid Nanoparticles (pp. 341–372). Elsevier. https://doi.org/10.1016/B978-0-12-814134-2.00017-6 | spa |
dcterms.references | [38] Martín-Rodríguez, A. J., Babarro, J. M. F., Lahoz, F., Sansón, M., Martín, V. S., Norte, M., & Fernández, J. J. (2015). From broad-spectrum biocides to quorum sensing disruptors and mussel repellents: antifouling profile of alkyl triphenylphosphonium salts. PloS One, 10(4), e0123652. https://doi.org/10.1371/journal.pone.0123652 | spa |
dcterms.references | [39] Okamura, H., & Mieno, H. (2006). Present Status of Antifouling Systems in Japan: Tributyltin Substitutes in Japan. En The Handbook of Environmental Chemistry (pp. 201–212). Springer Berlin Heidelberg. | spa |
dcterms.references | [40] Abiraman, T. y Balasubramanian, S. (2017). Síntesis y caracterización de nanopartículas de cobre decoradas con quitosano a gran escala (<2 nm) y su aplicación en revestimientos antiincrustantes. Investigación química industrial y de ingeniería, 56 (6), 1498–1508. https://doi.org/10.1021/acs.iecr.6b04692 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- AutorizaciónPublicación firmado.pdf
- Tamaño:
- 264.96 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- Villalba Yepez Clara Ines.pdf
- Tamaño:
- 3.57 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- No me permite eliminar los documentos duplicados, aunque seleccione insistentemente eliminar los ficheros seleccionados. Sin embargo se encuentra adjunta la autorización y el manuscrito del trabajo de grado
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: