Publicación:
Secado de pulpa de zapote (Calocarpum sapota merr) en cama de espuma asistido por bandejas: propiedades de espuma, cinética de secado y evaluación de las propiedades fisicoquímicas del polvo

dc.contributor.advisorPÉREZ SIERRA, OMAR ANDRÉS
dc.contributor.advisorOrtega-Quintana, Fabián
dc.contributor.authorSoto Santero, Julián Andrés
dc.contributor.authorTordecilla García, Natalia Sofia
dc.contributor.juryAndrade Pizarro, Ricardo
dc.contributor.juryMontes Montes, Everaldo Joaquin
dc.date.accessioned2025-03-26T19:47:27Z
dc.date.available2027-06-01
dc.date.available2025-03-26T19:47:27Z
dc.date.issued2025-03-19
dc.description.abstractzapote es una fruta tropical con alto contenido de agua y susceptible al deterioro con una amplia distribución en América Central, el Caribe y regiones de Colombia, Venezuela y Ecuador. El secado es esencial para conservar alimentos, y el secado por espuma ha ganado atención en los últimos años. Por lo tanto, este estudio tuvo como el objetivo determinar el efecto de la temperatura y velocidad de flujo de aire caliente en el secado de pulpa de zapote (Calocarpum Sapota Merr) en cama de espuma empleando un secador convectivo de bandejas. Se determinó la estabilidad de la espuma a partir de cuatro concentraciones de albumina de huevo y tres concentraciones de carboximetilcelulosa; se analizó la cinética de secado y se determinaron las propiedades fisicoquímicas del producto seco de zapote. La pulpa de zapote fue transformada en espuma utilizando cuatro concentraciones de albúmina de huevo (2.5, 5, 7.5 y 10% p/p) y tres concentraciones de carboximetilcelulosa (0.25, 0.5 y 7.5% p/p) y secada a temperaturas de 60 a 80 °C con velocidades de aire caliente de 1 a 3 ms-1. Los resultados mostraron que la espuma más estable correspondió a la formulación con 7.5% de albúmina de huevo y 0.75% de carboximetilcelulosa. El tiempo de secado disminuyó con el aumento de la temperatura y la velocidad del aire, mientras que la velocidad de secado y la difusividad efectiva aumentaron. La energía de activación se encontró en el rango de 23.210 a 30.116 kJmol-1, y la constante de Arrhenius entre 0.83 a 3.63 × 10⁻3 m²s-1. La muestra que presentó las mejores condiciones tanto en términos de cinética de secado como de características finales del polvo fue aquella secada a 70°C y 2 ms-1.spa
dc.description.abstractZapote is a tropical fruit with high water content and is susceptible to deterioration, with a wide distribution in Central America, the Caribbean, and regions of Colombia, Venezuela, and Ecuador. Drying is essential for food preservation, and foam drying has gained attention in recent years. Therefore, this study aimed to determine the effect of temperature and hot air flow velocity on the drying of zapote pulp (Calocarpum Sapota Merr) in a foam bed using a tray convective dryer. The foam stability was determined using four concentrations of egg albumin and three concentrations of carboxymethylcellulose; the drying kinetics were analyzed, and the physicochemical properties of the dried zapote product were determined. The zapote pulp was transformed into foam using four concentrations of egg albumin (2.5, 5, 7.5, and 10% p/p) and three concentrations of carboxymethylcellulose (0.25, 0.5, and 7.5% p/p) and dried at temperatures ranging from 60 to 80 °C with hot air velocities of 1 to 3 ms-1. The results showed that the most stable foam corresponded to the formulation with 7.5% egg albumin and 0.75% carboxymethylcellulose. The drying time decreased with the increase in temperature and air velocity, while the drying rate and effective diffusivity increased. The activation energy ranged from 23.210 to 30.116 kJmol-1, and the Arrhenius constant ranged from 0.83 to 3.63 × 10⁻3 m²s-1. The sample that presented the best conditions in both drying kinetics and final powder characteristics was the one dried at 70 °C and 2 ms-1.eng
dc.description.degreelevelPregrado
dc.description.degreenameIngeniero(a) de Alimentos
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9116
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBerástegui, Córdoba, Colombia
dc.publisher.programIngeniería de Alimentos
dc.relation.referencesAbbasi, E., & Azizpour, M. (2016). Evaluation of physicochemical properties of foam mat dried sour cherry powder. LWT, 68, 105–110. https://doi.org/10.1016/j.lwt.2015.12 .004
dc.relation.referencesAbd El-Salam, E. A. E. S., Ali, A. M., & Hammad, K. S. (2021). Foaming process optimization, drying kinetics and quality of foam mat dried papaya pulp. Journal of Food Science and Technology, 58(4), 1449–1461. https://doi.org/10.1007/s13197-020- 04657-2
dc.relation.referencesAli, A., Riaz, S., Khalid, W., Fatima, M., Mubeen, U., Babar, Q., Manzoor, M. F., Zubair Khalid, M., & Madilo, F. K. (2024). Potential of ascorbic acid in human health against different diseases: an updated narrative review. International Journal of Food Properties, 27(1), 493–515. https://doi.org/10.1080/10942912.20 24.2327335
dc.relation.referencesAlvarado Ruiz, M. E. (2023). Evaluación de la estabilidad de la pulpa concentrada de tamarindo (Tamarindus indica L.) con carboximetilcelulosa en diferentes niveles de dilución con agua [Universidad Católica Sedes Sapientiae]. https://hdl.handle.net/20.500.14095/ 1777
dc.relation.referencesAOAC. (2019). Official methods of analysis of the Association of Official Analytical Chemists (vigesima primera, Vol. 2). Association of Official Analytical Chemists.
dc.relation.referencesAPC. (2022). Cultivo Agroforestal Sostenible de Frutos Promisorios Nativos y Rehabilitación Ecológica del Bosque Seco Tropical del Caribe Colombiano. https://www.apccolombia.gov.co/site s/default/files/proyectos/80.pdf
dc.relation.referencesAsokapandian, S., Venkatachalam, S., Swamy, G. J., & Kuppusamy, K. (2016). Optimization of Foaming Properties and Foam Mat Drying of Muskmelon Using Soy Protein. Journal of Food Process Engineering, 39(6), 692–701. https://doi.org/10.1111/jfpe.12261
dc.relation.referencesAyetigbo, O., Latif, S., Abass, A., & Müller, J. (2021). Drying kinetics and effect of drying conditions on selected physicochemical properties of foam from yellow-fleshed and white-fleshed cassava (Manihot esculenta) varieties. Food and Bioproducts Processing, 127, 454–464. https://doi.org/10.1016/j.fbp.2021.04 .005
dc.relation.referencesBagheri, H., Motamedzadegan, A., Mirarab Razi, S., Najafian, L., & Rashidinejad, A. (2021). The assessment of various properties of a novel celery pulp powder manufactured using foam mat drying. Journal of Food Processing and Preservation, 45(12), e16011. https://doi.org/10.1111/jfpp.16011
dc.relation.referencesBahriye, G., Dadashi, S., Dehghannya, J., & Ghaffari, H. (2023). Influence of processing temperature on production of red beetroot powder as a natural red colorant using foam-mat drying: Experimental and modeling study. Food Science and Nutrition, 11(11), 6955–6973. https://doi.org/10.1002/fsn3.3621
dc.relation.referencesBalerdi, C. F., & Crane, J. H. (2006). Mamey Sapote en Florida. EDIS, 2006(6). https://doi.org/10.32473/edis-hs285- 2005
dc.relation.referencesBelal, M., Hossain, M. A., Mitra, S., & Zzaman, W. (2023). Effect of foaming agent concentration and foam stabilizer on the foaming capacity and physical properties of tomato powder at dried at different temperature. Journal of Microbiology, Biotechnology and Food Sciences, 12(4), e4741. https://doi.org/10.55251/jmbfs.4741
dc.relation.referencesBenitez, A. (2023, March 23). México exportó por primera vez mamey a Europa. https://mexicoxport.com/mexicoexporto- por-primera-vez-mamey-aeuropa/
dc.relation.referencesBogusz, R., Nowacka, M., Rybak, K., Witrowa-Rajchert, D., & Gondek, E. (2024). Foam-Mat Freeze Drying of Kiwiberry (Actinidia arguta) Pulp: Drying Kinetics, Main Properties and Microstructure. Applied Sciences (Switzerland), 14(13), e5629. https://doi.org/10.3390/app1413562 9
dc.relation.referencesCabanillas Montenegro, E. (2020). Estudio de la cinética de degradación de vitamina c y color de pulpa de pitahaya (Hylocereaus Monacanthus) pasteurizada [Universidad Señor de Sipán]. https://hdl.handle.net/20.500.12802/ 6950
dc.relation.referencesChandramohan, V. P. (2018). Influence of air flow velocity and temperature on drying parameters: An experimental analysis with drying correlations. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757- 899X/377/1/012197
dc.relation.referencesChaux-Gutiérrez, A. M., Santos, A. B., Granda-Restrepo, D. M., & Mauro, M. A. (2017). Foam mat drying of mango: Effect of processing parameters on the drying kinetic and product quality. Drying Technology, 35(5), 631–641. https://doi.org/10.1080/07373937.20 16.1201486
dc.relation.referencesCheftel, J. C., Cuq, J. L., & Lorient, D. (1989). Espumas alimentarias. In Proteínas alimentarias: bioquímica-propriedades funcionales-valor nutritivomodificaciones químicas. (1st ed., pp. 88–96). Acribia.
dc.relation.referencesCitalán Herrera, M. de los Á. (2022). Evaluación del mucílago de okra (Abelmoschus esculentus L.) como agente espumante para el secado de pulpa de melón por el método de espuma [Universidad del valle de Guatemala]. https://repositorio.uvg.edu.gt/xmlui/ handle/123456789/4493
dc.relation.referencesCoyago-Cruz, E., Guachamin, A., Villacís, M., Rivera, J., Neto, M., Méndez, G., Heredia-Moya, J., & Vera, E. (2023). Evaluation of Bioactive Compounds and Antioxidant Activity in 51 Minor Tropical Fruits of Ecuador. Foods, 12(24), 4439. https://doi.org/10.3390/foods122444 39
dc.relation.referencesDamodaran, S. (2005). Protein stabilization of emulsions and foams. Journal of Food Science, 70(3), R54–R66. https://doi.org/10.1111/j.1365- 2621.2005.tb07150.x
dc.relation.referencesDarniadi, S., Ho, P., & Murray, B. S. (2018). Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties. Journal of the Science of Food and Agriculture, 98(5), 2002–2010. https://doi.org/10.1002/jsfa.8685
dc.relation.referencesde Cól, C. D., Tischer, B., Hickmann Flôres, S., & Rech, R. (2021). Foam-mat drying of bacaba (Oenocarpus bacaba): Process characterization, physicochemical properties, and antioxidant activity. Food and Bioproducts Processing, 126, 23–31. https://doi.org/10.1016/j.fbp.2020.12 .004
dc.relation.referencesde Faria Cardoso, C. E., Trindade, M. E. F., Santana, M. G., Lobo, F. A. T. F., & Teodoro, A. J. (2023). Improvement of the phenolic composition and the antioxidant capacity of red guava (Psidium guajava) and watermelon (Citrullus lanatus) powders by means of foam blanket drying. Food Chemistry Advances, 3, 100368. https://doi.org/10.1016/j.focha.2023. 100368
dc.relation.referencesde Matos, J. D. P., de Figueirêdo, R. M. F., Queiroz, A. J. de M., de Moraes, M. S., Silva, S. D. N., & da Silva, L. P. F. R. (2022). Foam mat drying kinetics of jambolan and acerola mixed pulp. Revista Brasileira de Engenharia Agricola e Ambiental, 26(7), 502–512. https://doi.org/10.1590/1807- 1929/agriambi.v26n7p502-512
dc.relation.referencesDehghannya, J., Pourahmad, M., Ghanbarzadeh, B., & Ghaffari, H. (2018). Influence of foam thickness on production of lime juice powder during foam-mat drying: Experimental and numerical investigation. Powder Technology, 328, 470–484. https://doi.org/10.1016/j.powtec.201 8.01.034
dc.relation.referencesDehghannya, J., Pourahmad, M., Ghanbarzadeh, B., & Ghaffari, H. (2019). Heat and mass transfer enhancement during foam-mat drying process of lime juice: Impact of convective hot air temperature. International Journal of Thermal Sciences, 135, 30–43. https://doi.org/10.1016/j.ijthermalsci. 2018.07.023
dc.relation.referencesDíaz Ávila, A. L. (2020). Efecto de la deshidratación osmótica y ultrasonido como pretratamiento en el secado de batata morada (Ipomoea batatas L.) en un secador tipo túnel [Maestria en ciencias agroalimentarias, Universidad de Córdoba]. https://repositorio.unicordoba.edu.co /entities/publication/c50e26ca-4585- 4e80-9342-f0ad487aab79
dc.relation.referencesDomínguez Coral, L. A. (2023, April 26). Zapote: ¿dónde se cultiva esta fruta en Colombia? https://www.eltiempo.com/vida/zapo te-donde-se-da-el-zapote-encolombia- 763087
dc.relation.referencesElpídio, C. M. de A. (2020). Secagem da ameixa pelo método de camada de espuma: otimização dos parâmetros e caracterização do produto [Universidade Federal do Rio Grande do Norte]. https://repositorio.ufrn.br/handle/12 3456789/32479
dc.relation.referencesEMR. (2023). Mercado Global de Frutas en Polvo – Por Tipo de Fruta (Uva, Manzana, Mango, Plátano, Bayas, Naranja, Limón, Piña, Otras); Por Aplicación (Panadería y Confitería, Snacks/Productos RTE, Lácteos, Bebidas, Sopas y Salsas, Otros); Por Región (América del Norte, Europa, Asia Pacífico, América Latina, Medio Oriente y África); Dinámica del Mercado (2024-2032) y Panorama Competitivo. https://www.informesdeexpertos.co m/informes/mercado-de-fruta-enpolvo
dc.relation.referencesFalade, K. O., Adeyanju, K. I., & Uzo-Peters, P. I. (2003). Foam-mat drying of cowpea (Vigna unguiculata) using glyceryl monostearate and egg albumin as foaming agents. European Food Research and Technology, 217, 486–491. https://doi.org/10.1007/s00217-003- 0775-3
dc.relation.referencesFarooq, M., Iqbal, M. J., Shukat, R., Shehzad, Q., Ahmed, S., Azadfar, E., Saboor, A., Ahmad, I., Solangi, I. A., Kakar, K., Khan, S., & Yunyang, W. (2021). Development of Onion Powder by using Egg Albumin as a Foaming Agent by Foam-Mat Drying Process. Journal of Innovative Sciences, 7(1), 49–55. https://doi.org/10.17582/journal.jis/2 021/7.1.49.55
dc.relation.referencesFranco, T. S., Perussello, C. A., Ellendersen, L. N., & Masson, M. L. (2016). Effects of foam mat drying on physicochemical and microstructural properties of yacon juice powder. LWT, 66, 503– 513. https://doi.org/10.1016/j.lwt.2015.11 .009
dc.relation.referencesGao, R., Xue, L., Zhang, Y., Liu, Y., Shen, L., & Zheng, X. (2022). Production of blueberry pulp powder by microwaveassisted foam-mat drying: Effects of formulations of foaming agents on drying characteristics and physicochemical properties. LWT, 154, 112811. https://doi.org/10.1016/j.lwt.2021.11 2811
dc.relation.referencesGirelli, A., Sant’Anna, V., & Klein, M. P. (2023). Drying of butiá pulp by the foam-layer method and characterization of the obtained powder. Pesquisa Agropecuaria Brasileira, 58, e03050. https://doi.org/10.1590/S1678- 3921.PAB2023.V58.03050
dc.relation.referencesGüldane, M., & Bozkir, H. (2024). Drying of cherry laurel juice using foam mat drying technique and investigating the effect of drying temperature on drying characteristics and bioactive components. Gıda, 49(1), 88–100. https://doi.org/10.15237/gida.gd2309 9
dc.relation.referencesHardy, Z., & Jideani, V. A. (2017). Foam-mat drying technology: A review. Critical Reviews in Food Science and Nutrition, 57(12), 2560–2572. https://doi.org/10.1080/10408398.20 15.1020359
dc.relation.referencesInstituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. (2016). Tablas de composición de alimentos y productos alimenticios (versión condensada 2015). chromeextension:// efaidnbmnnnibpcajpcglcl efindmkaj/https://www.incmnsz.mx/ 2019/TABLAS_ALIMENTOS.pdf
dc.relation.referencesIslam, M. Z., Jahan, M. I., Monalisa, K., Rana, R., & Hoque, M. M. (2024). Impact of maltodextrin, egg white protein addition and microwave-assisted foam mat drying on drying kinetics, microstructures, physicochemical and quality attributes of jackfruit juice powder. LWT, 200, e116158. https://doi.org/10.1016/j.lwt.2024.11 6158
dc.relation.referencesKamali, R., Dadashi, S., Dehghannya, J., & Ghaffari, H. (2021). Production of green banana powder using foam-mat drying as influenced by drying air temperature: Experimental and 3D numerical study. Journal of Food Process Engineering, 44(6), e13703. https://doi.org/10.1111/jfpe.13703
dc.relation.referencesKanha, N., Regenstein, J. M., & Laokuldilok, T. (2022). Optimization of process parameters for foam mat drying of black rice bran anthocyanin and comparison with spray- and freezedried powders. Drying Technology, 40(3), 581–594. https://doi.org/10.1080/07373937.20 20.1819824
dc.relation.referencesKumar, A., Kandasamy, P., Chakraborty, I., & Hangshing, L. (2022). Analysis of energy consumption, heat and mass transfer, drying kinetics and effective moisture diffusivity during foam-mat drying of mango in a convective hot-air dryer. Biosystems Engineering, 219, 85–102. https://doi.org/10.1016/j.biosystemse ng.2022.04.026
dc.relation.referencesKumar, P. S., Keran, D. A., Pushpavalli, S., Shiva, K. N., & Uma, S. (2022). Effect of cellulose and gum derivatives on physicochemical, microstructural and prebiotic properties of foam-mat dried red banana powder. International Journal of Biological Macromolecules, 218, 44–56. https://doi.org/10.1016/j.ijbiomac.20 22.07.071
dc.relation.referencesLobo, F. A., Nascimento, M. A., Domingues, J. R., Falcão, D. Q., Hernanz, D., Heredia, F. J., & de Lima Araujo, K. G. (2017). Foam mat drying of Tommy Atkins mango: Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. Food Chemistry, 221, 258–266. https://doi.org/10.1016/j.foodchem.2016.10.080
dc.relation.referencesLopes, M. A., Fernandes, J. A., Perazzini, H., Borel, L. D. M. S., & Lima-Corrêa, R. A. B. (2024). Foam mat drying of coffee aqueous extract: Foam process optimization, drying kinetics, energy consumption, and energy efficiency analysis. Chemical Engineering and Processing - Process Intensification, 201, e109795. https://doi.org/10.1016/j.cep.2024.109795
dc.relation.referencesMendoza Palencia, O. J. (2020). Obtención de zapote (Calocarpum Sapota Merr) en polvo mediante dos tipos de encapsulantes a nivel piloto [UNIVERSIDAD DE CÓRDOBA]. https://repositorio.unicordoba.edu.co/handle/ucordoba/2947
dc.relation.referencesMendoza Palencia, O. J., Perez Sierra, O. A., Torres Gallo, R., Ortega Quintana, F. A., Montes Montes, E. J., & Andrade, R. D. (2018). Effect of Maltodextrin and Gum Arabic Concentration on the Rheological Behavior of Sapote (Calocarpum sapota Merr) Pulp. Advance Journal of Food Science and Technology, 16(SPL), 138–141. https://doi.org/10.19026/ajfst.16.5946
dc.relation.referencesMorais, A. V. C., Pessoa, T., Teixeira, F. A., & Cavalcante, J. M. da S. (2022). Comportamento das características físicas e físico-química da polpa de bacuri submetidas ao processamento para obtenção de espuma e pó. Research, Society and Development, 11(8), e38111831042. https://doi.org/10.33448/rsd-v11i8.31042
dc.relation.referencesMordor Intelligence. (2023). Tamaño del mercado de polvo de frutas y análisis de participación tendencias de crecimiento y pronósticos (2024-2029). https://www.mordorintelligence.com/es/industry-reports/fruit-powder-market
dc.relation.referencesPaiva, Y. F., Figueirêdo, R. M. F. de, Queiroz, A. J. de M., Amadeu, L. T. S., Reis, C. G. dos, Santos, F. S. dos, Lima, A. G. B. de, Silva, W. P. da, Gomes, J. P., Leite, D. D. de F., & Lima, T. L. B. de. (2023). Tropical Red Fruit Blend Foam Mat Drying: Effect of Combination of Additives and Drying Temperatures. Foods, 12(13), 2508. https://doi.org/10.3390/foods12132508
dc.relation.referencesPaiva, Y. F., Figueirêdo, R. M. F. de, Queiroz, A. J. de M., Ferreira, J. P. de L., Santos, F. S. dos, Reis, C. G. dos, Amadeu, L. T. S., Lima, A. G. B. de, Gomes, J. P., Silva, W. P. da, Maracajá, P. B., & Costa, C. C. (2023). Tropical Red Fruit Blends: The Effect of Combination of Additives on Foaming, Drying and Thermodynamic Properties. Processes, 11(3), 888. https://doi.org/10.3390/pr11030888
dc.relation.referencesPinto, M. R. M. R., Paula, D. de A., Alves, A. I., Rodrigues, M. Z., Vieira, É. N. R., Fontes, E. A. F., & Ramos, A. M. (2018). Encapsulation of carotenoid extracts from pequi (Caryocar brasiliense Camb) by emulsification (O/W) and foam-mat drying. Powder Technology, 339, 939–946. https://doi.org/10.1016/j.powtec.2018.08.076
dc.relation.referencesPúa Rosado, A. L. P. R., Rodríguez Sánchez, J. L. R. S., & Muñoz Acevedo, A. (2020). Caracterización química y fitoquímica de las materias primas de un néctar hipocalórico a base de marañón (Anacardium Occidentale l.). Revista Gipama, 1, 179–189. https://revistas.sena.edu.co/index.php/gipama/article/view/3216
dc.relation.referencesQadri, O. S., & Srivastava, A. K. (2017). Microwave-Assisted Foam Mat Drying of Guava Pulp: Drying Kinetics and Effect on Quality Attributes. Journal of Food Process Engineering, 40(1), e12295. https://doi.org/10.1111/jfpe.12295
dc.relation.referencesSantos, N. C., Almeida, R. L. J., de Andrade, E. W. V., de Fátima Dantas de Medeiros, M., & da Silva Pedrini, M. R. (2023). Effects of drying conditions and ethanol pretreatment on the techno-functional and morpho-structural properties of avocado powder produced by foam-mat drying. Journal of Food Measurement and Characterization, 17(3), 3149–3161. https://doi.org/10.1007/s11694-023-01857-0
dc.relation.referencesSetiyoko, A., & Putri, S. K. (2024). The Effect of Foaming Agent and Whipping Time on Albedo Characteristics of Watermelon Flour. Journal of Agri-Food Science and Technology, 4(2), 49–58. https://doi.org/10.12928/jafost.v4i2.9088
dc.relation.referencesSifat, S. A. D., Trisha, A. T., Huda, N., Zzaman, W., & Julmohammad, N. (2021). Response Surface Approach to Optimize the Conditions of Foam Mat Drying of Plum in relation to the Physical-Chemical and Antioxidant Properties of Plum Powder. International Journal of Food Science, 2021(1), 3681807. https://doi.org/10.1155/2021/3681807
dc.relation.referencesSuet Li, T., Sulaiman, R., Rukayadi, Y., & Ramli, S. (2021). Effect of gum Arabic concentrations on foam properties, drying kinetics and physicochemical properties of foam mat drying of cantaloupe. Food Hydrocolloids, 116, 106492. https://doi.org/10.1016/j.foodhyd.2020.106492
dc.relation.referencesTanganurat, P., Lichanporn, I., & Nunthachai, N. (2021). Instant drink powder development from lotus root with probiotic supplement using foam mat drying method. Current Research in Nutrition and Food Science, 9(1), 293–299. https://doi.org/10.12944/CRNFSJ.9.1.27
dc.relation.referencesTengku Ahmad Akman, T. N. ‘Aisyah A., Yusof, N., Rois Anwar, N. Z., & Che Ku Jusoh, T. F. I. (2024). Effects of foaming agent types and ratio with red flesh pitaya puree on physicochemical properties of foam-mat dried powder. Journal of Tropical Resources and Sustainable Science (JTRSS), 12(1), 19–27. https://doi.org/10.47253/jtrss.v12i1.1361
dc.relation.referencesThakur student, C., Kumar Verma Assistant Professor, A., Vaidya, D., Thakur, C., Kumar Verma, A., Sharma, P., Kaushal, M., & Sharma, R. (2021). Effect of foaming agents on foaming properties, drying time and powder yield of rainy season Psidium guajava fruits cv. Shweta. The Pharma Innovation Journal, 10(6), 697–704. http://www.thepharmajournal.com
dc.relation.referencesThuy, N. M., Tien, V. Q., Tai, N. Van, & Minh, V. Q. (2022). Effect of Foaming Conditions on Foam Properties and Drying Behavior of Powder from Magenta (Peristrophe roxburghiana) Leaves Extracts. Horticulturae, 8(6), 546. https://doi.org/10.3390/horticulturae8060546
dc.relation.referencesThuy, N. M., Tien, V. Q., Tuyen, N. N., Giau, T. N., Minh, V. Q., & Tai, N. Van. (2022). Optimization of Mulberry Extract Foam-Mat Drying Process Parameters. Molecules, 27(23), 8570. https://doi.org/10.3390/molecules27238570
dc.relation.referencesTirira Arteaga, P. C. (2014). Secado al vacío mediante espumación del sistema de pulpa de mora con albúmina de huevo [ Universidad central del ecuador]. https://www.dspace.uce.edu.ec/entities/publication/24a4f8f9-7654-4c11-8f85-a8169d4917a5
dc.relation.referencesVan Hao, H., Thuy, N. M., Giau, T. N., Van Tai, N., & Minh, V. Q. (2024). EFFECT OF FOAMING AGENTS AND DRYING TEMPERATURE ON DRYING RATE AND QUALITY OF FOAM-MAT DRIED PAPAYA POWDER. Journal of Microbiology, Biotechnology and Food Sciences, 13(6), e10725. https://doi.org/10.55251/jmbfs.10725
dc.relation.referencesVarhan, E., Elmas, F., & Koç, M. (2019). Foam mat drying of fig fruit: Optimization of foam composition and physicochemical properties of fig powder. Journal of Food Process Engineering, 42(4), e13022. https://doi.org/10.1111/jfpe.13022
dc.relation.referencesVázquez Mata, N., Camacho Parra, M. E., Acosta Blanco, A. P., Rocha Mendoza, D., & García Cano, I. (2022). Compuestos bioactivos de los residuos del pepino, papaya y zapote mamey generados en la Central de Abasto de la CDMX. Alternativas para su aprovechamiento Bioactive compounds of cucumber, papaya and sapote mamey residues generated in the Central de Abasto of the CDMX. Alternatives for their utilization. 7, 1. https://doi.org/10.57737/biotecnologiaysust.v7i1.1638
dc.relation.referencesWatharkar, R. B., Chakraborty, S., Srivastav, P. P., & Srivastava, B. (2021). Foaming and foam mat drying characteristics of ripe banana [Musa balbisiana (BB)] pulp. Journal of Food Process Engineering, 44(8), e13726. https://doi.org/10.1111/jfpe.13726
dc.relation.referencesWilde, P. J. (2000). Interfaces: Their role in foam and emulsion behaviour. Current Opinion in Colloid and Interface Science, 5(3–4), 176–181. https://doi.org/10.1016/S1359-0294(00)00056-X
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsFoameng
dc.subject.keywordsKineticseng
dc.subject.keywordsStabilizereng
dc.subject.keywordsDryingeng
dc.subject.proposalEspumaspa
dc.subject.proposalCinéticaspa
dc.subject.proposalZapotespa
dc.subject.proposalEstabilizantespa
dc.subject.proposalSecadospa
dc.titleSecado de pulpa de zapote (Calocarpum sapota merr) en cama de espuma asistido por bandejas: propiedades de espuma, cinética de secado y evaluación de las propiedades fisicoquímicas del polvospa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
sotosanterojulianandres-tordecillagarcianataliasofia.pdf
Tamaño:
658 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización .pdf
Tamaño:
1.22 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: