Publicación:
Análisis de microplásticos en el tracto digestivo de holothuria grisea selenka, 1867 (echinodermata: holothuriidae) en el sur del golfo de Morrosquillo, Colombia

dc.contributor.advisorNisperuza Pérez, Carlos Andrés
dc.contributor.advisorAycardi Morinelli, María Paulina
dc.contributor.authorRamos Roqueme, Mayerlis
dc.contributor.juryQuiros Rodríguez, Jorge Alexander
dc.contributor.juryMogollón Arismendy, Martha
dc.date.accessioned2025-07-18T12:46:59Z
dc.date.available2025-07-18T12:46:59Z
dc.date.issued2025-07-15
dc.description.abstractEn las últimas décadas los desechos plásticos han sido reconocidos como contaminantes marinos emergentes de gran importancia debido a su fragmentación y acumulación en todos los ecosistemas del mundo. Una fracción particular de este tipo de contaminantes, son los microplásticos (partículas de plástico con tamaño entre 5 mm a 1 µm). Las especies bentónicas pueden ser las más impactadas por el consumo de estas partículas dado que, debido a su densidad pueden descender en los cuerpos de agua y almacenarse en el sedimento gracias a su lenta degradación, lo que las hace accesibles para diferentes especies marinas que se alimentan por filtración o de sedimentos como es el caso de Holothuria grisea, lo cual puede representar un primer paso desde la red de detritos hacia la red trófica en ecosistemas marinos poco profundos. Esta investigación tuvo como objetivo analizar los microplásticos presentes en el tracto digestivo de H. grisea en el sur del golfo de Morrosquillo, Colombia. Para esto, se diseccionaron 20 individuos recolectados en el sector La Ahumadera, a los cuales se extrajo el tracto digestivo para su digestión con H2O2 al 30% filtrado. Los microplásticos se extrajeron utilizando una solución hipersalina de NaCl y se filtraron con papel filtro de microfibra de vidrio (1,2 µm) mediante filtración al vacío. La identificación de los microplásticos se realizó en función de las características físicas (color, forma, tamaño) y la caracterización química utilizando espectroscopia infrarroja para grupos funcionales de polímeros. Se encontró un total de 5.626 microplásticos, donde los colores transparente y azul fueron los más frecuentes con un 57,09% y 29,06% respectivamente, mientras que el color naranja fue el menos abundante con 0,12%. En cuanto a forma, las fibras fueron las más predominantes (92,23%) y los pellets las de menor frecuencia (0,16%).spa
dc.description.abstractIn recent decades, plastic debris has been recognized as an emerging marine pollutant of great importance due to its fragmentation and accumulation in all the world's ecosystems. A particular fraction of this type of pollutant is microplastics (plastic particles ranging in size from 5 mm to 1 µm). Benthic species may be the most impacted by the consumption of these particles since, due to their density, they can descend into water bodies and be stored in the sediment thanks to their slow degradation. This makes them accessible to different marine species that feed by filtration or on sediments, such as Holothuria grisea, which may represent a first step from the detritus network to the trophic web in shallow marine ecosystems. This research aimed to analyze the microplastics present in the digestive tract of H. grisea in the southern Gulf of Morrosquillo, Colombia. For this purpose, 20 individuals collected in the La Ahumadera sector were dissected, and their digestive tracts were removed for digestion with filtered 30% H2O2. Microplastics were extracted using a hypersaline NaCl solution and filtered through glass microfiber filter paper (1.2 µm) by vacuum filtration. Microplastics were identified based on physical characteristics (color, shape, size) and chemical characterization using infrared spectroscopy for polymer functional groups. A total of 5,626 microplastics were found, with transparent and blue being the most frequent colors (57.09% and 29.06% respectively), while orange was the least abundant at 0.12%. Regarding shape, fibers were the most predominant (92.23%) and pellets the least frequent (0.16%).eng
dc.description.degreelevelPregrado
dc.description.degreenameBiólogo(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontents1. RESUMEN 12
dc.description.tableofcontents2. ABSTRACT 14
dc.description.tableofcontents3. INTRODUCCIÓN 15
dc.description.tableofcontents4. OBJETIVOS 18
dc.description.tableofcontents4.1. Objetivo general 18
dc.description.tableofcontents4.2. Objetivos específicos 18
dc.description.tableofcontents5. MARCO TEÓRICO 19
dc.description.tableofcontents5.1. ¿Qué son los microplásticos? 19
dc.description.tableofcontents5.1.1. Clasificación de los microplásticos 19
dc.description.tableofcontents5.2. Caracterización de microplásticos 20
dc.description.tableofcontents5.3. Ingestión de microplásticos en animales marinos 21
dc.description.tableofcontents5.4. Microplásticos y contaminantes asociados 22
dc.description.tableofcontents5.6. Clase Holothuroidea 23
dc.description.tableofcontents5.7. Holothuria grisea Selenka, 1867 24
dc.description.tableofcontents5.7.1. Clasificación taxonómica de H. grisea. 25
dc.description.tableofcontents5.7.2. Bioecología de Holothuria grisea 25
dc.description.tableofcontents6. ESTADO DEL ARTE 26
dc.description.tableofcontents7. METODOLOGÍA 29
dc.description.tableofcontents7.1 Recolección de los organismos 29
dc.description.tableofcontents7.2. Fase de campo 30
dc.description.tableofcontents7.3. Fase de laboratorio 30
dc.description.tableofcontents7.4. Análisis de datos 32
dc.description.tableofcontents8. RESULTADOS Y DISCUSIÓN 34
dc.description.tableofcontents8.1. Abundancia de microplásticos 34
dc.description.tableofcontents8.2. Clasificación de microplásticos según su color 36
dc.description.tableofcontents8.3. Clasificacion de microplásticos según su forma 38
dc.description.tableofcontents8.4. Clasificación de microplásticos según su tamaño. 40
dc.description.tableofcontents8.5. Caracterización química de los microplásticos encontrados en el tracto digestivo de Holothuria grisea. 43
dc.description.tableofcontents8.6. Relación de la abundancia de microplásticos con algunas medidas morfométricas de Holothuria grisea. 48
dc.description.tableofcontents9. CONCLUSIONES 54
dc.description.tableofcontents10. RECOMENDACIONES 56
dc.description.tableofcontents11. BIBLIOGRAFÍA 57
dc.description.tableofcontents12. ANEXOS 69
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9379
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBiología
dc.relation.referencesAbbas, N. (2021, 1 febrero). Qué son los microplásticos: definición y tipos. ecologiaverde.com. https://www.ecologiaverde.com/que-son-los-microplasticos-definicion-y-tipos-2300.html
dc.relation.referencesAlejo Torres, Y. G. (2015). Análisis granulométrico. Academia.edu. https://www.academia.edu/11796441/laboratorio_analisis_granulometrico
dc.relation.referencesAlimba, C. G., & Faggio, C. (2019). Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology, 68, 61–74. https://doi.org/10.1016/j.etap.2019.03.001
dc.relation.referencesAndrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
dc.relation.referencesAthukorala, A., Amarathunga, A. A. D., De Silva, D. S. M., Bakir, A., McGoran, A. R., Sivyer, D. B., Osborn, K. J., & Reeve, C. (2024). Pervasive microplastic ingestion by commercial fish species from a natural lagoon environment. Water, 16(20), 2909. https://doi.org/10.3390/w16202909
dc.relation.referencesAvalos-Castillo, C. G., Ortí¬z-Aldana, J. R., Polanco-Vásquez, F. E. & Pacay, A. (2018, 1 julio). Estado poblacional del pepino de mar (Clase Holothuroidea) en el Caribe de Guatemala. Ciencia, Tecnologí¬a y Salud, 5(1), 18-24. https://doi.org/10.36829/63CTS.v5i1.357
dc.relation.referencesBarnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205
dc.relation.referencesBesseling, E., Foekema, E. M., Van den Heuvel-Greve, M. J., & Koelmans, A. A. (2014). Microplastic ingestion by bivalves, fish and crustaceans: A review of studies and their implications for marine ecosystems. Science of the Total Environment, 511, 500-508. https://doi.org/10.1016/j.scitotenv.2014.01.032
dc.relation.referencesBrowne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environmental Science & Technology, 45(21), 9175–9179. https://doi.org/10.1021/es201811s
dc.relation.referencesBrowne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). Environmental Science & Technology, 42(13), 5026–5031. https://doi.org/10.1021/es800249a
dc.relation.referencesCaruso, G. (2019). Microplastics as vectors of contaminants. Marine Pollution Bulletin, 146, 921–924. https://doi.org/10.1016/j.marpolbul.2019.07.052
dc.relation.referencesCastañeta, G., Gutiérrez, A. F., Nacaratte, F., & Manzano, C. A. (2020). Microplásticos: un contaminante que crece en todas las esferas ambientales, sus características y posibles riesgos para la salud pública por exposición. Revista Boliviana de Química, 37(3), 142-157. https://doi.org/10.34098/2078-3949.37.3.4
dc.relation.referencesChoi, J. S., Kim, K., Park, K., & Park, J. W. (2022). Long-term exposure of the Mediterranean mussels, Mytilus galloprovincialis, to polyethylene terephthalate microfibers: Implication for reproductive and neurotoxic effects. Chemosphere, 299, 134317. https://doi.org/10.1016/j.chemosphere.2022.134317
dc.relation.referencesClaessens, M., De Meester, S., van Landuyt, L., De Clerck, K., & Janssen, C. R. (2011). Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin, 62(1–2), 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030
dc.relation.referencesCole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic ingestion by zooplankton. Environmental science & technology, 47(12), 6646-6655. https://doi.org/10.1021/es400663f
dc.relation.referencesCole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: a review. Marine pollution bulletin, 62(12), 2588-2597. https://doi.org/10.1016/j.marpolbul.2011.09.025
dc.relation.referencesCompa, M., Alomar, C., Wilcox, C., van Sebille, E., Lebreton, L., Hardesty, B. D., & Deudero, S. (2019). Risk assessment of plastic pollution on marine diversity in the Mediterranean Sea. Science of the Total Environment, 678, 188–196. https://doi.org/10.1016/j.scitotenv.2019.04.355
dc.relation.referencesCózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Úbeda, B., Hernández-León, S., Palma, Á. T., Navarro, S., García-de-Lomas, J., Ruiz, A., Fernández-de-Puelles, M. L., & Duarte, C. M. (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences, 111(28), 10239–10244. https://doi.org/10.1073/pnas.1314705111
dc.relation.referencesCrawford, C. A., & Moore, F. R. (2019). Ingestion of microplastics by benthic invertebrates: A review of environmental factors influencing ingestion and accumulation. Environmental Pollution, 253, 442-452. https://doi.org/10.1016/j.envpol.2019.07.025
dc.relation.referencesCrawford, C. B., & Quinn, B. (2017). The contemporary history of plastics. Microplastic pollutants, 19-37. https://doi.org/10.1016/B978-0-12-809406-8.00002-5
dc.relation.referencesDos Santos, J. B., Choueri, R. B., Dos Santos, F. E. M., Santos, L. A. D. O., da Silva, L. F., Nobre, C. R., Gusso-Choueri, P. K., & Martinez, C. B. R. (2024). Are microfibers a threat to marine invertebrates? A sea urchin toxicity assessment. Toxics, 12(10), 753. https://doi.org/10.3390/toxics12100753
dc.relation.referencesEriksen, M., Thiel, M., Lebreton, L. (2016). Nature of plastic marine pollution in the subtropical gyres. Takada, H., Karapanagioti, K. (eds.) In Hazardous chemicals associated with plastics in the marine environment. Hdb. Env. Chem. 135-162. Springer. https://doi.org/10.1007/698_2016_123
dc.relation.referencesFazey, F. M., & Ryan, P. G. (2016). Biofouling on buoyant marine plastics: An experimental study into the effect of size on surface longevity. Environmental Pollution, 210, 354–360. https://doi.org/10.1016/j.envpol.2016.01.026
dc.relation.referencesFernández Guasti, A. (2023). Contaminación por Microplástico. Ciencia–Revista de la Academia Mexicana de Ciencias, 73(2), 100.
dc.relation.referencesFernández Hernández, D. (2020). Análisis de microplásticos en fangos de aguas residuales mixtas: identificación de los principales polímeros plásticos. Repositorio Institucional UPCT. http://hdl.handle.net/10317/8888
dc.relation.referencesFossi, M. C., Panti, C., Guerranti, C., Coppola, D., Giannetti, M., Marsili, L., & Minutoli, R. (2012). Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Marine Pollution Bulletin, 64, 2374–2379. https://doi.org/10.1016/j.marpolbul.2012.08.013
dc.relation.referencesFrias, J., Pagter, E., Nash, R., O'Connor, I., Carretero, O., Filgueiras, A., Viñas, L., Gago, J., Antunes, J., Bessa, F., Sobral, P., Goruppi, A., Tirelli, V., Pedrotti, M. L., Suaria, G., Aliani, S., Lopes, C., Raimundo, J., Caetano, M., Palazzo, L., de Lucia, G. A., Camedda, A., Muniategui, S., Grueiro, G., Fernandez, V., Andrade, J., Dris, R., Laforsch, C., Scholz-Böttcher, B. M., & Gerdts, G. (2018). Standardised protocol for monitoring microplastics in sediments. JPI Oceans BASEMAN project, 24 pp. https://doi.org/10.13140/RG.2.2.36256.89601/1
dc.relation.referencesGad, A. K., & Midway, S. R. (2022). Relationship of microplastics to body size for two estuarine fishes. Microplastics, 1(1), 183–192. https://doi.org/10.3390/microplastics1010014
dc.relation.referencesGarcés-Ordóñez, O., Mejía-Esquivia, K. A., Sierra-Labastidas, T., Patiño, A., Blandón, L. M., & Díaz, L. F. E. (2020). Prevalence of microplastic contamination in the digestive tract of fishes from mangrove ecosystem in Cispata, Colombian Caribbean. Marine pollution bulletin, 154, 111085. https://doi.org/10.1016/j.marpolbul.2020.111085
dc.relation.referencesGarcia-Chamero, A., Hernández, C. A., & Lago, D. C. (2020). First evidence of microplastics in Cienfuegos bay, Cuba. Ecosistemas, 29(3), 2085. https://doi.org/10.7818/ECOS.2085
dc.relation.referencesGeyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
dc.relation.referencesGonzález-Alfonso, F., et al. (2019). Occurrence and effects of microplastics in holothurians. Marine Pollution Bulletin, 146, 410–419. https://doi.org/10.1016/j.marpolbul.2019.06.019
dc.relation.referencesGonzález-Navarro, P. (2012). Biología y ecología de las holoturias (Echinodermata: Holothuroidea) de la isla de Gran Canaria (Atlántico Centro-Oriental) [Tesis de licenciatura, Universidad de Las Palmas de Gran Canaria]. Universidad de Las Palmas de Gran Canaria. https://accedacris.ulpgc.es/handle/10553/9065
dc.relation.referencesGraham, E. R., & Thompson, J. T. (2009). Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. Journal of experimental marine biology and ecology, 368(1), 22-29. https://doi.org/10.1016/j.jembe.2008.09.007
dc.relation.referencesGuerrini, F., Mari, L., & Casagrandi, R. (2019). Modeling plastics exposure for the marine biota: Risk maps for fin whales in the Pelagos Sanctuary (North-Western Mediterranean). Frontiers in Marine Science, 6, 1–10. https://doi.org/10.3389/fmars.2019.00299
dc.relation.referencesHarris, P. T. (2020). Superimposed microplastic pollution in a coastal metropolis. Marine Pollution Bulletin, 150, 110938. https://doi.org/10.1016/j.marpolbul.2019.110938
dc.relation.referencesHartati, R., Widianingsih, W., Zainuri, M., & Supriyo, E. (2023). Preliminary study of microplastics content in the digestive tract of sea cucumber from Demak Waters. In IOP Conference Series: Earth and Environmental Science (Vol. 1137, No. 1, p. 012051). IOP Publishing. https://doi.org/10.1088/1755-1315/1137/1/012051
dc.relation.referencesHartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard, A. E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M. P., Hess, M. C., Ivleva, N. P., Lusher, A. L., & Wagner, M. (2019). Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology, 53(3), 1039–1047. https://doi.org/10.1021/acs.est.8b05297
dc.relation.referencesHernández Martínez, A. P. (2023). Cuantificación y caracterización de microplásticos en la zona litoral de playas urbanas de San Antero, Córdoba, Colombia. https://repositorio.unicordoba.edu.co/handle/ucordoba/7555
dc.relation.referencesHerrera A., Ŝtindlová A., Martínez I., Rapp J., Romero-Kutzner V., Samper M.D., Montoto T., Aguiar-González B., Packard T. y Gómez M. (2019). Microplastic ingestion by Atlantic chub mackerel (Scomber colias) in the Canary Islands coast. Marine Pollution Bulletin 139, 127-135. https://doi.org/10.1016/j.marpolbul.2018.12.022
dc.relation.referencesHidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: A review. Environmental Science & Technology, 46(6), 3060–3075. https://doi.org/10.1021/es2031505
dc.relation.referencesIwalaye, O. A., Moodley, G. K., & Robertson-Andersson, D. V. (2020). The possible routes of microplastics uptake in sea cucumber Holothuria cinerascens (Brandt, 1835). Environmental Pollution, 264, 114644. https://doi.org/10.1016/j.envpol.2020.114644
dc.relation.referencesJuárez-Camargo, P., Sosa-López, A., Ramos-Miranda, J., del Río Rodríguez, R., & Rojas-González, R. I. (2015). Caracterización del contenido del tracto digestivo del pepino de mar Holothuria floridana (Pourtales, 1851) en el litoral de Campeche, México. https://www.researchgate.net/publication/284550668_Caracterizacion_del_contenido_del_tracto_digesti-vo_del_pepino_de_mar_holothuria_floridana_Pourtales_1851_en_el_lito-ral_de_Campeche_Mexico
dc.relation.referencesKalogerakis, N., Karkanorachaki, K., Kalogerakis, G. C., Triantafyllidi, E. I., Gotsis, A. D., Partsinevelos, P., & Fava, F. (2017). Microplastics generation: Onset of fragmentation of polyethylene films in marine environment mesocosms. Frontiers in Marine Science, 4, 1–15. https://doi.org/10.3389/fmars.2017.00084
dc.relation.referencesKowalski, N., Reichardt, A. M., & Waniek, J. J. (2016). Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Marine Pollution Bulletin, 109(1), 310–319. https://doi.org/10.1016/j.marpolbul.2016.05.064
dc.relation.referencesLeite-Castro, L., De-Souza, J., Salmito-Vanderley., Nunes, J., Hamel, J. y Mercier, A. (2016). Reproductive biology of the sea cucumber Holothuria grisea in Brazil: importance of social and environmental factors in breeding coordination. Marine Biology, 163(3): 1-13. https://doi.org/10.1007/s00227-016-2842-x
dc.relation.referencesLiu, J., Chen, Y., Song, Y., Xu, D., Gu, Y., Wang, J., Zhang, H., Li, M., & Xia, B. (2024). Evidencia de toxicidad dependiente del tamaño de nanoplásticos y microplásticos de poliestireno en pepino de mar (Apostichopus japonicus, Selenka, 1867) durante la regeneración intestinal. Environmental Pollution, 357, 124394. https://doi.org/10.1016/j.envpol.2024.124394
dc.relation.referencesLunov, O., Syrovets, T., Loos, C., Beil, J., Delacher, M., Tron, K., Nienhaus, G. U., Musyanovych, A., Mailänder, V., Landfester, K., & Simmet, T. (2011). Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano, 5(3), 1657–1669. https://doi.org/10.1021/nn2000756
dc.relation.referencesLusher, A. L., McHugh, M., & Thompson, R. C. (2017). Microplastics in fisheries and aquaculture: Status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper, 615. Food and Agriculture Organization of the United Nations. https://doi.org/10.13140/RG.2.2.27893.61923.
dc.relation.referencesMarmara, D., Katsanevakis, S., Brundo, M. V., Tiralongo, F., Ignoto, S., & Krasakopoulou, E. (2023). Microplastics ingestion by marine fauna with a particular focus on commercial species: a systematic review. Frontiers in Marine Science, 10, 1240969. https://doi.org/10.3389/fmars.2023.1240969
dc.relation.referencesMartí, E., Martín, C., Galli, M., Echevarría, F., Duarte, C. M., & Cózar, A. (2020). The colors of plastic in the ocean. Environmental Science & Technology, 54(11), 6594–6601. https://doi.org/10.1021/acs.est.9b06400
dc.relation.referencesMartínez M. I. (2014). Diversidad de Dendrochirotida en el Mar Argentino (Echinodermata: Holothuroidea); aspectos taxonómicos, filogenéticos, ecológicos y biogeográficos. Tesis Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. https://hdl.handle.net/20.500.12110/tesis_n5603_Martinez
dc.relation.referencesMato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental science & technology, 35(2), 318-324. https://doi.org/10.1021/es0010498
dc.relation.referencesMazurais, D., Ernande, B., Quazuguel, P., Sévère, A., Huelvan, C., Madec, L., Mouchel, O., Soudant, P., Robbens, J., Huvet, A., & Zambonino-Infante, J. L. (2015). Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Marine Environmental Research, 112, 78–85. https://doi.org/10.1016/j.marenvres.2015.09.009
dc.relation.referencesMogollón, M. J., Rhenals, M. V., & Arango, C. (2024). Microplásticos en muestras de mesozooplancton en la zona nerítica del municipio de San Antero, Colombia. Facultad de Ciencias Básicas, 4(1), 9-9. https://revistas.unicordoba.edu.co/index.php/rfcb/article/view/3644
dc.relation.referencesMohsen, M., Wang, Q., Zhang, L., Sun, L., Lin, C., & Yang, H. (2019). Microplastic ingestion by the farmed sea cucumber Apostichopus japonicus in China. Environmental pollution, 245, 1071-1078. https://doi.org/10.1016/j.envpol.2018.11.083
dc.relation.referencesMohsen, M., Zhang, L., Sun, L., Lin, C., Wang, Q., Liu, S., Wang, L., & Yang, H. (2021). Effect of chronic exposure to microplastic fibre ingestion in the sea cucumber Apostichopus japonicus. Ecotoxicology and Environmental Safety, 209, 111794. https://doi.org/10.1016/j.ecoenv.2021.111794
dc.relation.referencesMonia, A., Noreddine, L., Christian, S., & Ali, T. (2018). Ingestion of microplastics by sea cucumbers. Marine Pollution Bulletin, 130, 297-302. https://doi.org/10.1016/j.marpolbul.2018.03.017
dc.relation.referencesMoore, C.J. (2008). Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental Research, 108(2), 131–139. 10.1016/j.envres.2008.07.025
dc.relation.referencesMuhammad Husin, M. J., Mazlan, N., Shalom, J., Saud, S. N., & Abdullah Sani, M. S. (2021). Evaluation of microplastics ingested by sea cucumber Stichopus horrens in Pulau Pangkor, Perak, Malaysia. Environmental Science and Pollution Research, 28(43), 61592-61600. 10.1007/s11356-021-15099-4
dc.relation.referencesNational Geographic. (2020, julio 10). Los residuos plásticos en el mar podrían casi triplicarse para 2040. National Geographic España. https://www.nationalgeographic.es/medio-ambiente/2020/07/los-residuos-plasticos-en-el-mar-podrian-casi-triplicarse-para-2040
dc.relation.referencesNeto, H. H. L. C., Silvestre, R. C. M., Jean, R. N. P., dos Santos, A. V. A., & da Silva, F. C. (2023). A primeira avaliação de microplásticos no Rio Xingu. Revista de Gestão de Água da América Latina, 20(2023). https://www.abrh.org.br/OJS/index.php/REGA/article/view/826
dc.relation.referencesNisperuza Pérez, C. A., Padilla Cantero, J., & Quirós-Rodríguez, J. A. (2018). Densidad poblacional y estructura de talla del pepino de mar Holothuria (Halodeima) grisea (Aspidochirotida: Holothuriidae) en aguas someras del sur del golfo de Morrosquillo, Caribe Colombiano. Revista de Biología Tropical, 66(2), 776-787. https://doi.org/10.15517/rbt.v66i2.33408
dc.relation.referencesNisperuza, C. A., Yepes, J. B., & Quiros, J. A. (2021). Some aspects of reproductive biology of Holothuria grisea (Aspidochirotida: Holothuriidae) at Cispatá bay, Colombia. https://doi.org/10.21897/rfcb.v1i1.2872
dc.relation.referencesOrdóñez, O. G. (2022). Contaminación por microplásticos en manglares y playas del área marina protegida de Cispata, Caribe colombiano. Revista Ciencias Marinas y Costeras, 14(2), 9-25. https://doi.org/10.15359/revmar.14-2.1
dc.relation.referencesOry, N. C., Sobral, P., Ferreira, J. L., & Thiel, M. (2017). Amberstripe scad Decapterus muroadsi (Carangidae) fish ingest blue microplastics resembling their copepod prey along the coast of Rapa Nui (Easter Island) in the South Pacific subtropical gyre. Science of the Total Environment, 586, 430-437. https://doi.org/10.1016/j.scitotenv.2017.01.175
dc.relation.referencesOry, N., Chagnon, C., Félix, F., Fernández, C., Ferreira, J. L., Gallardo, C., Garcés-Ordoñez, O., Henríquez, C., Kiessling, T., Bravo, M., & Thiel, M. (2018). Low prevalence of microplastic contamination in planktivorous fish species from the southeast Pacific Ocean. Marine Pollution Bulletin, 127, 211–216. https://doi.org/10.1016/j.marpolbul.2017.12.016
dc.relation.referencesPanti, C., et al. (2022). Benthic invertebrates as indicators of microplastic contamination: A review. Science of The Total Environment, 806, 150490. https://doi.org/10.1016/j.scitotenv.2021.150490
dc.relation.referencesPawson, D. L., Pawson, D. J. y King, R. A. (2010). A taxonomic guide to the Echinodermata of the South Atlantic Bight, USA: 1. Sea cucumbers (Echinodermata: Holothuroidea). Zootaxa, 2449: 1-48. https://doi.org/10.11646/zootaxa.2449.1.1
dc.relation.referencesPazos, R. S. (2021). Estudio de microplásticos en la columna de agua, sedimento intermareal y biota residente en la costa del estuario del Río de la Plata (Franja Costera Sur) (Doctoral dissertation, Universidad Nacional de La Plata). https://sedici.unlp.edu.ar/handle/10915/116621
dc.relation.referencesPellini, G., Gomiero, A., Fortibuoni, T., Ferrà, C., Grati, F., Tassetti, A. N., Polidori, P., Scarcella, G., & Fabi, G. (2018). Characterization of microplastic litter in the gastrointestinal tract of Solea solea from the Adriatic Sea. Environmental Pollution, 234, 943–952. https://doi.org/10.1016/j.envpol.2017.12.038
dc.relation.referencesPérez, S. A., Gil, D. G., & Rubilar Panasiuk, C. T. (2014). Echinodermata. https://notablesdelaciencia.conicet.gov.ar/handle/11336/111407
dc.relation.referencesPirsaheb, M., Hossini, H., & Makhdoumi, P. (2020). Review of microplastic occurrence and toxicological effects in marine environment: Experimental evidence of inflammation. Process Safety and Environmental Protection, 142, 1-14. https://doi.org/10.1016/j.psep.2020.05.050
dc.relation.referencesPurcell, S., Lovatelli, A., Vasconcellos, M., & Ye, Y. (2010). Manejo de las pesquerías de pepino de mar con un enfoque ecosistémico. FAO, Documento Técnico de Pesca y Acuicultura (FAO). https://www.fao.org/3/i1384s/i1384s00.htm
dc.relation.referencesQuirós-Rodríguez, J. A. (2015). Equinodermos en fondos someros del sector la Ahumadera, bahía de Cispatá, Córdoba, Caribe colombiano. Acta Biológica Colombiana, 20(1), 101-108. https://doi.org/10.15446/abc.v20n1.42529
dc.relation.referencesQuirós-Rodríguez, J. A., Nisperuza-Pérez, C., & Yepes-Escobar, J. (2021). Los microplásticos, una amenaza desconocida para los ecosistemas marinos de Colombia: perspectivas y desafíos a enfrentar. Gestión y Ambiente, 24(1), 91615-91615. https://doi.org/10.15446/ga.v24n1.91615
dc.relation.referencesRenzi, M., Blašković, A., Bernardi, G., & Russo, G. F. (2018). Plastic litter transfer from sediments towards marine trophic webs: a case study on holothurians. Marine pollution bulletin, 135, 376-385. https://doi.org/10.1016/j.marpolbul.2018.07.038
dc.relation.referencesRochman, C. M., Hoh, E., Hentschel, B. T., & Kaye, S. (2013). Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environmental Science & Technology, 47(3), 1646–1654. https://doi.org/10.1021/es303700s
dc.relation.referencesRochman, C. M., Hoh, E., Hentschel, B. T., & Kaye, S. (2013). Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environmental Science & Technology, 47(3), 1646–1654. https://doi.org/10.1021/es303700s
dc.relation.referencesRochman, C. M., Tahir, A., Williams, S. L., Baxa, D. V., Lam, R., Miller, J. T., ... & Teh, S. J. (2015). Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific reports, 5(1), 1-10. https://doi.org/10.1038/srep14340
dc.relation.referencesRodríguez, D. L. (2007). Distribución espacial y temporal de la comunidad mesozooplanctónica presente en el complejo de cienagas de Bahía de Cispatá (Cordoba, Caribe Colombiano). Recuperado de: http://hdl.handle.net/20.500.12010/1178.
dc.relation.referencesRojo-Nieto, E., & Montoto Martínez, T. (2017). Basuras marinas, plásticos y microplásticos: orígenes, impactos y consecuencias de una amenaza global. Ecologistas en acción.
dc.relation.referencesRolton, A., Vignier, J., Volety, A. K., Pierce, R. H., Henry, M., Shumway, S. E., Bricelj, V. M., Hégaret, H., & Soudant, P. (2016). Effects of field and laboratory exposure to the toxic dinoflagellate Karenia brevis on the reproduction of the eastern oyster, Crassostrea virginica, and subsequent development of offspring. Harmful Algae, 57, 13–26. https://doi.org/10.1016/j.hal.2016.03.002
dc.relation.referencesRTS. (2022). Plástico en los océanos: hechos y estadísticas. RTS. https://www.rts.com/es/blog/plastic-pollution-in-the-ocean-facts-and-statistics/
dc.relation.referencesRuppert, E. E., & Barnes, R. D. (1996). Zoología de los invertebrados (6ª ed.). McGraw-Hill Interamericana Editores.
dc.relation.referencesSánchez Ramírez, J. E. (2018). Plásticos y microplásticos en agua, un problema mundial que afecta nuestros sistemas acuáticos. Ingeniería y Región, 19, 0. https://doi.org/10.25054/22161325.2027
dc.relation.referencesSayogo, B. H., Patria, M. P., & Takarina, N. D. (2020). The density of microplastic in sea cucumber (Holothuria sp.) and sediment at Tidung Besar and Bira Besar island, Jakarta. In Journal of Physics: Conference Series (Vol. 1524, No. 1, p. 012064). IOP Publishing. DOI:10.1088/1742-6596/1524/1/012064ResearchGate+7
dc.relation.referencesSchmidt, N., Castro-Jiménez, J., Fauvelle, V., Ourgaud, M., & Sempéré, R. (2020). Occurrence of organic plastic additives in surface waters of the Rhône River (France). Environmental Pollution, 257, 113637. DOI: 10.1016/j.envpol.2019.113637Publicaciones ACS+6
dc.relation.referencesSfriso, A. A., Juhmani, A. S., Tomio, Y., Sfriso, A., Rizzolio, F., Adeel, M., Da Ros, L., Giani, M., & Mistri, M. (2024). Microplastic accumulation and ecological impacts on benthic invertebrates: Insights from a microcosm experiment. Marine Pollution Bulletin, 202, 116231. https://doi.org/10.1016/j.marpolbul.2024.116231
dc.relation.referencesShukhairi, SS, Mazlan, N., Abd Rahman, NN, Nazahuddin, MNA, Shawel, AS y Kumar, VS (2024). Efecto de la exposición crónica a microplásticos en el crecimiento, las respuestas bioquímicas y los cambios histológicos del pepino de mar juvenil (Holothuria scabra). DOI: 10.21203/rs.3.rs-4412255/v1
dc.relation.referencesSolís-Marin, F. A., Madrigal, X., Honey-Escandón, M.B, Arriaga-Ochoa, J. A., Caballero, A., García, A., & Salazar, P. (2011). Diagnóstico de las poblaciones arrecifales del pepino de mar Holothuria inornata Semper, 1868 en la costa del estado de Michocan. Michoacan, Mexico: Secretaria de medio ambiente y recursos naturales.
dc.relation.referencesSong, J., Wang, C., & Li, G. (2024). Defining primary and secondary microplastics: a connotation analysis. ACS ES&T Water, 4(6), 2330-2332. DOI: 10.1021/acsestwater.4c00316
dc.relation.referencesTagliafico, A., Rangel, M. S., & Rago, N. (2011). Distribución y densidad de dos especies de holoturoideos en la isla de Cubagua, Venezuela. Revista de Biología Tropical, 59(2), 843-852. DOI: 10.15517/rbt.v0i0.3144
dc.relation.referencesTeuten, E. L., Saquing, J. M., Knappe, D. R., Barlaz, M. A., Jonsson, S., Björn, A., Rowland, S. J., et al. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2027–2045. DOI: 10.1098/rstb.2008.0284
dc.relation.referencesThompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., ... & Russell, A. E. (2004). Lost at sea: where is all the plastic?. Science, 304(5672), 838-838. DOI: 10.1126/science.1094559
dc.relation.referencesTourinho, P. S., Kočí, V., Loureiro, S., & van Gestel, C. A. M. (2019). Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environmental Pollution, 252, 1246–1256. DOI: 10.1016/j.envpol.2019.06.030
dc.relation.referencesUthicke, S. (2001). Interactions between sediment-feeders and microalgae on coral reefs: grazing losses versus production enhancement. Marine Ecology Progress Series, 210, 125-138. DOI: 10.3354/meps210125
dc.relation.referencesVan Cauwenberghe, L., & Janssen, C. R. (2015). Microplastic pollution in deep-sea sediments from the Atlantic Ocean. Marine Pollution Bulletin, 92(1-2), 170-179. https://doi.org/10.1016/j.marpolbul.2014.12.038
dc.relation.referencesVan Cauwenberghe, L., Vanreusel, A., Mees, J., & Janssen, C. R. (2013). Microplastic pollution in deep-sea sediments. Environmental Pollution, 182, 495–499. https://doi.org/10.1016/j.envpol.2013.08.013
dc.relation.referencesVan Emmerik, T. (2021). Investigación macroplástica en la era de los microplásticos. Microplásticos y nanoplásticos, 1, 1-2. DOI: 10.1186/s43591-021-00003-1
dc.relation.referencesWang, Q. y Zhao, Y. (2023). La toxicidad de los microplásticos y sus lixiviados para el desarrollo embrionario del pepino de mar (Apostichopus japonicus). Marine Environmental Research, 190, 106114. DOI: 10.1016/j.marenvres.2023.106114
dc.relation.referencesWang, W., & Wang, J. (2018). Investigation of microplastics in aquatic environments: an overview of the methods used, from field sampling to laboratory analysis. TrAC Trends in Analytical Chemistry, 108, 195-202. DOI: 10.1016/j.trac.2018.08.026
dc.relation.referencesWoodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G. L. J., Coppock, R., Sleight, V., Calafat, A., Rogers, A. D., Narayanaswamy, B. E., & Thompson, R. C. (2014). The deep sea is a major sink for microplastic debris. Royal Society Open Science, 1(4), 140317. https://doi.org/10.1098/rsos.140317
dc.relation.referencesWoRMS (2025). Holothuria (Halodeima) grisea Selenka, 1867. Consultado en: https://www.marinespecies.org/aphia.php?p=taxdetails&id=241833
dc.relation.referencesWoRMS (2025). Holothuroidea. Consultado en: https://www.marinespecies.org/aphia.php?p=taxdetails&id=123083
dc.relation.referencesWright, S. L., & Kelly, F. J. (2017). Plastic and human health: A micro issue? Environmental Science & Technology, 51(12), 6634–6647. DOI: 10.1021/acs.est.7b00423Europe PMC+4
dc.relation.referencesWu, H., Mohsen, M., Cen, Y., Yang, Y., y Yu, Z. (2025). Efectos de los microplásticos en la ingestión, supervivencia y desarrollo larvario del pepino de mar Holothuria leucospilota. Biología y Seguridad del Agua , 4 (2), 100329. DOI: 10.1016/j.watbs.2024.100329
dc.relation.referencesYang, H., Chen, G., & Wang, J. (2021). Microplastics in the marine environment: sources, fates, impacts and microbial degradation. Toxics, 9(2), 41. DOI: 10.3390/toxics9020041
dc.relation.referencesZhao, J., Ran, W., Teng, J., Liu, Y., Liu, H., Yin, X., Wang, Q., Cao, R., Wang, M., & Zhang, S. (2018). Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China. Science of the Total Environment, 640–641, 637–645. https://doi.org/10.1016/j.scitotenv.2018.05.346
dc.relation.referencesZhao, X., Wang, J., Yee Leung, K. M., & Wu, F. (2022). Color: an important but overlooked factor for plastic photoaging and microplastic formation. Environmental Science & Technology, 56(13), 9161-9163. DOI: 10.1021/acs.est.2c02402
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsColombian Caribbeaneng
dc.subject.keywordsHoluturiidaeng
dc.subject.keywordsMicroplasticseng
dc.subject.keywordsDigestive tracteng
dc.subject.proposalCaribe colombianospa
dc.subject.proposalHoluturiidaspa
dc.subject.proposalMicroplásticosspa
dc.subject.proposalTracto digestivospa
dc.titleAnálisis de microplásticos en el tracto digestivo de holothuria grisea selenka, 1867 (echinodermata: holothuriidae) en el sur del golfo de Morrosquillo, Colombiaspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
RamosRoquemeMayerlis.pdf
Tamaño:
2.06 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AutorizaciónPublicación.pdf
Tamaño:
543.42 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: