Publicación:
Capacidad de incorporación de bisfenol a y 17α etinilestradiol en hortalizas cultivadas bajo condiciones de invernadero

dc.contributor.advisorMarrugo Negrete, José Luis
dc.contributor.authorAleán Flórez, Joel David
dc.date.accessioned2021-10-14T00:14:07Z
dc.date.available2021-10-14T00:14:07Z
dc.date.issued2021-10-12
dc.description.abstractLos contaminantes emergentes (CE) hacen referencia a compuestos químicos sintéticos o naturales que no son frecuentemente monitoreados, pero que tienen el potencial de entrar al ambiente y causar efectos ecológicos adversos y efectos en la salud humana. En este trabajo se estudió la capacidad de absorción de bisfenol A (BPA) y 17α-etinilestradiol (EE2) suministrando mediante riego por goteo a dos niveles de concentración de 23.53 y 157.93 µg/L para BPA y de 8.09 y 30.77 µg/L para EE2 en tres especies de hortalizas Cucumis sativus (pepino), Allium schoenoprasum (cebollín) y Brassica oleracea (col) cultivadas en suelos agrícolas. La presencia de BPA y EE2 en el agua de riego no causó ningún efecto fitotóxico en las hortalizas estudiadas (p>0.05). El órgano de la planta que presento mayor acumulación fue la raíz; se presentó una mayor acumulación de BPA y EE2 en las hortalizas que fueron regadas con el tratamiento bajo (N1).spa
dc.description.abstractEmerging pollutants (EC) refer to synthetic or natural chemical compounds that are not frequently monitored, but that have the potential to enter the environment and cause adverse ecological and human health effects. In this work, the absorption capacity of bisphenol A (BPA) and 17α-ethinylestradiol (EE2) was studied, supplying by drip irrigation at two concentration levels of 23.53 and 157.93 µg / L for BPA and 8.09 and 30.77 µg / L for EE2 in three species of vegetables Cucumis sativus (cucumber), Allium schoenoprasum (chives) and Brassica oleracea (cabbage) grown on agricultural soils. The presence of BPA and EE2 in the irrigation water did not cause any phytotoxic effect in the studied vegetables (p> 0.05). The organ of the plant with the greatest accumulation was the root; A greater accumulation of BPA and EE2 was accumulated in the vegetables that were watered with the low treatment (N1).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Ambientalesspa
dc.description.modalityTrabajo de Investigación y/o Extensiónspa
dc.description.tableofcontentsTABLA DE CONTENIDOspa
dc.description.tableofcontents1. INTRODUCCIÓN .................1spa
dc.description.tableofcontents2. OBJETIVOS........................4spa
dc.description.tableofcontents2.1. OBJETIVO GENERAL................4spa
dc.description.tableofcontents2.2. OBJETIVOS ESPECIFICOS..........................4spa
dc.description.tableofcontents3. ANTECEDENTES Y MARCO TEÓRICO..............5spa
dc.description.tableofcontents3.1 ANTECEDENTES....................5spa
dc.description.tableofcontents3.2. MARCO TEÓRICO....................6spa
dc.description.tableofcontents3.2.1. Contaminantes emergentes.......................6spa
dc.description.tableofcontents3.2.2. Absorción de CE..................8spa
dc.description.tableofcontents3.2.3. Agua de riego.....................9spa
dc.description.tableofcontents3.2.4.Traslocación de los CE....................10spa
dc.description.tableofcontents3.2.5.Cultivo de hortalizas......................11spa
dc.description.tableofcontents3.2.6.Degradación de CE..................12spa
dc.description.tableofcontents3.2.7. BPA y EE2.................13spa
dc.description.tableofcontents4. METODOLOGÍA.................15spa
dc.description.tableofcontents4.1. SITIO DEL EXPERIMENTO...........................15spa
dc.description.tableofcontents4.2. SIEMBRA DE HORTALIZAS..........................15spa
dc.description.tableofcontents4.3. ADICIÓN DE BPA Y EE2 MEDIANTE EL RIEGO..................16spa
dc.description.tableofcontents4.4. DETERMINACIÓN DEL CONTENIDO DE CLOROFILA Y CAROTENOIDES.......17spa
dc.description.tableofcontents4.5. DETERMINACIÓN DEL ÁREA FOLIAR.............18spa
dc.description.tableofcontents4.6. ANÁLISIS EXPLORATORIO DE CE EN MUESTRAS DE AGUA PROVENIENTES DE LOS DISTRITOS DE RIEGO......18spa
dc.description.tableofcontents4.7. ANÁLISIS DE CE EN SUELOS........... 18spa
dc.description.tableofcontents4.8. ANÁLISIS DE MATERIAL VEGETAL.......... 19spa
dc.description.tableofcontents4.9. CONDICIONES CROMATOGRÁFICAS HPLC.........20spa
dc.description.tableofcontents4.10. CONTROL DE CALIDAD ANALÍTICO.........20spa
dc.description.tableofcontents4.11. ANÁLISIS ESTADÍSTICO......... 21spa
dc.description.tableofcontents5. RESULTADOS Y DISCUSIÓN........22spa
dc.description.tableofcontents5.1. ANÁLISIS DE CONTAMINANTES EMERGENTES EN LOS CANALES DE RIEGO......22spa
dc.description.tableofcontents5.2. PROPIEDADES FÍSICO QUÍMICAS DEL SUELO........24spa
dc.description.tableofcontents5.3. CALCULO DE LAS VARIABLES MORFOMÉTRICAS Y FISIOLÓGICAS........26spa
dc.description.tableofcontents5.3.1. Pepino (Cucumis sativus)...........26spa
dc.description.tableofcontents5.3.2. Cebollín (Allium schoenoprasum).........27spa
dc.description.tableofcontents5.3.3. Col (Brassica oleracea).............28spa
dc.description.tableofcontents5.4. ABSORCIÓN DE BPA Y EE2 EN LAS HORTALIZAS ESTUDIADAS.................29spa
dc.description.tableofcontents5.4.1. Absorción de BPA...................29spa
dc.description.tableofcontents5.4.2. Absorción de EE2…………………………….29spa
dc.description.tableofcontents5.5. FACTOR DE TRANSLOCACIÓN (FT)...........................30spa
dc.description.tableofcontents6. CONCLUSIONES......................31spa
dc.description.tableofcontents7. RECOMENDACIONES............... 32spa
dc.description.tableofcontents8. REFERENCIA BIBLIOGRÁFICAS...............33spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4675
dc.language.isospaspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ciencias Ambientalesspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsAccumulationeng
dc.subject.keywordsVegetableseng
dc.subject.keywordsIrrigationeng
dc.subject.proposalAcumulaciónspa
dc.subject.proposalHortalizasspa
dc.subject.proposalRiegospa
dc.titleCapacidad de incorporación de bisfenol a y 17α etinilestradiol en hortalizas cultivadas bajo condiciones de invernaderospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAdeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017c). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99, 107-119.spa
dcterms.referencesAdeel, M., Yang, Y. S., Wang, Y. Y., Song, X. M., Ahmad, M. A., & Rogers, H. J. (2018). Uptake and transformation of steroid estrogens as emerging contaminants influence plant development. Environmental Pollution, 243, 1487-1497.spa
dcterms.referencesAhammed, G. J., Wang, Y., Mao, Q., Wu, M., Yan, Y., Ren, J., ... & Chen, S. (2020). Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber. Environmental Pollution, 259, 113957.spa
dcterms.referencesAudet, P., & Charest, C. (2007). Heavy metal phytoremediation from a meta-analytical perspective. Environmental Pollution, 147(1), 231-237spa
dcterms.referencesBarraza-Álvarez, F. V. (2015). Calidad morfológica y fisiológica de pepinos cultivados en diferentes concentraciones nutrimentales. Revista Colombiana de Ciencias Hortícolas, 9(1), 60-71.spa
dcterms.referencesBax, R. P. (1997). Antibiotic resistance: A view from the pharmaceutical industry. Clinical Infectious Diseases, 24(Supplement_1), S151-S153.spa
dcterms.referencesBenotti, M. J., & Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds: Implications for ground water replenishment with recycled water. Groundwater, 47(4), 499-502.spa
dcterms.referencesBedoya-Ríos, D. F., Lara-Borrero, J. A., Duque-Pardo, V., Madera-Parra, C. A., Jimenez, E. M., & Toro, A. F. 2018. Study of the occurrence and ecosystem danger of selected endocrine disruptors in the urban water cycle of the city of bogotá, colombia. Journal of Environmental Science and Health, Part A, 53(4), 317-325.spa
dcterms.referencesBriggs, G. G., Bromilow, R. H., & Evans, A. A. (1982). Relationships between lipophilicity and root uptake and translocation of non‐ionised chemicals by barley. Pesticide Science, 13(5), 495-504.spa
dcterms.referencesBrumovský, M., Bečanová, J., Kohoutek, J., Borghini, M., & Nizzetto, L. 2017. Contaminants of emerging concern in the open sea waters of the western mediterranean doi: 10.1016/j.envpol.2017.07.082spa
dcterms.referencesBuckley, J. P., Kim, H., Wong, E., & Rebholz, C. M. (2019). Ultra-processed food consumption and exposure to phthalates and bisphenols in the US national health and nutrition examination survey, 2013–2014. Environment International, 131, 105057.spa
dcterms.referencesBuerge, I. J., Poiger, T., Müller, M. D., & Buser, H. (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental Science & Technology, 37(4), 691-700spa
dcterms.referencesCampos Pinilla, C., Contreras, A. M., & Leiva, F. R. 2015. Evaluación del riesgo sanitario en un cultivo de lechuga (lactuca sativa) debido al riego con aguas residuales sin tratar en el centro agropecuario marengo (cundinamarca, colombia).Biosalud, 14(1), 69-78spa
dcterms.referencesCarmona, E., Andreu, V., & Picó, Y. (2017). Multi-residue determination of 47 organic compounds in water, soil, sediment and fish—Turia river as case study. Journal of Pharmaceutical and Biomedical Analysis, 146, 117-125.spa
dcterms.referencesCarrasco, I. R. Z., & Lozano, J. C. (2017). Controversia por el uso de triclosán en los productos antibacteriales de uso común. Revista Latinoamericana De Infectología Pediátrica, 30(3), 93-96.spa
dcterms.referencesCarter, L. J., Harris, E., Williams, M., Ryan, J. J., Kookana, R. S., & Boxall, A. B. (2014). Fate and uptake of pharmaceuticals in soil–plant systems. Journal of agricultural and food chemistry, 62(4), 816-825.spa
dcterms.referencesChoi, Y. J., & Lee, L. S. (2017). Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA. Environmental Science & Technology, 51(23), 13698-13704.spa
dcterms.referencesCollins, C., Fryer, M., & Grosso, A. (2006). Plant uptake of non-ionic organic chemicals. Environmental Science & Technology, 40(1), 45-52.spa
dcterms.referencesComber, S., Gardner, M., Sörme, P., Leverett, D., & Ellor, B. 2018. Active pharmaceutical ingredients entering the aquatic environment from wastewater treatment works: A cause for concern? doi: 10.1016/j.scitotenv.2017.09.101spa
dcterms.referencesCREA (Centro de Reconversion Economica del Azuay, Ca¤ ar y Morona Santiago, EC)/INIAP (Instituto Nacional Autonomo de Investigaciones Agropecuarias, EC). Analítico: Estudio de desarrollo para la reactivacion productiva y mitigacion de la pobreza en la Region Centro-Sur del Ecuadorspa
dcterms.referencesDe Santiago-Martín, A., Meffe, R., Teijón, G., Martínez Hernández, V., López-Heras, I., Alonso Alonso, C., . . . de Bustamante, I. (2020). Pharmaceuticals and trace metals in the surface water used for crop irrigation: Risk to health or natural attenuation? Science of the Total Environment, 705, 135825. doi:https://ezproxyucor.unicordoba.edu.co:2129/10.1016/j.scitotenv.2019.135825spa
dcterms.referencesDe Córdoba, G., & de Colombia-Asohofrucol, A. H. (2006). Desarrollo de la fruticultura en Córdoba.spa
dcterms.referencesDe Voogt, P., Janex-Habibi, M., Sacher, F., Puijker, L., & Mons, M. (2009). Development of a common priority list of pharmaceuticals relevant for the water cycle. Water Science and Technology, 59(1), 39-46.spa
dcterms.referencesDiamanti-Kandarakis, E., Bourguignon, J., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., . . . Gore, A. C. (2009). Endocrine-disrupting chemicals: An endocrine society scientific statement. Endocrine Reviews, 30(4), 293-342.spa
dcterms.referencesDodgen, L. K., Li, J., Parker, D., & Gan, J. J. (2013a). Uptake and accumulation of four PPCP/EDCs in two leafy vegetables. Environmental Pollution, 182, 150-156.spa
dcterms.referencesFarré, M., & Barceló, D. 2013. Analysis of emerging contaminants in food. Trends in Analytical Chemistry, 43, 240-253. doi:10.1016/j.trac.2012.12.003spa
dcterms.referencesFAO y FIDA. 2006. El agua para la alimentación, la agricultura y los medios de vida rurales. En: El agua, una responsabilidad compartida. 2º Informe de las Naciones Unidas sobre el desarrollo de los recursos hídricos en el mundo. Resumen ejecutivo. 47 p. Espa
dcterms.referencesFent, G., Hein, W. J., Moendel, M. J., & Kubiak, R. (2003). Fate of 14C-bisphenol A in soils. Chemosphere, 51(8), 735-746spa
dcterms.referencesFEDEARROZ, (Federación Nacional de Arroceros). 2008. Guía para el crecimiento agronómico en Córdoba. http://www.fedearrozagro.com. 14 de juliospa
dcterms.referencesGarcía de Souza, M., Alliaume, F., Mancassola, V., & Dogliotti, S. (2011). Carbono orgánico y propiedades físicas del suelo en predios hortícolas del sur de Uruguay. Agrociencia Uruguay, 15(1), 70-81.spa
dcterms.referencesGarcía-Gómez, C., Gortáres-Moroyoqui, P., & Drogui, P. (2011). Contaminantes emergentes: efectos y tratamientos de remoción. Química Viva, 10(2), 96-105.spa
dcterms.referencesGUZMÁN, J. M.Reutilización de aguas residuales para riego en agricultura.spa
dcterms.referencesHerklotz, P. A., Gurung, P., Heuvel, B. V., & Kinney, C. A. (2010). Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere, 78(11), 1416-1421.spa
dcterms.referencesHengstler, J. G., Foth, H., Gebel, T., Kramer, P., Lilienblum, W., Schweinfurth, H., . . . Gundert-Remy, U. (2011). Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Critical Reviews in Toxicology, 41(4), 263-291.spa
dcterms.referencesHiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334.spa
dcterms.referencesKarnjanapiboonwong, A., Morse, A. N., Maul, J. D., & Anderson, T. A. (2010). Sorption of estrogens, triclosan, and caffeine in a sandy loam and a silt loam soil. Journal of Soils and Sediments, 10(7), 1300-1307.spa
dcterms.referencesKasonga, T. K., Coetzee, M. A., Kamika, I., Ngole-Jeme, V. M., & Momba, M. N. B. (2020). Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: A review. Journal of Environmental Management, 277, 111485.spa
dcterms.referencesKulma, A., & Szopa, J. (2007). Catecholamines are active compounds in plants. Plant Science, 172(3), 433-440.spa
dcterms.referencesLamastra, Lucrezia, Matteo Balderacchi, and Marco Trevisan. 2016. Inclusion of emerging organic contaminants in groundwater monitoring plans. Vol. 3, http://www.sciencedirect.com/science/article/pii/S2215016116300243.spa
dcterms.referencesLinares Albornoz, S. A. (2019). Estudio de adsorción-desorción y degradación de 17- α-etinilestradiol (EE2) en suelos tratados con biosólidosspa
dcterms.referencesLi, C., Sun, X., Chang, C., Jia, D., Wei, Z., Li, C., & Ma, F. (2015). Dopamine alleviates salt‐induced stress in Malus hupehensis. Physiologia plantarum, 153(4), 584-602.spa
dcterms.referencesLiang, B., Li, C., Ma, C., Wei, Z., Wang, Q., Huang, D., ... & Ma, F. (2017). Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis. Plant Physiology and Biochemistry, 119, 346-359.spa
dcterms.referencesLu, J., Wu, J., Stoffella, P. J., & Wilson, P. C. (2015). Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water. Journal of Hazardous Materials, 283, 865-870.spa
dcterms.referencesMarrugo Negrete, J. L., & Sanchez Castellón, J. G. (2018). Plaguicidas en canales de riego del distrito de la doctrina (córdoba-colombia). Temas Agrarios, 23(1)spa
dcterms.referencesMattina, M. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124(3), 375-378.spa
dcterms.referencesMezzelani, M., Gorbi, S., & Regoli, F. 2018. Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms doi: 10.1016/j.marenvres.2018.05.001spa
dcterms.referencesMohamed, A. O., & Paleologos, E. K. (2018). Emerging pollutants: Fate, pathways, and bioavailability.spa
dcterms.referencesNoureddin, M. I., Furumoto, T., Ishida, Y., & Fukui, H. (2004). Absorption and metabolism of bisphenol A, a possible endocrine disruptor, in the aquatic edible plant, water convolvulus (Ipomoea aquatica). Bioscience, biotechnology, and biochemistry, 68(6), 1398-1402.spa
dcterms.referencesPetrovic, M., Sabater, S., Elosegi, A., & Barceló, D. (2016). Emerging contaminants in river ecosystems: Occurrence and effects under multiple stress conditions Springerspa
dcterms.referencesPedrero, F., Kalavrouziotis, I., Alarcón, J. J., Koukoulakis, P., & Asano, T. 2010. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in spain and greece doi:10.1016/j.agwat.2010.03.003spa
dcterms.referencesPicó, Y., Alvarez-Ruiz, R., Alfarhan, A. H., El-Sheikh, M. A., Alobaid, S. M., & Barceló, D. (2019). Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the al hayer area (saudi arabia). Science of the Total Environment, 652, 562-572.spa
dcterms.referencesPilon-Smits, E. (2005). Phytoremediation. Annu.Rev.Plant Biol., 56, 15-39.spa
dcterms.referencesPire, R., & Valenzuela, I. (1995). Estimación del área foliar en vitis vinifera L.'french colombard'a partir de mediciones lineales en las hojas. Agronomía Tropical, 45(1), 143-154.spa
dcterms.referencesPullagurala, V. L. R., Rawat, S., Adisa, I. O., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Plant uptake and translocation of contaminants of emerging concern in soil. Science of the Total Environment, 636, 1585-1596.spa
dcterms.referencesQiu, Z., Wang, L., & Zhou, Q. (2013). Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere, 90(3), 1274-1280.spa
dcterms.referencesReddy, P. V. L., & Kim, K. H. (2015). A review of photochemical approaches for the treatment of a wide range of pesticides. Journal of hazardous materials, 285, 325-335.spa
dcterms.referencesTogola, A., & Budzinski, H. (2007). Analytical development for analysis of pharmaceuticals in water samples by SPE and GC–MS. Analytical and Bioanalytical Chemistry, 388(3), 627-635.spa
dcterms.referencesTong, X., Li, Y., Zhang, F., Chen, X., Zhao, Y., Hu, B., & Zhang, X. (2019). Adsorption of 17β-estradiol onto humic-mineral complexes and effects of temperature, pH, and bisphenol A on the adsorption process. Environmental Pollution, 254, 112924.spa
dcterms.referencesTrapp, S. (2009). Bioaccumulation of polar and ionizable compounds in plants. Ecotoxicology modeling (pp. 299-353) Springer.spa
dcterms.referencesTrapp, S., & Legind, C. N. (2011). Uptake of organic contaminants from soil into vegetables and fruits. Dealing with contaminated sites (pp. 369-408) Springer.spa
dcterms.referencesUslu, M. O., Jasim, S., Arvai, A., Bewtra, J., & Biswas, N. (2013). A survey of occurrence and risk assessment of pharmaceutical substances in the great lakes basin. Ozone: Science & Engineering, 35(4), 249-262.spa
dcterms.referencesWSP (Water and Sanitation Program), Banco Mundial, Agencia Suiza para el Desarrollo y la Cooperación (Cosud), Unicef y Banco Interamericano para el Desarrollo (Bid). 2007. Saneamiento para el desarrollo. Cómo estamos en 21 países de América Latina y el Caribe. Conferencia Latinoamericana de Saneamiento, Cali.spa
dcterms.referencesWu, X., Conkle, J. L., & Gan, J. (2012). Multi-residue determination of pharmaceutical and personal care products in vegetables. Journal of Chromatography A, 1254, 78-86.spa
dcterms.referencesWu, X., Dodgen, L. K., Conkle, J. L., & Gan, J. (2015). Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: A review. Science of the Total Environment, 536, 655-666.spa
dcterms.referencesWu, X., Ernst, F., Conkle, J. L., & Gan, J. (2013). Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environment International, 60, 15-22.spa
dcterms.referencesZheng, W., Wiles, K. N., Holm, N., Deppe, N. A., & Shipley, C. R. (2014). Uptake, translocation, and accumulation of pharmaceutical and hormone contaminants in vegetables. In Retention, Uptake, and Translocation of Agrochemicals in Plants (pp. 167-181). American Chemical Society.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
AleanFlorezJoelDavid.pdf
Tamaño:
2.99 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Autorizacion Pública...pdf
Tamaño:
726.66 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones