Publicación: Capacidad de incorporación de bisfenol a y 17α etinilestradiol en hortalizas cultivadas bajo condiciones de invernadero
dc.contributor.advisor | Marrugo Negrete, José Luis | |
dc.contributor.author | Aleán Flórez, Joel David | |
dc.date.accessioned | 2021-10-14T00:14:07Z | |
dc.date.available | 2021-10-14T00:14:07Z | |
dc.date.issued | 2021-10-12 | |
dc.description.abstract | Los contaminantes emergentes (CE) hacen referencia a compuestos químicos sintéticos o naturales que no son frecuentemente monitoreados, pero que tienen el potencial de entrar al ambiente y causar efectos ecológicos adversos y efectos en la salud humana. En este trabajo se estudió la capacidad de absorción de bisfenol A (BPA) y 17α-etinilestradiol (EE2) suministrando mediante riego por goteo a dos niveles de concentración de 23.53 y 157.93 µg/L para BPA y de 8.09 y 30.77 µg/L para EE2 en tres especies de hortalizas Cucumis sativus (pepino), Allium schoenoprasum (cebollín) y Brassica oleracea (col) cultivadas en suelos agrícolas. La presencia de BPA y EE2 en el agua de riego no causó ningún efecto fitotóxico en las hortalizas estudiadas (p>0.05). El órgano de la planta que presento mayor acumulación fue la raíz; se presentó una mayor acumulación de BPA y EE2 en las hortalizas que fueron regadas con el tratamiento bajo (N1). | spa |
dc.description.abstract | Emerging pollutants (EC) refer to synthetic or natural chemical compounds that are not frequently monitored, but that have the potential to enter the environment and cause adverse ecological and human health effects. In this work, the absorption capacity of bisphenol A (BPA) and 17α-ethinylestradiol (EE2) was studied, supplying by drip irrigation at two concentration levels of 23.53 and 157.93 µg / L for BPA and 8.09 and 30.77 µg / L for EE2 in three species of vegetables Cucumis sativus (cucumber), Allium schoenoprasum (chives) and Brassica oleracea (cabbage) grown on agricultural soils. The presence of BPA and EE2 in the irrigation water did not cause any phytotoxic effect in the studied vegetables (p> 0.05). The organ of the plant with the greatest accumulation was the root; A greater accumulation of BPA and EE2 was accumulated in the vegetables that were watered with the low treatment (N1). | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Ambientales | spa |
dc.description.modality | Trabajo de Investigación y/o Extensión | spa |
dc.description.tableofcontents | TABLA DE CONTENIDO | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN .................1 | spa |
dc.description.tableofcontents | 2. OBJETIVOS........................4 | spa |
dc.description.tableofcontents | 2.1. OBJETIVO GENERAL................4 | spa |
dc.description.tableofcontents | 2.2. OBJETIVOS ESPECIFICOS..........................4 | spa |
dc.description.tableofcontents | 3. ANTECEDENTES Y MARCO TEÓRICO..............5 | spa |
dc.description.tableofcontents | 3.1 ANTECEDENTES....................5 | spa |
dc.description.tableofcontents | 3.2. MARCO TEÓRICO....................6 | spa |
dc.description.tableofcontents | 3.2.1. Contaminantes emergentes.......................6 | spa |
dc.description.tableofcontents | 3.2.2. Absorción de CE..................8 | spa |
dc.description.tableofcontents | 3.2.3. Agua de riego.....................9 | spa |
dc.description.tableofcontents | 3.2.4.Traslocación de los CE....................10 | spa |
dc.description.tableofcontents | 3.2.5.Cultivo de hortalizas......................11 | spa |
dc.description.tableofcontents | 3.2.6.Degradación de CE..................12 | spa |
dc.description.tableofcontents | 3.2.7. BPA y EE2.................13 | spa |
dc.description.tableofcontents | 4. METODOLOGÍA.................15 | spa |
dc.description.tableofcontents | 4.1. SITIO DEL EXPERIMENTO...........................15 | spa |
dc.description.tableofcontents | 4.2. SIEMBRA DE HORTALIZAS..........................15 | spa |
dc.description.tableofcontents | 4.3. ADICIÓN DE BPA Y EE2 MEDIANTE EL RIEGO..................16 | spa |
dc.description.tableofcontents | 4.4. DETERMINACIÓN DEL CONTENIDO DE CLOROFILA Y CAROTENOIDES.......17 | spa |
dc.description.tableofcontents | 4.5. DETERMINACIÓN DEL ÁREA FOLIAR.............18 | spa |
dc.description.tableofcontents | 4.6. ANÁLISIS EXPLORATORIO DE CE EN MUESTRAS DE AGUA PROVENIENTES DE LOS DISTRITOS DE RIEGO......18 | spa |
dc.description.tableofcontents | 4.7. ANÁLISIS DE CE EN SUELOS........... 18 | spa |
dc.description.tableofcontents | 4.8. ANÁLISIS DE MATERIAL VEGETAL.......... 19 | spa |
dc.description.tableofcontents | 4.9. CONDICIONES CROMATOGRÁFICAS HPLC.........20 | spa |
dc.description.tableofcontents | 4.10. CONTROL DE CALIDAD ANALÍTICO.........20 | spa |
dc.description.tableofcontents | 4.11. ANÁLISIS ESTADÍSTICO......... 21 | spa |
dc.description.tableofcontents | 5. RESULTADOS Y DISCUSIÓN........22 | spa |
dc.description.tableofcontents | 5.1. ANÁLISIS DE CONTAMINANTES EMERGENTES EN LOS CANALES DE RIEGO......22 | spa |
dc.description.tableofcontents | 5.2. PROPIEDADES FÍSICO QUÍMICAS DEL SUELO........24 | spa |
dc.description.tableofcontents | 5.3. CALCULO DE LAS VARIABLES MORFOMÉTRICAS Y FISIOLÓGICAS........26 | spa |
dc.description.tableofcontents | 5.3.1. Pepino (Cucumis sativus)...........26 | spa |
dc.description.tableofcontents | 5.3.2. Cebollín (Allium schoenoprasum).........27 | spa |
dc.description.tableofcontents | 5.3.3. Col (Brassica oleracea).............28 | spa |
dc.description.tableofcontents | 5.4. ABSORCIÓN DE BPA Y EE2 EN LAS HORTALIZAS ESTUDIADAS.................29 | spa |
dc.description.tableofcontents | 5.4.1. Absorción de BPA...................29 | spa |
dc.description.tableofcontents | 5.4.2. Absorción de EE2…………………………….29 | spa |
dc.description.tableofcontents | 5.5. FACTOR DE TRANSLOCACIÓN (FT)...........................30 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES......................31 | spa |
dc.description.tableofcontents | 7. RECOMENDACIONES............... 32 | spa |
dc.description.tableofcontents | 8. REFERENCIA BIBLIOGRÁFICAS...............33 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4675 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Ambientales | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Accumulation | eng |
dc.subject.keywords | Vegetables | eng |
dc.subject.keywords | Irrigation | eng |
dc.subject.proposal | Acumulación | spa |
dc.subject.proposal | Hortalizas | spa |
dc.subject.proposal | Riego | spa |
dc.title | Capacidad de incorporación de bisfenol a y 17α etinilestradiol en hortalizas cultivadas bajo condiciones de invernadero | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017c). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99, 107-119. | spa |
dcterms.references | Adeel, M., Yang, Y. S., Wang, Y. Y., Song, X. M., Ahmad, M. A., & Rogers, H. J. (2018). Uptake and transformation of steroid estrogens as emerging contaminants influence plant development. Environmental Pollution, 243, 1487-1497. | spa |
dcterms.references | Ahammed, G. J., Wang, Y., Mao, Q., Wu, M., Yan, Y., Ren, J., ... & Chen, S. (2020). Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber. Environmental Pollution, 259, 113957. | spa |
dcterms.references | Audet, P., & Charest, C. (2007). Heavy metal phytoremediation from a meta-analytical perspective. Environmental Pollution, 147(1), 231-237 | spa |
dcterms.references | Barraza-Álvarez, F. V. (2015). Calidad morfológica y fisiológica de pepinos cultivados en diferentes concentraciones nutrimentales. Revista Colombiana de Ciencias Hortícolas, 9(1), 60-71. | spa |
dcterms.references | Bax, R. P. (1997). Antibiotic resistance: A view from the pharmaceutical industry. Clinical Infectious Diseases, 24(Supplement_1), S151-S153. | spa |
dcterms.references | Benotti, M. J., & Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds: Implications for ground water replenishment with recycled water. Groundwater, 47(4), 499-502. | spa |
dcterms.references | Bedoya-Ríos, D. F., Lara-Borrero, J. A., Duque-Pardo, V., Madera-Parra, C. A., Jimenez, E. M., & Toro, A. F. 2018. Study of the occurrence and ecosystem danger of selected endocrine disruptors in the urban water cycle of the city of bogotá, colombia. Journal of Environmental Science and Health, Part A, 53(4), 317-325. | spa |
dcterms.references | Briggs, G. G., Bromilow, R. H., & Evans, A. A. (1982). Relationships between lipophilicity and root uptake and translocation of non‐ionised chemicals by barley. Pesticide Science, 13(5), 495-504. | spa |
dcterms.references | Brumovský, M., Bečanová, J., Kohoutek, J., Borghini, M., & Nizzetto, L. 2017. Contaminants of emerging concern in the open sea waters of the western mediterranean doi: 10.1016/j.envpol.2017.07.082 | spa |
dcterms.references | Buckley, J. P., Kim, H., Wong, E., & Rebholz, C. M. (2019). Ultra-processed food consumption and exposure to phthalates and bisphenols in the US national health and nutrition examination survey, 2013–2014. Environment International, 131, 105057. | spa |
dcterms.references | Buerge, I. J., Poiger, T., Müller, M. D., & Buser, H. (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental Science & Technology, 37(4), 691-700 | spa |
dcterms.references | Campos Pinilla, C., Contreras, A. M., & Leiva, F. R. 2015. Evaluación del riesgo sanitario en un cultivo de lechuga (lactuca sativa) debido al riego con aguas residuales sin tratar en el centro agropecuario marengo (cundinamarca, colombia).Biosalud, 14(1), 69-78 | spa |
dcterms.references | Carmona, E., Andreu, V., & Picó, Y. (2017). Multi-residue determination of 47 organic compounds in water, soil, sediment and fish—Turia river as case study. Journal of Pharmaceutical and Biomedical Analysis, 146, 117-125. | spa |
dcterms.references | Carrasco, I. R. Z., & Lozano, J. C. (2017). Controversia por el uso de triclosán en los productos antibacteriales de uso común. Revista Latinoamericana De Infectología Pediátrica, 30(3), 93-96. | spa |
dcterms.references | Carter, L. J., Harris, E., Williams, M., Ryan, J. J., Kookana, R. S., & Boxall, A. B. (2014). Fate and uptake of pharmaceuticals in soil–plant systems. Journal of agricultural and food chemistry, 62(4), 816-825. | spa |
dcterms.references | Choi, Y. J., & Lee, L. S. (2017). Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA. Environmental Science & Technology, 51(23), 13698-13704. | spa |
dcterms.references | Collins, C., Fryer, M., & Grosso, A. (2006). Plant uptake of non-ionic organic chemicals. Environmental Science & Technology, 40(1), 45-52. | spa |
dcterms.references | Comber, S., Gardner, M., Sörme, P., Leverett, D., & Ellor, B. 2018. Active pharmaceutical ingredients entering the aquatic environment from wastewater treatment works: A cause for concern? doi: 10.1016/j.scitotenv.2017.09.101 | spa |
dcterms.references | CREA (Centro de Reconversion Economica del Azuay, Ca¤ ar y Morona Santiago, EC)/INIAP (Instituto Nacional Autonomo de Investigaciones Agropecuarias, EC). Analítico: Estudio de desarrollo para la reactivacion productiva y mitigacion de la pobreza en la Region Centro-Sur del Ecuador | spa |
dcterms.references | De Santiago-Martín, A., Meffe, R., Teijón, G., Martínez Hernández, V., López-Heras, I., Alonso Alonso, C., . . . de Bustamante, I. (2020). Pharmaceuticals and trace metals in the surface water used for crop irrigation: Risk to health or natural attenuation? Science of the Total Environment, 705, 135825. doi:https://ezproxyucor.unicordoba.edu.co:2129/10.1016/j.scitotenv.2019.135825 | spa |
dcterms.references | De Córdoba, G., & de Colombia-Asohofrucol, A. H. (2006). Desarrollo de la fruticultura en Córdoba. | spa |
dcterms.references | De Voogt, P., Janex-Habibi, M., Sacher, F., Puijker, L., & Mons, M. (2009). Development of a common priority list of pharmaceuticals relevant for the water cycle. Water Science and Technology, 59(1), 39-46. | spa |
dcterms.references | Diamanti-Kandarakis, E., Bourguignon, J., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., . . . Gore, A. C. (2009). Endocrine-disrupting chemicals: An endocrine society scientific statement. Endocrine Reviews, 30(4), 293-342. | spa |
dcterms.references | Dodgen, L. K., Li, J., Parker, D., & Gan, J. J. (2013a). Uptake and accumulation of four PPCP/EDCs in two leafy vegetables. Environmental Pollution, 182, 150-156. | spa |
dcterms.references | Farré, M., & Barceló, D. 2013. Analysis of emerging contaminants in food. Trends in Analytical Chemistry, 43, 240-253. doi:10.1016/j.trac.2012.12.003 | spa |
dcterms.references | FAO y FIDA. 2006. El agua para la alimentación, la agricultura y los medios de vida rurales. En: El agua, una responsabilidad compartida. 2º Informe de las Naciones Unidas sobre el desarrollo de los recursos hídricos en el mundo. Resumen ejecutivo. 47 p. E | spa |
dcterms.references | Fent, G., Hein, W. J., Moendel, M. J., & Kubiak, R. (2003). Fate of 14C-bisphenol A in soils. Chemosphere, 51(8), 735-746 | spa |
dcterms.references | FEDEARROZ, (Federación Nacional de Arroceros). 2008. Guía para el crecimiento agronómico en Córdoba. http://www.fedearrozagro.com. 14 de julio | spa |
dcterms.references | García de Souza, M., Alliaume, F., Mancassola, V., & Dogliotti, S. (2011). Carbono orgánico y propiedades físicas del suelo en predios hortícolas del sur de Uruguay. Agrociencia Uruguay, 15(1), 70-81. | spa |
dcterms.references | García-Gómez, C., Gortáres-Moroyoqui, P., & Drogui, P. (2011). Contaminantes emergentes: efectos y tratamientos de remoción. Química Viva, 10(2), 96-105. | spa |
dcterms.references | GUZMÁN, J. M.Reutilización de aguas residuales para riego en agricultura. | spa |
dcterms.references | Herklotz, P. A., Gurung, P., Heuvel, B. V., & Kinney, C. A. (2010). Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere, 78(11), 1416-1421. | spa |
dcterms.references | Hengstler, J. G., Foth, H., Gebel, T., Kramer, P., Lilienblum, W., Schweinfurth, H., . . . Gundert-Remy, U. (2011). Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Critical Reviews in Toxicology, 41(4), 263-291. | spa |
dcterms.references | Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334. | spa |
dcterms.references | Karnjanapiboonwong, A., Morse, A. N., Maul, J. D., & Anderson, T. A. (2010). Sorption of estrogens, triclosan, and caffeine in a sandy loam and a silt loam soil. Journal of Soils and Sediments, 10(7), 1300-1307. | spa |
dcterms.references | Kasonga, T. K., Coetzee, M. A., Kamika, I., Ngole-Jeme, V. M., & Momba, M. N. B. (2020). Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: A review. Journal of Environmental Management, 277, 111485. | spa |
dcterms.references | Kulma, A., & Szopa, J. (2007). Catecholamines are active compounds in plants. Plant Science, 172(3), 433-440. | spa |
dcterms.references | Lamastra, Lucrezia, Matteo Balderacchi, and Marco Trevisan. 2016. Inclusion of emerging organic contaminants in groundwater monitoring plans. Vol. 3, http://www.sciencedirect.com/science/article/pii/S2215016116300243. | spa |
dcterms.references | Linares Albornoz, S. A. (2019). Estudio de adsorción-desorción y degradación de 17- α-etinilestradiol (EE2) en suelos tratados con biosólidos | spa |
dcterms.references | Li, C., Sun, X., Chang, C., Jia, D., Wei, Z., Li, C., & Ma, F. (2015). Dopamine alleviates salt‐induced stress in Malus hupehensis. Physiologia plantarum, 153(4), 584-602. | spa |
dcterms.references | Liang, B., Li, C., Ma, C., Wei, Z., Wang, Q., Huang, D., ... & Ma, F. (2017). Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis. Plant Physiology and Biochemistry, 119, 346-359. | spa |
dcterms.references | Lu, J., Wu, J., Stoffella, P. J., & Wilson, P. C. (2015). Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water. Journal of Hazardous Materials, 283, 865-870. | spa |
dcterms.references | Marrugo Negrete, J. L., & Sanchez Castellón, J. G. (2018). Plaguicidas en canales de riego del distrito de la doctrina (córdoba-colombia). Temas Agrarios, 23(1) | spa |
dcterms.references | Mattina, M. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124(3), 375-378. | spa |
dcterms.references | Mezzelani, M., Gorbi, S., & Regoli, F. 2018. Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms doi: 10.1016/j.marenvres.2018.05.001 | spa |
dcterms.references | Mohamed, A. O., & Paleologos, E. K. (2018). Emerging pollutants: Fate, pathways, and bioavailability. | spa |
dcterms.references | Noureddin, M. I., Furumoto, T., Ishida, Y., & Fukui, H. (2004). Absorption and metabolism of bisphenol A, a possible endocrine disruptor, in the aquatic edible plant, water convolvulus (Ipomoea aquatica). Bioscience, biotechnology, and biochemistry, 68(6), 1398-1402. | spa |
dcterms.references | Petrovic, M., Sabater, S., Elosegi, A., & Barceló, D. (2016). Emerging contaminants in river ecosystems: Occurrence and effects under multiple stress conditions Springer | spa |
dcterms.references | Pedrero, F., Kalavrouziotis, I., Alarcón, J. J., Koukoulakis, P., & Asano, T. 2010. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in spain and greece doi:10.1016/j.agwat.2010.03.003 | spa |
dcterms.references | Picó, Y., Alvarez-Ruiz, R., Alfarhan, A. H., El-Sheikh, M. A., Alobaid, S. M., & Barceló, D. (2019). Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the al hayer area (saudi arabia). Science of the Total Environment, 652, 562-572. | spa |
dcterms.references | Pilon-Smits, E. (2005). Phytoremediation. Annu.Rev.Plant Biol., 56, 15-39. | spa |
dcterms.references | Pire, R., & Valenzuela, I. (1995). Estimación del área foliar en vitis vinifera L.'french colombard'a partir de mediciones lineales en las hojas. Agronomía Tropical, 45(1), 143-154. | spa |
dcterms.references | Pullagurala, V. L. R., Rawat, S., Adisa, I. O., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Plant uptake and translocation of contaminants of emerging concern in soil. Science of the Total Environment, 636, 1585-1596. | spa |
dcterms.references | Qiu, Z., Wang, L., & Zhou, Q. (2013). Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere, 90(3), 1274-1280. | spa |
dcterms.references | Reddy, P. V. L., & Kim, K. H. (2015). A review of photochemical approaches for the treatment of a wide range of pesticides. Journal of hazardous materials, 285, 325-335. | spa |
dcterms.references | Togola, A., & Budzinski, H. (2007). Analytical development for analysis of pharmaceuticals in water samples by SPE and GC–MS. Analytical and Bioanalytical Chemistry, 388(3), 627-635. | spa |
dcterms.references | Tong, X., Li, Y., Zhang, F., Chen, X., Zhao, Y., Hu, B., & Zhang, X. (2019). Adsorption of 17β-estradiol onto humic-mineral complexes and effects of temperature, pH, and bisphenol A on the adsorption process. Environmental Pollution, 254, 112924. | spa |
dcterms.references | Trapp, S. (2009). Bioaccumulation of polar and ionizable compounds in plants. Ecotoxicology modeling (pp. 299-353) Springer. | spa |
dcterms.references | Trapp, S., & Legind, C. N. (2011). Uptake of organic contaminants from soil into vegetables and fruits. Dealing with contaminated sites (pp. 369-408) Springer. | spa |
dcterms.references | Uslu, M. O., Jasim, S., Arvai, A., Bewtra, J., & Biswas, N. (2013). A survey of occurrence and risk assessment of pharmaceutical substances in the great lakes basin. Ozone: Science & Engineering, 35(4), 249-262. | spa |
dcterms.references | WSP (Water and Sanitation Program), Banco Mundial, Agencia Suiza para el Desarrollo y la Cooperación (Cosud), Unicef y Banco Interamericano para el Desarrollo (Bid). 2007. Saneamiento para el desarrollo. Cómo estamos en 21 países de América Latina y el Caribe. Conferencia Latinoamericana de Saneamiento, Cali. | spa |
dcterms.references | Wu, X., Conkle, J. L., & Gan, J. (2012). Multi-residue determination of pharmaceutical and personal care products in vegetables. Journal of Chromatography A, 1254, 78-86. | spa |
dcterms.references | Wu, X., Dodgen, L. K., Conkle, J. L., & Gan, J. (2015). Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: A review. Science of the Total Environment, 536, 655-666. | spa |
dcterms.references | Wu, X., Ernst, F., Conkle, J. L., & Gan, J. (2013). Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environment International, 60, 15-22. | spa |
dcterms.references | Zheng, W., Wiles, K. N., Holm, N., Deppe, N. A., & Shipley, C. R. (2014). Uptake, translocation, and accumulation of pharmaceutical and hormone contaminants in vegetables. In Retention, Uptake, and Translocation of Agrochemicals in Plants (pp. 167-181). American Chemical Society. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: