Publicación:
Evaluación del potencial antifúngico del monoterpeno isoespintanol y su actividad citotóxica contra líneas celulares tumorales de próstata

dc.contributor.advisorContreras Martínez, Orfa Inés
dc.contributor.advisorAngulo Ortíz, Alberto Antonio
dc.contributor.authorCarmona Sánchez, Angela María
dc.contributor.juryVillegas Gonzalez, Jazmith Paola
dc.contributor.jurySierra Quiroz, Daniela
dc.date.accessioned2025-07-15T19:21:00Z
dc.date.available2025-07-15T19:21:00Z
dc.date.issued2025-07-14
dc.description.abstractLas infecciones fúngicas causadas por especies emergentes de Candida spp., y la alta incidencia del cáncer de próstata representan dos grandes desafíos en los centros de salud. Ambos se caracterizan por tener opciones terapéuticas limitadas, debido a su elevada resistencia a los tratamientos convencionales y a la creciente morbilidad y mortalidad asociada a los pacientes afectados. En este contexto, se hace imperativo explorar nuevas alternativas; y los productos naturales, especialmente las plantas, son una opción prometedora, debido a su amplia variedad de metabolitos secundarios bioactivos. El isoespintanol (ISO), un monoterpeno extraído de Oxandra xylopioides Diels, ha demostrado tener potencial antifúngico y citotóxico, que lo posiciona como un excelente candidato en el desarrollo de nuevas estrategias frente a infecciones fúngicas resistentes y al cáncer de próstata. El objetivo de esta investigación fue evaluar el potencial antifúngico del ISO frente a aislamientos clínicos de Candida spp., Candida haemulonii, Candida krusei y Candida parapsilosis, y su actividad citotóxica contra líneas celulares tumorales de próstata PC- 3, LNCaP y la línea no tumoral RWPE- 1. Para evaluar la susceptibilidad de Candida spp., se empleó el método de microdilución en caldo, lo que permitió establecer las concentraciones mínimas inhibitorias (CMI90 y CMI50). La actividad citotóxica del ISO se determinó mediante los ensayos con MTT y Cristal Violeta, analizando el efecto del ISO a 24, 48 y 72 horas. Todos los aislamientos evaluados fueron sensibles al ISO con valores de CMI90 entre los 224,7 y 349,1 μg/mL y CMI50 entre 89,6 y 169,5 μg/mL. Así mismo, se observó una reducción dosis-dependiente de la viabilidad celular, con un efecto más pronunciado en la línea LNCaP, especialmente a las 72 h de exposición, mientras que RWPE-1 mostró menor afectación, con evidencia de selectividad a 24 h en la línea PC-3. Los resultados de esta investigación contribuyen en la búsqueda de compuestos novedosos con potencial antimicrobiano y citotóxico contra células tumorales, además, estos resultados amplían nuestro conocimiento sobre el perfil bioactivo de este compuesto natural que puede ayudar al desarrollo de nuevas estrategias terapéuticas frente a dos problemáticas de alto impacto en la salud pública a nivel global.spa
dc.description.abstractFungal infections caused by emerging species of Candida spp. and the high incidence of prostate cancer represent two major challenges in healthcare centers. Both are characterized by limited therapeutic options due to their high resistance to conventional treatments and the increasing morbidity and mortality associated with affected patients. In this context, it is imperative to explore new alternatives, and natural products, especially plants, are a promising option due to their wide variety of bioactive secondary metabolites. Isoespintanol (ISO), a monoterpene extracted from Oxandra xylopioides Diels, has been shown to have antifungal and cytotoxic potential, positioning it as an excellent candidate in the development of new strategies against resistant fungal infections and prostate cancer. The objective of this research was to evaluate the antifungal potential of ISO against clinical isolates of Candida spp., Candida haemulonii, Candida krusei, and Candida parapsilosis, and its cytotoxic activity against prostate tumor cell lines PC-3, LNCaP, and the non-tumor line RWPE-1. To evaluate the susceptibility of Candida spp., the broth microdilution method was used, which allowed the minimum inhibitory concentrations (MIC90 and MIC50) to be established. The cytotoxic activity of ISO was determined using MTT and Crystal Violet assays, analyzing the effect of ISO at 24, 48, and 72 hours. All isolates evaluated were sensitive to ISO with MIC90 values between 224.7 and 349.1 μg/mL and MIC50 values between 89.6 and 169.5 μg/mL. Likewise, a dose-dependent reduction in cell viability was observed, with a more pronounced effect in the LNCaP line, especially at 72 hours of exposure, while RWPE-1 showed less effect, with evidence of selectivity at 24 hours in the PC-3 line. The results of this research contribute to the search for novel compounds with antimicrobial and cytotoxic potential against tumor cells. Furthermore, these results expand our knowledge of the bioactive profile of this natural compound, which may aid in the development of new therapeutic strategies to address two issues with a high impact on global public health.eng
dc.description.degreelevelPregrado
dc.description.degreenameBiólogo(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9347
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBiología
dc.relation.referencesZhang, Z., Bills, G. F., & An, Z. (2023). Advances in the treatment of invasive fungal disease. PLOS Pathogens, 19(5), e1011322. https://doi.org/10.1371/journal.ppat.1011322
dc.relation.referencesZhang, W., Cao, G., Wu, F., Wang, Y., Liu, Z., Hu, H., & Xu, K. (2023). Global Burden of Prostate Cancer and Association with Socioeconomic Status, 1990–2019: A Systematic Analysis from the Global Burden of Disease Study. Journal of Epidemiology and Global Health, 13(3), 407–421. https://doi.org/10.1007/s44197-023-00103-6
dc.relation.referencesDenning, D. W. (2024). Global incidence and mortality of severe fungal disease. The Lancet Infectious Diseases, 24(2), 119–128. https://doi.org/10.1016/S1473-3099(23)00692-8
dc.relation.referencesVestin, N. V. (2023). La lista de patógenos fúngicos prioritarios de la OMS, un punto de inflexión. CIDRAP. https://www.cidrap.umn.edu/antimicrobial-stewardship/who-fungal-priority-pathogens-list-game-changer
dc.relation.referencesAurilio, G., Cimadamore, A., Mazzucchelli, R., Lopez-Beltran, A., Verri, E., Scarpelli, M., Massari, F., Cheng, L., Santoni, M., & Montironi, R. (2020). Androgen receptor signaling pathway in prostate cancer: From genetics to clinical applications. Cells, 9(12), 2653. https://doi.org/10.3390/cells9122653
dc.relation.referencesBow, E. J., Loewen, R., Cheang, M. S., & Schacter, B. (2010). Candidaemia in adult cancer patients: Risks for fluconazole-resistant isolates and death. Journal of Antimicrobial Chemotherapy, 65(5), 1042-1051. https://doi.org/10.1093/jac/dkq055
dc.relation.referencesKakar, A., Holzknecht, J., Dubrac, S., Gelmi, M. L., Romanelli, A., & Marx, F. (2021). New perspectives in the antimicrobial activity of the amphibian temporin B: Peptide analogs are effective inhibitors of Candida albicans growth. Journal of Fungi, 7(6), 457. https://doi.org/10.3390/jof7060457
dc.relation.referencesAhmed, N., Mahmood, M. S., Ullah, M. A., Araf, Y., Rahaman, T. I., Moin, A. T., & Hosen, M. J. (2022). COVID-19-associated candidiasis: Possible patho-mechanism, predisposing factors, and prevention strategies. Current Microbiology, 79(5). https://doi.org/10.1007/s00284-022-02824-6
dc.relation.referencesRiera, F. O., Caeiro, J. P., Angiolini, S. C., Vigezzi, C., Rodriguez, E., Icely, P. A., & Sotomayor, C. E. (2022). Invasive candidiasis: Update and current challenges in the management of this mycosis in South America. Antibiotics, 11(7), 877. https://doi.org/10.3390/antibiotics11070877
dc.relation.referencesSaiprom, N., Wongsuk, T., Oonanant, W., Sukphopetch, P., Chantratita, N., & Boonsilp, S. (2023). Characterization of virulence factors in Candida species causing candidemia in a tertiary care hospital in Bangkok, Thailand. Journal of Fungi, 9(3), 353. https://doi.org/10.3390/jof9030353
dc.relation.referencesVargas Espíndola, L. A., Cuervo Maldonado, S. I., Enciso Olivera, J. L., Gómez Rincón, J. C., Jiménez Cetina, L., Sánchez Pedraza, R., García Guzmán, K., López Mora, M. J., Álvarez Moreno, C. A., Cortés, J. A., Garzón Herazo, J. R., Martínez-Vernaza, S., Sierra Parada, C. R., & Murillo Sarmiento, B. A. (2023). Fungemia in hospitalized adult patients with hematological malignancies: Epidemiology and risk factors. Journal of Fungi, 9(4), 400. https://doi.org/10.3390/jof9040400
dc.relation.referencesAlvarez-Moreno, C. A., Morales-López, S., Rodriguez, G. J., Rodriguez, J. Y., Robert, E., Picot, C., Ceballos-Garzon, A., Parra-Giraldo, C. M., & Pape, P. L. (2023). La mortalidad atribuible a la candidemia en C. auris es mayor que la de otras especies de Candida: ¿mito o realidad? Journal of Fungi, 9(4), 430. https://doi.org/10.3390/jof9040430
dc.relation.referencesEggimann, P., Garbino, J., & Pittet, D. (2003). Management of Candida species infections in critically ill patients. The Lancet Infectious Diseases, 3(12), 772–785. https://doi.org/10.1016/s1473-3099(03)00831-4
dc.relation.referencesCortés, J. A., Ruiz, J. F., Melgarejo-Moreno, L. N., & Lemos, E. V. (2020). Candidemia en Colombia. Biomédica, 40(1), 195–207. https://doi.org/10.7705/biomedica.4400
dc.relation.referencesCortés, J. A., Reyes, P., Gómez, C. H., Cuervo, S. I., Rivas, P., Casas, C. A., & Sánchez, R. (2014). Clinical and epidemiological characteristics and risk factors for mortality in patients with candidemia in hospitals from Bogotá, Colombia. The Brazilian Journal of Infectious Diseases, 18(6), 631–637. https://doi.org/10.1016/j.bjid.2014.06.009
dc.relation.referencesCortés, J. A., Cuervo, S. I., & Sánchez, R. (2014). Candidemia en las unidades de cuidado intensivo: factores de riesgo de mortalidad en un hospital de tercer nivel en Bogotá, Colombia. Revista Iberoamericana de Micología, 31(2), 95–98. https://doi.org/10.1016/j.riam.2013.10.002
dc.relation.referencesRodríguez, A. Z., De Bedout Gómez, C., Restrepo, C. A. A., Parra, H. H., Arteaga, M. A., Moreno, A. R., & Marín, A. G. (2010). Sensibilidad a fluconazol y voriconazol de especies de Candida aisladas de pacientes provenientes de unidades de cuidados intensivos en Medellín, Colombia (2001–2007). Revista Iberoamericana de Micología, 27(3), 125–129. https://doi.org/10.1016/j.riam.2010.04.001
dc.relation.referencesContreras-Martínez, O. I., Galvis-Acosta, D., Aycardi-Morinelly, M. P., & Lorduy-Rodríguez, Á. J. (2020). Prevalencia de infecciones fúngicas en centros hospitalarios de Montería-Córdoba, Colombia. Revista Cubana de Medicina Tropical, 72(1). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-30032020000100014
dc.relation.referencesCuéllar-Sánchez, A., Mantilla-Rivas, J. O., Castañeda-Ramírez, J. R., Rodríguez, J. F., Sierra-Torres, C. H., Cañón-Restrepo, D., & Rodríguez-Bello, A. (2024). Candida non-albicans and non-auris causing invasive candidiasis in a fourth-level hospital in Colombia: Epidemiology, antifungal susceptibility, and genetic diversity. Journal of Fungi, 10(5), 326. https://doi.org/10.3390/jof10050326
dc.relation.referencesArastehfar, A., Daneshnia, F., Hafez, A., Khodavaisy, S., Najafzadeh, M. J., Charsizadeh, A., Zarrinfar, H., Salehi, M., Roudbary, M., Niknejad, F., Zhai, B., & Perlin, D. S. (2024). Candida parapsilosis: A systematic review to inform the World Health Organization fungal priority pathogens list. Medical Mycology, 62(6), myae037. https://doi.org/10.1093/mmy/myae037
dc.relation.referencesKoutsolioutsou-Benaki, A., Tsilivigkou, M., Leventakos, K., Koumaki, V., Kapsokefallou, M., Zarkada, I. M., Maraki, S., Mavromanolaki, V. E., Kristo, I., Hamilos, G., Samonis, G., & Kofteridis, D. P. (2025). Changing epidemiology of Candida spp. causing bloodstream infections in a tertiary hospital in Northern Greece: Appearance of Candida auris. Pathogens, 14(2), 161. https://doi.org/10.3390/pathogens14020161
dc.relation.referencesNucci, M., Queiroz-Telles, F., Alvarado-Matute, T., Tiraboschi, I. N., Cortes, J., Zurita, J., Guzman-Blanco, M., Santolaya, M. E., Thompson, L., Sifuentes-Osornio, J., Echevarria, J. I., & Colombo, A. L. (2013). Epidemiology of candidemia in Latin America: a laboratory-based survey. PLOS ONE, 8(3), e59373. https://doi.org/10.1371/journal.pone.0059373
dc.relation.referencesEscandón, P., Lockhart, S. R., Chow, N. A., & Chiller, T. M. (2023). Candida auris: un agente patógeno global que se ha arraigado en Colombia. Biomédica, 43(Sp. 1), 278–287. https://doi.org/10.7705/biomedica.7082
dc.relation.referencesMora-Montes, H. M., López-Esparza, A., Liedke, S. C., Díaz-Jiménez, D. F., Hernández-Chávez, M. J., Pérez-García, L. A., & Franco, B. (2024). Prevalence and species distribution of Candida clinical isolates in a tertiary care hospital in Ecuador tested from January 2019 to February 2020. Journal of Fungi, 10(5), 326. https://doi.org/10.3390/jof10050326
dc.relation.referencesFekkar, A., Brun, S., Paris, L., Sendid, B., Grenouillet, F., Dannaoui, E., Botterel, F., Hadrich, I., Ayadi, A., Lagrou, K., Arikan-Akdagli, S., Persat, F., Bourgeois, N., Chavez-Moreno, E., Bonnal, C., Morio, F., & Bretagne, S. (2023). Candida haemulonii complex, an emerging threat from tropical regions? PLOS Neglected Tropical Diseases, 17(6), e0011453. https://doi.org/10.1371/journal.pntd.0011453
dc.relation.referencesBrown, J. S., Amend, S. R., Austin, R. H., Gatenby, R. A., Hammarlund, E. U., & Pienta, K. J. (2023). Updating the definition of cancer. Molecular Cancer Research, 21(11), 1142–1147. https://doi.org/10.1158/1541-7786.mcr-23-0411
dc.relation.referencesOrganización Mundial de la Salud. (2022). Cáncer – Datos y cifras. https://www.who.int/es/news-room/fact-sheets/detail/cancer
dc.relation.referencesJAMA Network Open. (2024). Projections of global cancer burden to 2050. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2825637
dc.relation.referencesWang, Y., Chen, Y., Chen, X., Zhang, L., Wang, C., Wang, H., & Luo, J. (2022). Prostate cáncer incidence and mortality: Global status and temporal trends in 89 countries from 2000 to 2019. Frontiers in Oncology, 12, 1085225. https://www.frontiersin.org/journals/publichealth/articles/10.3389/fpubh.2022.811044/full
dc.relation.referencesVázquez, J. C., Hernández, A., Sierra, M. S., Soerjomataram, I., & Bray, F. (2022). Prostate cancer in the Americas: burden, trends, and interventions. The Lancet Regional Health – Americas, 16, 100243. https://doi.org/10.1016/j.lana.2022.100243
dc.relation.referencesCuenta de Alto Costo. (2024). Día mundial del cáncer de próstata. https://cuentadealtocosto.org/cancer/dia-mundial-de-cancer-de-prostata/
dc.relation.referencesGiona, S. (2021). The epidemiology of prostate Cancer. In Prostate Cancer (pp. 1–16). https://doi.org/10.36255/exonpublications.prostatecancer.epidemiology.2021
dc.relation.referencesHall, R., Bancroft, E., Pashayan, N., Kote-Jarai, Z., & Eeles, R. A. (2024). Genetics of prostate cancer: a review of latest evidence. Journal of Medical Genetics, 61(10), 915–926. https://doi.org/10.1136/jmg-2024-109845
dc.relation.referencesBergengren, O., Pekala, K. R., Matsoukas, K., Fainberg, J., Mungovan, S. F., Bratt, O., Bray, F., Brawley, O., Luckenbaugh, A. N., Mucci, L., Morgan, T. M., & Carlsson, S. V. (2023). 2022 Update on Prostate Cancer Epidemiology and Risk Factors—A Systematic Review. European Urology, 84(2), 191–206. https://doi.org/10.1016/j.eururo.2023.04.021
dc.relation.referencesObaed, N. G., Silberstein, M., & Zylberglait, M. (2022). Metastatic prostate adenocarcinoma presenting as acute quadriplegia: A case report and racial Disparity analysis. Cureus. https://doi.org/10.7759/cureus.27646
dc.relation.referencesAtanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
dc.relation.referencesOrganización Mundial de la Salud. (2023, 17 de agosto). Preguntas y respuestas sobre la medicina tradicional. https://www.who.int/es/news-room/questions-and-answers/item/traditional-medicine
dc.relation.referencesContreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022). Antibacterial screening of isoespintanol, an aromatic monoterpene isolated from Oxandra xylopioides Diels. Molecules, 27(22), 8004. https://doi.org/10.3390/molecules27228004
dc.relation.referencesJourjine, I. A. P., Bauernschmidt, C., Müller, C., & Bracher, F. (2022). A GC-MS protocol for the identification of polycyclic aromatic alkaloids from Annonaceae. Molecules, 27(23), 8217. https://doi.org/10.3390/molecules27238217
dc.relation.referencesKowalczyk, A., Przychodna, M., Sopata, S., Bodalska, A., & Fecka, I. (2020). Thymol and thyme essential oil—New insights into selected therapeutic applications. Molecules, 25(18), 4125. https://doi.org/10.3390/molecules25184125
dc.relation.referencesMarchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S. F., Gortzi, O., Izadi, M., & Nabavi, S. M. (2016b). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry, 210, 402–414. https://doi.org/10.1016/j.foodchem.2016.04.111
dc.relation.referencesRojano Benjamín A., Avaria Carlos A. G., Gil Maritza A., Zaez Jairo A., Schinella Guillermo., & Tournier Horacio. (2008). Actividad antioxidante del isoespintanol en diferentes medios. Universidad de Antioquia, Medellín, Colombia. https://bibliotecadigital.udea.edu.co/bitstream/10495/25256/1/S%C3%A1ezJairo_2008_ActividadAntioxidanteIsoespintanol.pdf
dc.relation.referencesRojano, B. A., Pérez, E. G., Figadère, B., Martin, M. T., Recio, M. del C., Giner, R. M., Ríos, J. L., Schinella, G. R., & Saez, J. (2007). Constituents of Oxandra cf. xylopioides with anti-inflammatory activity. Journal of Natural Products, 70(5), 835–838. https://doi.org/10.1021/NP060333V
dc.relation.referencesGavilánez Buñay, T. C., Colareda, G. A., Ragone, M. I., Bonilla, M., Rojano, B. A., Schinella, G. R., & Consolini, A. E. (2018). Efectos antiespasmódicos intestinales, urinarios y uterinos de isoespintanol, metabolito de las hojas de Oxandra xylopioides. Fitomedicina: Revista Internacional de Fitoterapia y Fitofarmacología, 51, 20–28. https://doi.org/10.1016/j.phymed.2018.06.001
dc.relation.referencesRinaldi, G. J., Rojano, B., Schinella, G., & Mosca, S. M. (2019). Participación del NO en la acción vasodilatadora de los isoespintanol. Vitae, 26(2), 78–83. https://doi.org/10.17533/udea.vitae.v26n2a03
dc.relation.referencesArbeláez, L. F. G., Pardo, A. C., Fantinelli, J. C., Rojano, B., Schinella, G. R., & Mosca, S. M. (2018). Isoespintanol, a monoterpene isolated from Oxandra CF xylopioides, ameliorates the myocardial ischemia-reperfusion injury by AKT/PKCε/eNOS-dependent pathways. Naunyn-Schmiedeberg's Archives of Pharmacology. https://doi.org/10.1007/s00210-019-01761-9
dc.relation.referencesRestrepo Betancur, G., & Rojano, B. A. (2017). Efecto del isoespintanol y el timol en la actividad antioxidante de semen equino diluido con fines de congelación. Revista de Medicina Veterinaria, 35, 149–158. https://doi.org/10.19052/mv.4397
dc.relation.referencesContreras Martínez, O. I., Angulo Ortíz, A., Santafé Patiño, G., Rocha, F. V., Zanotti, K., Fortaleza, D. B., Teixeira, T., & Sierra Martinez, J. (2024). Cytotoxic potential of the monoterpene isoespintanol against human tumor cell lines. International Journal of Molecular Sciences, 25(9), 4614. https://doi.org/10.3390/ijms25094614
dc.relation.referencesContreras Martínez, O. I., Angulo Ortíz, A., Santafé-Patiño, G., Aviña-Padilla, K., Velasco-Pareja, M. C., & Yasnot, M. F. (2023). Transcriptional reprogramming of Candida tropicalis in response to isoespintanol treatment. Journal of Fungi, 9(12), 1199. https://doi.org/10.3390/jof9121199
dc.relation.referencesCheca Rojas, A. (2018). Tinción de cristal violeta (0.5%) en cultivo de células adherentes. Conogasi. https://conogasi.org/articulos/tincion-de-cristal-violeta-0-5-en-cultivo-de-celulas-adherentes/
dc.relation.referencesGómez-Gaviria, M., Martínez-Álvarez, J. A., Chávez-Santiago, J. O., & Mora-Montes, H. M. (2023). Candida haemulonii Complex and Candida auris: Biology, Virulence Factors, Immune Response, and Multidrug Resistance. Infection and Drug Resistance, Volume 16, 1455–1470. https://doi.org/10.2147/idr.s402754
dc.relation.referencesContreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G (2022). Antifungal potential of isoespintanol extracted from Oxandra xylopioides Diels (Annonaceae) against intrahospital isolations of Candida SPP. Heliyon, 8(10), e11110. https://doi.org/10.1016/j.heliyon.2022.e11110
dc.relation.referencesContreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022). Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis. Molecules, 27(18), 5808. https://doi.org/10.3390/molecules27185808
dc.relation.referencesContreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G., Peñata Taborda, A., & Soto, R. B. (2023). Isoespintanol Antifungal Activity Involves Mitochondrial Dysfunction, Inhibition of Biofilm Formation, and Damage to Cell Wall Integrity in Candida tropicalis. International Journal of Molecular Sciences, 24(12), 10187. https://doi.org/10.3390/ijms241210187
dc.relation.referencesFotakis, G., & Timbrell, J. A. (2005). In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters, 160(2), 171–177. https://doi.org/10.1016/j.toxlet.2005.07.001
dc.relation.referencesŚliwka, L., Wiktorska, K., Suchocki, P., Milczarek, M., Mielczarek, S., Lubelska, K., Cierpiał, T., Łyżwa, P., Kiełbasiński, P., Jaromin, A., Flis, A., & Chilmonczyk, Z. (2016). The comparison of MTT and CVS assays for the assessment of anticancer agent interactions. PLoS ONE, 11(5), e0155772. https://doi.org/10.1371/journal.pone.0155772
dc.relation.referencesSaranyutanon, S., Deshmukh, S. K., Dasgupta, S., Pai, S., Singh, S., & Singh, A. P. (2020). Cellular and Molecular progression of prostate Cancer: models for basic and preclinical research. Cancers, 12(9), 2651. https://doi.org/10.3390/cancers12092651
dc.relation.referencesCrowell, P. L. (1999). Prevention and therapy of cancer by dietary monoterpenes. Journal of Nutrition, 129(3), 775S-778S. https://doi.org/10.1093/jn/129.3.775s
dc.relation.referencesPimentel, L. S., Bastos, L. M., Goulart, L. R., & De Morais Ribeiro, L. N. (2024). Therapeutic effects of essential oils and their bioactive compounds on prostate cancer treatment. Pharmaceutics, 16(5), 583. https://doi.org/10.3390/pharmaceutics16050583
dc.relation.referencesMeng, Y., Lin, Z., Ge, N., Zhang, D., Huang, J., & Kong, F. (2015). Ursolic acid induces apoptosis of prostate cancer cells via the PI3K/AKT/MTOR pathway. The American Journal of Chinese Medicine, 43(07), 1471–1486. https://doi.org/10.1142/s0192415x15500834
dc.relation.referencesPatel, B., Shah, V. R., & Bavadekar, S. A. (2012). Anti‐proliferative effects of carvacrol on human prostate cancer cell line, LNCaP. The FASEB Journal, 26(S1). https://doi.org/10.1096/fasebj.26.1_supplement.1037.5
dc.relation.referencesTronina, T., Bartmańska, A., Popłoński, J., Rychlicka, M., Sordon, S., Filip-Psurska, B., Milczarek, M., Wietrzyk, J., & Huszcza, E. (2023). Prenylated Flavonoids with Selective Toxicity against Human Cancers. International Journal of Molecular Sciences, 24(8), 7408. https://doi.org/10.3390/ijms24087408
dc.relation.referencesRuela-De-Sousa, R. R., Fuhler, G. M., Blom, N., Ferreira, C. V., Aoyama, H., & Peppelenbosch, M. P. (2010). Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death and Disease, 1(1), e19. https://doi.org/10.1038/cddis.2009.18
dc.relation.referencesZielińska-Błajet, M., Pietrusiak, P., & Feder-Kubis, J. (2021). Selected monocyclic monoterpenes and their derivatives as effective anticancer therapeutic agents. International Journal of Molecular Sciences, 22(9), 4763. https://doi.org/10.3390/ijms22094763
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsAntifungaleng
dc.subject.keywordsCandida sppeng
dc.subject.keywordsCytotoxiceng
dc.subject.keywordsIsoespintanoleng
dc.subject.keywordsOxandra xylopiodes dielseng
dc.subject.proposalAntifúngicospa
dc.subject.proposalCandida sppspa
dc.subject.proposalCitotóxicospa
dc.subject.proposalIsoespintanolspa
dc.subject.proposalOxandra xylopiodes dielsspa
dc.titleEvaluación del potencial antifúngico del monoterpeno isoespintanol y su actividad citotóxica contra líneas celulares tumorales de próstataspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
CarmonaSanchezAngelaMaria.pdf
Tamaño:
639.26 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
391.57 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: