Publicación: Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano
dc.contributor.advisor | Soto Barrera, Viviana Cecilia | |
dc.contributor.author | Fernández Hoyos, Daniel Fernando | |
dc.contributor.jury | Campo Daza, Gabriel Antonio | |
dc.contributor.jury | Tavera Quiróz, María José | |
dc.date.accessioned | 2025-07-14T14:26:28Z | |
dc.date.available | 2025-07-14T14:26:28Z | |
dc.date.issued | 2025-07-14 | |
dc.description.abstract | Esta investigación evaluó y comparó el desempeño ambiental de la fabricación de biocompuestos de matriz PLA reforzados con residuos agrícolas locales: fibra de pseudotallo de plátano (FP) y partículas de cáscara de nuez de marañón (PCNM), utilizando impresión 3D (FDM e impregnación in situ). El objetivo fue determinar la opción con menor impacto ambiental mediante la metodología de Análisis de Ciclo de Vida (ACV) según la norma ISO 14040/44, con un enfoque "cuna-a-producción" y una unidad funcional de 1 kg de biocompuesto. El proceso de inventario de ciclo de vida (ICV) incluyó la recopilación de datos primarios (entrevistas, procesos de laboratorio como secado, molienda, extrusión e impresión) y secundarios (literatura, bases de datos Ecoinvent 3.10), utilizando el software SimaPro y el método de evaluación Environmental Footprint 3.1. Los resultados indican que el biocompuesto PLA-FP presenta un desempeño ambiental más favorable que el PLA-PCNM, destacando que presenta una huella de carbono reducida de 5,13 kg CO2 eq/kg, atribuida principalmente a parámetros de impresión más eficientes energéticamente para el PLA-FP. Los puntos críticos identificados fueron el alto consumo de energía eléctrica en la etapa de impresión 3D (60-76.4% del impacto total) y la producción de PLA virgen (22.6-30.4%). Se demostró un beneficio ambiental adicional al usar FP cuando se evita la disposición convencional del residuo, mientras que el uso de PCNM no mostró una ventaja clara frente a su disposición actual en vertedero. | spa |
dc.description.abstract | This research evaluated and compared the environmental performance of manufacturing PLA-matrix biocomposites reinforced with local agricultural residues: banana pseudostem fiber (FP) and cashew nutshell particles (PCNM), using 3D printing (FDM and in-situ impregnation). The objective was to determine the option with the lowest environmental impact using the Life Cycle Assessment (LCA) methodology according to ISO 14040/44, with a "cradle-to-gate" approach and a functional unit of 1 kg of biocomposite. The life cycle inventory (LCI) process included the collection of primary data (interviews, laboratory processes such as drying, milling, extrusion, and printing) and secondary data (literature, Ecoinvent 3.10 database), using SimaPro software and the Environmental Footprint 3.1 assessment method. The results indicate that the PLA-FP biocomposite exhibits a more favorable environmental performance than PLA-PCNM, highlighting a carbon footprint 5.13 kg CO2 eq/kg lower, primarily attributed to more energy-efficient printing parameters for PLA-FP. The identified hotspots were the high electricity consumption during the 3D printing stage (accounting for 60-76.4% of the total impact) and virgin PLA production (22.6- 30.4%). An additional environmental benefit was demonstrated when using FP by avoiding conventional waste disposal, whereas the use of PCNM did not show a clear advantage over its current disposal in landfills. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Ingeniero(a) Ambiental | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | 1 INTRODUCCIÓN 3 | spa |
dc.description.tableofcontents | 2 OBJETIVOS 5 | spa |
dc.description.tableofcontents | 2.1 Objetivo general 5 | spa |
dc.description.tableofcontents | 2.2 Objetivos específicos 5 | spa |
dc.description.tableofcontents | 3 REVISIÓN BIBLIOGRÁFICA 6 | spa |
dc.description.tableofcontents | 3.1 Material compuesto 6 | spa |
dc.description.tableofcontents | 3.2 Ácido poliláctico 7 | spa |
dc.description.tableofcontents | 3.3 Cascaras de nuez de marañón 7 | spa |
dc.description.tableofcontents | 3.4 Fibras de pseudotallo de plátano 8 | spa |
dc.description.tableofcontents | 3.5 Fabricación aditiva 9 | spa |
dc.description.tableofcontents | 3.6 Análisis de ciclo de vida (ACV) 9 | spa |
dc.description.tableofcontents | 3.7 Metodologías de evaluación de impacto de ciclo de vida (EICV) 12 | spa |
dc.description.tableofcontents | 3.8 ACV biocompuestos 13 | spa |
dc.description.tableofcontents | 3.9 Sostenibilidad y economía circular en la producción de materiales 14 | spa |
dc.description.tableofcontents | 4 ESTADO DEL ARTE 16 | spa |
dc.description.tableofcontents | 5 MATERIALES Y MÉTODOS 20 | spa |
dc.description.tableofcontents | 5.1 Descripción de la zona de estudio 21 | spa |
dc.description.tableofcontents | 5.2 Metodología para fase de definición de objetivos y alcance 22 | spa |
dc.description.tableofcontents | 5.2.1 Unidad funcional 22 | spa |
dc.description.tableofcontents | 5.2.2 Límites del sistema 23 | spa |
dc.description.tableofcontents | 5.2.3 Escenarios de comparación 27 | spa |
dc.description.tableofcontents | 5.3 Metodología para fase Análisis de inventario de ciclo de vida 28 | spa |
dc.description.tableofcontents | 5.3.1 Parámetro de modelado de datos 29 | spa |
dc.description.tableofcontents | 5.3.2 Etapa de cultivo, cosecha y procesamiento de marañón 29 | spa |
dc.description.tableofcontents | 5.3.3 Etapa de producción de partículas de cascara de nuez de marañón 32 | spa |
dc.description.tableofcontents | 5.3.4 Etapa de producción de biocompuesto (PLA-PCNM) 33 | spa |
dc.description.tableofcontents | 5.3.5 Etapa de cultivo y cosecha del plátano 36 | spa |
dc.description.tableofcontents | 5.3.6 Etapa de extracción de las fibras de pseudotallo de plátano 36 | spa |
dc.description.tableofcontents | 5.3.7 Etapa de producción del biocompuesto (PLA-FP) 37 | spa |
dc.description.tableofcontents | 5.4 Metodología para la fase de Evaluación de impacto del ciclo de vida 39 | spa |
dc.description.tableofcontents | 5.5 Metodología para la fase de Interpretación 40 | spa |
dc.description.tableofcontents | 5.5.1 Análisis de calidad de los datos 41 | spa |
dc.description.tableofcontents | 6 RESULTADOS Y DISCUSIONES 42 | spa |
dc.description.tableofcontents | 6.1 Inventario del ciclo de vida 43 | spa |
dc.description.tableofcontents | 6.2 Análisis de calidad de datos 46 | spa |
dc.description.tableofcontents | 6.3 Resultados de la evaluación del ciclo de vida 49 | spa |
dc.description.tableofcontents | 6.3.1 Análisis de contribución 49 | spa |
dc.description.tableofcontents | 6.4 Análisis comparativo de la evaluación de impactos 53 | spa |
dc.description.tableofcontents | 6.5 Puntos críticos ambientales 79 | spa |
dc.description.tableofcontents | 6.6 Influencia de los refuerzos de residuos agrícolas en los biocompuestos 81 | spa |
dc.description.tableofcontents | 7 CONCLUSIONES 83 | spa |
dc.description.tableofcontents | 8 RECOMENDACIONES 85 | spa |
dc.description.tableofcontents | 9 BIBLIOGRAFÍA 87 | spa |
dc.description.tableofcontents | 10 ANEXOS 105 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9314 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Ingeniería Ambiental | |
dc.relation.references | Abarikwu, S. O. (2013). Lead, Arsenic, Cadmium, Mercury: Occurrence, Toxicity and Diseases. En E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), Pollutant Diseases, Remediation and Recycling (Vol. 4, pp. 351-386). Springer International Publishing. https://doi.org/10.1007/978-3-319-02387-8_7 | |
dc.relation.references | Agrawal, P., Mittal, A., Prakash, R., Kumar, M., Singh, T. B., & Tripathi, S. K. (2010). Assessment of Contamination of Soil due to Heavy Metals around Coal Fired Thermal Power Plants at Singrauli Region of India. Bulletin of Environmental Contamination and Toxicology, 85(2), 219-223. https://doi.org/10.1007/s00128-010-0043-8 | |
dc.relation.references | Andersen, J. H., Fossing, H., Hansen, J. W., Manscher, O. H., Murray, C., & Petersen, D. L. J. (2014). Nitrogen Inputs from Agriculture: Towards Better Assessments of Eutrophication Status in Marine Waters. AMBIO, 43(7), 906-913. https://doi.org/10.1007/s13280-014-0514-y | |
dc.relation.references | Andreozzi, M., Forcellese, A., Gentili, S., Mancia, T., & Verdini, T. (2024). Comparative Life Cycle Assessment of molding process and 3D printing of High-Performance Long-fiber Reinforced Composites. Procedia CIRP, 122, 909-914. https://doi.org/10.1016/j.procir.2024.01.124 | |
dc.relation.references | Ángel Hidalgo-Salazar, M., Pablo Correa-Aguirre, J., Manuel Montalvo-Navarrete, J., Fernando Lopez-Rodriguez, D., & Felipe Rojas-González, A. (2020). Recycled Polypropylene-Coffee Husk and Coir Coconut Biocomposites: Morphological, Mechanical, Thermal and Environmental Studies. En G. Akın Evingür, Ö. Pekcan, & D. S. Achilias (Eds.), Thermosoftening Plastics. IntechOpen. https://doi.org/10.5772/intechopen.81635 | |
dc.relation.references | Appusamy, A. M., Prakash, E., Madheswaran, S., Rajamanickam, A., Selvakumar, V. K., & Chandrasekar, P. (2021). Characterization and Fabrication of ABS and PLA-Based Polymer Matrix Composites Using 3D Printing. En G. Kumaresan, N. S. Shanmugam, & V. Dhinakaran (Eds.), Advances in Materials Research (Vol. 5, pp. 499-510). Springer Nature Singapore. https://doi.org/10.1007/978-981-15-8319-3_50 | |
dc.relation.references | Aydin, M., & Kaynak, B. (2023, mayo 15). Prediction of H2S Concentration Around Geothermal Power Plants Using Multiple Regression Analysis. https://doi.org/10.5194/egusphere-egu23-14483 | |
dc.relation.references | Babaee, S., Loughlin, D. H., & Kaplan, P. O. (2020). Incorporating upstream emissions into electric sector nitrogen oxide reduction targets. Cleaner Engineering and Technology, 1, 100017. https://doi.org/10.1016/j.clet.2020.100017 | |
dc.relation.references | Bach, V., Lehmann, A., Görmer, M., & Finkbeiner, M. (2018). Product Environmental Footprint (PEF) Pilot Phase—Comparability over Flexibility? Sustainability, 10(8), 2898. https://doi.org/10.3390/su10082898 | |
dc.relation.references | Badanayak, P., Jose, S., & Bose, G. (2023). Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification. Journal of Natural Fibers, 20(1), 2168821. https://doi.org/10.1080/15440478.2023.2168821 | |
dc.relation.references | Badhotiya, G. K., Avikal, S., Soni, G., & Sengar, N. (2022). Analyzing barriers for the adoption of circular economy in the manufacturing sector. International Journal of Productivity and Performance Management, 71(3), 912-931. https://doi.org/10.1108/IJPPM-01-2021-0021 | |
dc.relation.references | Badreddine, S., Abdelhafidh, K., Dellali, M., Mahmoudi, E., Sheehan, D., & Hamouda, B. (2017). The effects of anthracene on biochemical responses of Mediterranean mussels Mytilus galloprovincialis. Chemistry and Ecology, 33(4), 309-324. https://doi.org/10.1080/02757540.2017.1309393 | |
dc.relation.references | Bajdur, W. M., Włodarczyk-Makuła, M., & Krukowska-Miler, A. (2024). Application of the Life Cycle Assessment (LCA) Method in Assessing the Environmental Impact of New Materials Derived from Waste Polymers in Terms of Sustainability. Sustainability, 16(22), 9759. https://doi.org/10.3390/su16229759 | |
dc.relation.references | Bałdowska-Witos, P., Kruszelnicka, W., Kasner, R., Tomporowski, A., Flizikowski, J., Kłos, Z., Piotrowska, K., & Markowska, K. (2020). Application of LCA Method for Assessment of Environmental Impacts of a Polylactide (PLA) Bottle Shaping. Polymers, 12(2), 388. https://doi.org/10.3390/polym12020388 | |
dc.relation.references | Balla, V. K., Kate, K. H., Satyavolu, J., Singh, P., & Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 174, 106956. https://doi.org/10.1016/j.compositesb.2019.106956 | |
dc.relation.references | Barde, M., Auad, M., Jones, J., Yan, Y., Lu, N., Pillay, S., & Ning, H. (2022). Natural Fiber Composite with α-Resorcylic Acid Based Bio-Epoxy Matrix. Universal Journal of Materials Science, 10(2), 9-20. https://doi.org/10.13189/ujms.2022.100201 | |
dc.relation.references | Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205 | |
dc.relation.references | Behera, A. K., Pattnaik, S. S., Behera, D., Behera, S., Kumar, J., Manna, S., & Das, N. (2025). Enhancement of Green Composite Performance Through the Synergistic Influence of Cashew Nut Shell Liquid and Nanoclay on Natural Fiber Reinforcement. Journal of Applied Polymer Science, 142(12), e56640. https://doi.org/10.1002/app.56640 | |
dc.relation.references | Benavides, P. T., Lee, U., & Zarè-Mehrjerdi, O. (2020). Life cycle greenhouse gas emissions and energy use of polylactic acid, bio-derived polyethylene, and fossil-derived polyethylene. Journal of Cleaner Production, 277, 124010. https://doi.org/10.1016/j.jclepro.2020.124010 | |
dc.relation.references | Bertassini, A. C., Ometto, A. R., Severengiz, S., & Gerolamo, M. C. (2021). Circular economy and sustainability: The role of organizational behaviour in the transition journey. Business Strategy and the Environment, 30(7), 3160-3193. https://doi.org/10.1002/bse.2796 | |
dc.relation.references | Boone, L., Van Linden, V., De Meester, S., Vandecasteele, B., Muylle, H., Roldán-Ruiz, I., Nemecek, T., & Dewulf, J. (2016). Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of The Total Environment, 553, 551-564. https://doi.org/10.1016/j.scitotenv.2016.02.089 | |
dc.relation.references | Borda, F., La Rosa, A. D., Filice, L., & Gagliardi, F. (2024). Environmental comparison of opposing manufacturing strategies at changing of energy sources, EoL approaches and shape peculiarity for an automotive component. Advances in Materials and Processing Technologies, 1-21. https://doi.org/10.1080/2374068X.2024.2432724 | |
dc.relation.references | Brito De Figueirêdo, M. C., Potting, J., Lopes Serrano, L. A., Bezerra, M. A., Da Silva Barros, V., Gondim, R. S., & Nemecek, T. (2016). Environmental assessment of tropical perennial crops: The case of the Brazilian cashew. Journal of Cleaner Production, 112, 131-140. https://doi.org/10.1016/j.jclepro.2015.05.134 | |
dc.relation.references | Cardona, D., Tamayo, J. A., & Eslava-Garzón, J. S. (2024). Hacia una matriz energética sostenible en Colombia. Una revisión sistemática de la literatura. Información Tecnológica, 35(5), 1-16. https://doi.org/10.4067/S0718-07642024000500001 | |
dc.relation.references | Castañeda-Niño, J. P., Mina Hernandez, J. H., & Solanilla Duque, J. F. (2024). Potential of Plantain Pseudostems (Musa AAB Simmonds) for Developing Biobased Composite Materials. Polymers, 16(10), 1357. https://doi.org/10.3390/polym16101357 | |
dc.relation.references | Chairi, M., El Bahaoui, J., Hanafi, I., Mata Cabrera, F., & Di Bella, G. (2023). Composite Materials: A Review of Polymer and Metal Matrix Composites, Their Mechanical Characterization, and Mechanical Properties. En L. Li, A. B. Pereira, & A. L. Pereira (Eds.), Next Generation Fiber-Reinforced Composites—New Insights. IntechOpen. https://doi.org/10.5772/intechopen.106624 | |
dc.relation.references | Chung, K. W. Y., Blin, J., Lanvin, C., Martin, E., Valette, J., & Van De Steene, L. (2024). Pyrolysis of cashew nut shells-focus on extractives. Journal of Analytical and Applied Pyrolysis, 179, 106452. https://doi.org/10.1016/j.jaap.2024.106452 | |
dc.relation.references | Ciroth, A., Muller, S., Weidema, B., & Lesage, P. (2016). Empirically based uncertainty factors for the pedigree matrix in ecoinvent. The International Journal of Life Cycle Assessment, 21(9), 1338-1348. https://doi.org/10.1007/s11367-013-0670-5 | |
dc.relation.references | Cisneros-López, E. O., Pal, A. K., Rodriguez, A. U., Wu, F., Misra, M., Mielewski, D. F., Kiziltas, A., & Mohanty, A. K. (2020). Recycled poly(lactic acid)–based 3D printed sustainable biocomposites: A comparative study with injection molding. Materials Today Sustainability, 7-8, 100027. https://doi.org/10.1016/j.mtsust.2019.100027 | |
dc.relation.references | Coban, K., Ekici, S., & Karakoc, T. H. (2024). Life Cycle Assessment: A Brief Definition and Overview. En T. H. Karakoc, S. Ekici, & A. Dalkiran (Eds.), Life Cycle Assessment in Aviation (pp. 11-23). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-52772-2_2 | |
dc.relation.references | Cruz, T., Maranon, A., Hernandez, C., Alvarez, O., Ayala-García, C., & Porras, A. (2024). Exploring the potential of cashew nutshells: A critical review of alternative applications. BioResources, 19(3). https://doi.org/10.15376/biores.19.3.Cruz | |
dc.relation.references | De Farias Braz, C. J., De Oliveira Dias, A. R., Figueiredo, S. N., Dos Santos Rosa, A. C. F., De Sousa Barros, I., Alves, A. T., De Lima Silva, S. M., De Carvalho, L. H., Barbosa, R., & Alves, T. S. (2024). Biodegradable composites filled with agro‐industrial waste and fertilizers for filament production and application in active manufacturing. Polymer Composites, pc.29375. https://doi.org/10.1002/pc.29375 | |
dc.relation.references | De Simone, F., Artaxo, P., Bencardino, M., Cinnirella, S., Carbone, F., D’Amore, F., Dommergue, A., Feng, X. B., Gencarelli, C. N., Hedgecock, I. M., Landis, M. S., Sprovieri, F., Suzuki, N., Wängberg, I., & Pirrone, N. (2017). Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: A modelling assessment. Atmospheric Chemistry and Physics, 17(3), 1881-1899. https://doi.org/10.5194/acp-17-1881-2017 | |
dc.relation.references | Deng Shuang Deng Shuang, Zhang Fan Zhang Fan, Liu Yu Liu Yu, Shi YingJie Shi YingJie, Wang HongMei Wang HongMei, Zhang Chen Zhang Chen, Wang XiangFeng Wang XiangFeng, & Cao Qing Cao Qing. (2013). Lead emission and speciation of coal-fired power plants in China. China Environmental Science, 33(7), 1199-1206. | |
dc.relation.references | Díaz Ponce, M. A., Cervantes Molina, X. P., & Chesme Rios, C. L. (2023). Sostenibilidad en el Cultivo de Cacao (Theobroma Cacao L.) Por las Oportunidades de Economía Circular para la Provincia los Ríos. Ciencia Latina Revista Científica Multidisciplinar, 7(4), 5182-5197. https://doi.org/10.37811/cl_rcm.v7i4.7342 | |
dc.relation.references | Ding, M., Shi, S., Qie, S., Li, J., & Xi, X. (2023). Association between heavy metals exposure (cadmium, lead, arsenic, mercury) and child autistic disorder: A systematic review and meta-analysis. Frontiers in Pediatrics, 11, 1169733. https://doi.org/10.3389/fped.2023.1169733 | |
dc.relation.references | Dong, Y. (2024). Life Cycle Assessment in the Building and Construction Sector. En C. S. Goh & H.-Y. Chong, Rethinking Pathways to a Sustainable Built Environment (1.a ed., pp. 191-212). Routledge. https://doi.org/10.1201/9781003317890-12 | |
dc.relation.references | Driouach, L., Zarbane, K., & Beidouri, Z. (2023). The impacts of additive manufacturing technology on lean manufacturing. Journal of Achievements in Materials and Manufacturing Engineering, 120(1), 22-32. https://doi.org/10.5604/01.3001.0053.9641 | |
dc.relation.references | Dubey, K. A., & Bhardwaj, Y. K. (2021). High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations. En A. K. Tyagi & R. S. Ningthoujam (Eds.), Handbook on Synthesis Strategies for Advanced Materials (pp. 1-25). Springer Singapore. https://doi.org/10.1007/978-981-16-1892-5_1 | |
dc.relation.references | Egon, A., Bell, C., & Shad, R. (2024). Sustainability in Additive Manufacturing: Analyzing the Environmental Impact of Additive Manufacturing Processes. Chemistry and Materials Science. https://doi.org/10.20944/preprints202407.2573.v1 | |
dc.relation.references | Elsonbaty, A. A., MRashad, A., Abass, Omnia. Y., Y.Abdelghany, T., & MAlfauiomy, A. (2024). A Survey of Fused Deposition Modeling (FDM) Technology in 3D Printing. Journal of Engineering Research and Reports, 26(11), 304-312. https://doi.org/10.9734/jerr/2024/v26i111332 | |
dc.relation.references | Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012 | |
dc.relation.references | Farhan, M., Mohammad Taha, M., Yusuf, Y., Azwan Sundi, S., & Zakaria, N. H. (2024). Environmental Assessment on Fabrication of Bio-composite Filament Fused Deposition Modeling Through Life Cycle Analysis. Pertanika Journal of Science and Technology, 32(S2). https://doi.org/10.47836/pjst.32.S2.03 | |
dc.relation.references | Felfil Evo | Extrusora de filamento en Kit o ensamblado para impresora 3D. (s. f.). Felfil. Recuperado 14 de febrero de 2025, de https://felfil.com/es/felfil-evo/ | |
dc.relation.references | Fernández-López, L., González-García, P., Fernández-Ríos, A., Aldaco, R., Laso, J., Martínez-Ibáñez, E., Gutiérrez-Fernández, D., Pérez-Martínez, M. M., Marchisio, V., Figueroa, M., De Sousa, D. B., Méndez, D., & Margallo, M. (2024). Life cycle assessment of single cell protein production–A review of current technologies and emerging challenges. Cleaner and Circular Bioeconomy, 8, 100079. https://doi.org/10.1016/j.clcb.2024.100079 | |
dc.relation.references | Fico, D., Rizzo, D., Malinconico, F., & Esposito Corcione, C. (2024). A SUSTAINABLE APPROACH TO RECYCLING WASTE: EXAMPLES OF THE APPLICATION OF 3D PRINTING TO EXTEND THE LIFE CYCLE OF MATERIALS. Detritus, 28, 60-69. https://doi.org/10.31025/2611-4135/2024.19408 | |
dc.relation.references | Fogue Matchum, S., Sikame Tagne, N. R., Huisken Mejouyo, P. W., Tido Tiwa, S., Wenga, B., Njeugna, E., Drean, J.-Y., Bistac-Brogly, S., & Harzallah, O. (2024). Investigation of chemical, physical and morpho-mechanical properties of banana-plantain stalk fibers for ropes and woven fabrics used in composite and limited-lifespan geotextile. Heliyon, 10(8), e29656. https://doi.org/10.1016/j.heliyon.2024.e29656 | |
dc.relation.references | Foley, M. E., Sigler, V., & Gruden, C. L. (2008). A multiphasic characterization of the impact of the herbicide acetochlor on freshwater bacterial communities. The ISME Journal, 2(1), 56-66. https://doi.org/10.1038/ismej.2007.99 | |
dc.relation.references | Fonseca, A., Ramalho, E., Gouveia, A., Figueiredo, F., & Nunes, J. (2023). Life Cycle Assessment of PLA Products: A Systematic Literature Review. Sustainability, 15(16), 12470. https://doi.org/10.3390/su151612470 | |
dc.relation.references | Friedli, H. R., Radke, L. F., & Lu, J. Y. (2001). Mercury in smoke from biomass fires. Geophysical Research Letters, 28(17), 3223-3226. https://doi.org/10.1029/2000GL012704 | |
dc.relation.references | Füchsl, S., Rheude, F., & Röder, H. (2022). Life cycle assessment (LCA) of thermal insulation materials: A critical review. Cleaner Materials, 5, 100119. https://doi.org/10.1016/j.clema.2022.100119 | |
dc.relation.references | García, G. F., Álvarez, H. B., Echeverría, R. S., De Alba, S. R., Rueda, V. M., Dosantos, E. C., & Cruz, G. V. (2017). Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico. Journal of the Air & Waste Management Association, 67(9), 973-985. https://doi.org/10.1080/10962247.2017.1314871 | |
dc.relation.references | Garnier, J., Riou, P., Le Gendre, R., Ramarson, A., Billen, G., Cugier, P., Schapira, M., Théry, S., Thieu, V., & Ménesguen, A. (2019). Managing the Agri-Food System of Watersheds to Combat Coastal Eutrophication: A Land-to-Sea Modelling Approach to the French Coastal English Channel. Geosciences, 9(10), 441. https://doi.org/10.3390/geosciences9100441 | |
dc.relation.references | Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757-768. https://doi.org/10.1016/j.jclepro.2016.12.048 | |
dc.relation.references | Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782 | |
dc.relation.references | Ghabezi, P., Sam-Daliri, O., Flanagan, T., Walls, M., & Harrison, N. M. (2024). Circular economy innovation: A deep investigation on 3D printing of industrial waste polypropylene and carbon fibre composites. Resources, Conservation and Recycling, 206, 107667. https://doi.org/10.1016/j.resconrec.2024.107667 | |
dc.relation.references | Gloria Opoku Darkoh. (2024). EVALUATING THE CIRCULAR ECONOMY AS A TOOL FOR ACHIEVING SUSTAINABILITY: BALANCING ENVIRONMENTAL, ECONOMIC, AND SOCIAL IMPACTS. EPRA International Journal of Socio-Economic and Environmental Outlook, 14-17. https://doi.org/10.36713/epra19532 | |
dc.relation.references | Godoy León, M. F., & Dewulf, J. (2020). Data quality assessment framework for critical raw materials. The case of cobalt. Resources, Conservation and Recycling, 157, 104564. https://doi.org/10.1016/j.resconrec.2019.104564 | |
dc.relation.references | Golsteijn, L., & Vieira, M. (2020). Applicability of the European Environmental Footprint (EF) methodology in Southern Mediterranean countries—Learnings and recommendations for enabling EF-compliant studies in regions outside of Europe. The International Journal of Life Cycle Assessment, 25(12), 2407-2416. https://doi.org/10.1007/s11367-019-01681-z | |
dc.relation.references | Gopinath, A., Kumar, M. S., & Elayaperumal, A. (2014). Experimental Investigations on Mechanical Properties Of Jute Fiber Reinforced Composites with Polyester and Epoxy Resin Matrices. Procedia Engineering, 97, 2052-2063. https://doi.org/10.1016/j.proeng.2014.12.448 | |
dc.relation.references | Guo, Y., Yang, Q., Yan, W., Li, B., Qian, K., Li, T., Xiao, W., & He, L. (2014). Controlled release of acetochlor from poly (butyl methacrylate-diacetone acrylamide) based formulation prepared by nanoemulsion polymerisation method and evaluation of the efficacy. International Journal of Environmental Analytical Chemistry, 94(10), 1001-1012. https://doi.org/10.1080/03067319.2014.930844 | |
dc.relation.references | Haylock, R., & Rosentrater, K. A. (2018). Cradle-to-Grave Life Cycle Assessment and Techno-Economic Analysis of Polylactic Acid Composites with Traditional and Bio-Based Fillers. Journal of Polymers and the Environment, 26(4), 1484-1503. https://doi.org/10.1007/s10924-017-1041-2 | |
dc.relation.references | Hu, C., Zhang, Y., Pang, X., & Chen, X. (2024). Poly(Lactic Acid): Recent Stereochemical Advances and New Materials Engineering. Advanced Materials, 2412185. https://doi.org/10.1002/adma.202412185 | |
dc.relation.references | Huang, M. H., Chen, W. H., Trinh, M. M., & Chang, M. B. (2023). Mass flows and characteristic of mercury emitted from coal-fired power plant equipped with seawater flue gas desulphurization. Sustainable Environment Research, 33(1), 8. https://doi.org/10.1186/s42834-023-00168-9 | |
dc.relation.references | Hussain, M., & Shafqat, A. R. (2025). Sustainability and Materials. En K. Shaker & Y. Nawab (Eds.), Engineering Materials (pp. 257-274). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-72263-9_11 | |
dc.relation.references | Imoisili, P. E., & Jen, T. C. (2024). Effect of Mercerization on the Crystallographic, Macromolecular, and Thermal Properties of Plantain Fibers for Fiber Reinforced Composite. Materials Science Forum, 1115, 63-70. https://doi.org/10.4028/p-ki55Mr | |
dc.relation.references | (ISO), I. O. for S. (2006). Environmental management. Life cycle assessment. Requirements and guidelines (b). International Organization for Standardization. | |
dc.relation.references | Jomova, K., Alomar, S. Y., Nepovimova, E., Kuca, K., & Valko, M. (2025). Heavy metals: Toxicity and human health effects. Archives of Toxicology, 99(1), 153-209. https://doi.org/10.1007/s00204-024-03903-2 | |
dc.relation.references | Jordaan, S. M., Xu, Q., & Hobbs, B. F. (2020). Grid-Scale Life Cycle Greenhouse Gas Implications of Renewable, Storage, and Carbon Pricing Options. Environmental Science & Technology, 54(17), 10435-10445. https://doi.org/10.1021/acs.est.0c01861 | |
dc.relation.references | Kai Che, Chong-Ming Chen, Qing-Yu Zheng, Hui Fan, Ming-Lei Wei, Peng Luo, & Jin-Xing Yu. (2022). Heavy Metal Emissions from Coal-fired Power Plants and Heavy Metal Pollution Characteristics and Health Risks in Surrounding Soils. Huan Jing Ke Xue= Huanjing Kexue, 43(10), 4578-4589. | |
dc.relation.references | Kalkanis, K., Bourtsalas, A., & Psomopoulos, C. S. (2024). Life Cycle Assessment applied to waste-to-energy technologies. En Waste Valorization for Bioenergy and Bioproducts (pp. 527-543). Elsevier. https://doi.org/10.1016/B978-0-443-19171-8.00014-6 | |
dc.relation.references | Kaptan, A., & Kartal, F. (2024). Advancements in polylactic acid research: From material properties to sustainable applications. European Mechanical Science, 8(2), 104-114. https://doi.org/10.26701/ems.1440630 | |
dc.relation.references | Kavlak, G., & Graedel, T. E. (2013). Global anthropogenic tellurium cycles for 1940–2010. Resources, Conservation and Recycling, 76, 21-26. https://doi.org/10.1016/j.resconrec.2013.04.007 | |
dc.relation.references | Khalid, M., & Peng, Q. (2021). Sustainability and Environmental Impact of Additive Manufacturing: A Literature Review. Computer-Aided Design and Applications, 18(6), 1210-1232. https://doi.org/10.14733/cadaps.2021.1210-1232 | |
dc.relation.references | Khatib, I., Horyn, O., Bodnar, O., Lushchak, O., Rychter, P., & Falfushynska, H. (2023). Molecular and Biochemical Evidence of the Toxic Effects of Terbuthylazine and Malathion in Zebrafish. Animals, 13(6), 1029. https://doi.org/10.3390/ani13061029 | |
dc.relation.references | Kirschnick, U., Ravindran, B., Sieberer, M., Fauster, E., & Feuchter, M. (2025). The Fossil, the Green and the in-Between: Life Cycle Assessment of Manufacturing Composites with Varying Bio-Based Content. Chemistry and Materials Science. https://doi.org/10.20944/preprints202501.1145.v1 | |
dc.relation.references | Kiš, F., Vasin, J., Milovac, Ž., Zeremski, T., Milić, S., & Savić, J. (2024). Environmental impact assessment of rapeseed production using the LCA method: Part one: Life cycle inventory analysis. Selekcija i Semenarstvo, 30(1), 13-33. https://doi.org/10.5937/SelSem2401013K | |
dc.relation.references | Komal, U. K., Lila, M. K., & Singh, I. (2020). PLA/banana fiber based sustainable biocomposites: A manufacturing perspective. Composites Part B: Engineering, 180, 107535. https://doi.org/10.1016/j.compositesb.2019.107535 | |
dc.relation.references | Kottuparambil, S., & Park, J. (2019). Anthracene phytotoxicity in the freshwater flagellate alga Euglena agilis Carter. Scientific Reports, 9(1), 15323. https://doi.org/10.1038/s41598-019-51451-y | |
dc.relation.references | Koziol, M., Wieczorek, J., Bogdan-Włodek, A., & Myalski, J. (2013). Evaluation of jute fiber preforms absorbability using optical profilographometer. Journal of Composite Materials, 47(19), 2309-2319. https://doi.org/10.1177/0021998312457197 | |
dc.relation.references | Kreiger, M., & Pearce, J. M. (2013). Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products. ACS Sustainable Chemistry & Engineering, 1(12), 1511-1519. https://doi.org/10.1021/sc400093k | |
dc.relation.references | Kumar, R., Singh, R., Kumar, V., & Ranjan, N. (2024). On secondary recycling of high-density polyethylene with reinforcement of stubble powder by a material extrusion process for construction applications. Journal of Thermoplastic Composite Materials, 08927057241309822. https://doi.org/10.1177/08927057241309822 | |
dc.relation.references | Laca, A., Laca, A., Herrero, M., & Díaz, M. (2019). Life Cycle Assessment in Biotechnology. En Comprehensive Biotechnology (pp. 994-1006). Elsevier. https://doi.org/10.1016/B978-0-444-64046-8.00109-9 | |
dc.relation.references | Laurenz, J., Lietz, L., Brendelberger, H., Lehmann, K., & Georg, A. (2020). Noble Crayfish Are More Sensitive to Terbuthylazine than Parthenogenetic Marbled Crayfish. Water, Air, & Soil Pollution, 231(11), 548. https://doi.org/10.1007/s11270-020-04921-3 | |
dc.relation.references | Lestari, A. D. A. & Farida Pulansari. (2024). Environmental Impact Analysis on Furniture Industry by Implementing Life Cycle Assessment (LCA) Method. Advance Sustainable Science Engineering and Technology, 7(1), 0250106. https://doi.org/10.26877/asset.v7i1.747 | |
dc.relation.references | Li, X., Lin, Y., Liu, M., Meng, L., & Li, C. (2023). A review of research and application of polylactic acid composites. Journal of Applied Polymer Science, 140(7), e53477. https://doi.org/10.1002/app.53477 | |
dc.relation.references | Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. https://doi.org/10.1016/j.progpolymsci.2008.05.004 | |
dc.relation.references | Liu, Q., Gao, J., Li, G., Zheng, Y., Li, R., & Yue, T. (2023). Bibliometric Analysis on Mercury Emissions from Coal-fired Power Plants: A Systematic Review and Future Prospect. In Review. https://doi.org/10.21203/rs.3.rs-2972030/v1 | |
dc.relation.references | Lopes Silva, D. A., Nunes, A. O., Piekarski, C. M., Da Silva Moris, V. A., De Souza, L. S. M., & Rodrigues, T. O. (2019). Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustainable Production and Consumption, 20, 304-315. https://doi.org/10.1016/j.spc.2019.07.005 | |
dc.relation.references | Lozano Miralles, J. A. (2022). Análisis de ciclo de vida (ACV) comparativo entre probetas obtenidas mediante fabricación tradicional por inyección (FI) y fabricación aditiva (FA). Técnica Industrial, 332, 50-57. https://doi.org/10.23800/10523 | |
dc.relation.references | Lu, A., Ivantsova, E., & Martyniuk, C. J. (2023). A comparative review and computational assessment of acetochlor toxicity in fish: A novel endocrine disruptor? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 271, 109685. https://doi.org/10.1016/j.cbpc.2023.109685 | |
dc.relation.references | Łuszkiewicz, D., Jędrusik, M., & Świerczok, A. (2021). Technology of mercury removal from exhaust from coal fired boilers. E3S Web of Conferences, 323, 00024. https://doi.org/10.1051/e3sconf/202132300024 | |
dc.relation.references | Mahalle, L., Alemdar, A., Mihai, M., & Legros, N. (2014). A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites. The International Journal of Life Cycle Assessment, 19(6), 1305-1315. https://doi.org/10.1007/s11367-014-0731-4 | |
dc.relation.references | Maiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., & Karim, N. (2022). Sustainable Fiber‐Reinforced Composites: A Review. Advanced Sustainable Systems, 6(11), 2200258. https://doi.org/10.1002/adsu.202200258 | |
dc.relation.references | Mares, L. G., Villarruel, S. C., & Garcidueñas, M. G. R. (2018). Análisis de ciclo de vida: Factor clave para la innovación tecnológica de productos ambientalmente integrados. Repositorio de la Red Internacional de Investigadores en Competitividad, 12, 515-533. | |
dc.relation.references | Mecheter, A., & Tarlochan, F. (2023). Fused Filament Fabrication Three-Dimensional Printing: Assessing the Influence of Geometric Complexity and Process Parameters on Energy and the Environment. Sustainability, 15(16), 12319. https://doi.org/10.3390/su151612319 | |
dc.relation.references | Meskers, C., Bartie, N. J., & Reuter, M. A. (2024). Life cycle assessment (LCA). En Handbook of Recycling (pp. 701-721). Elsevier. https://doi.org/10.1016/B978-0-323-85514-3.00010-5 | |
dc.relation.references | Miller, B. G. (2017a). Formation and Control of Nitrogen Oxides. En Clean Coal Engineering Technology (pp. 507-538). Elsevier. https://doi.org/10.1016/B978-0-12-811365-3.00010-7 | |
dc.relation.references | Miller, B. G. (2017b). Formation and Control of Sulfur Oxides. En Clean Coal Engineering Technology (pp. 467-506). Elsevier. https://doi.org/10.1016/B978-0-12-811365-3.00009-0 | |
dc.relation.references | Mohanty, A. K., Misra, M., & Drzal, L. T. (Eds.). (2005). Natural fibers, biopolymers, and biocomposites. Taylor & Francis. | |
dc.relation.references | Montoya, J., & Negrete, J. (2023). CARACTERIZACIÓN DE LA FIBRA DEL PSEUDOTALLO DEL PLÁTANO COMO POTENCIAL REFUERZO PARA LA ELABORACIÓN DE MATERIALES. Universidad de Córdoba. | |
dc.relation.references | Mumthas, A. C. S. I., Wickramasinghe, G. L. D., & Gunasekera, U. S. (2019). Effect of physical, chemical and biological extraction methods on the physical behaviour of banana pseudo-stem fibres: Based on fibres extracted from five common Sri Lankan cultivars. Journal of Engineered Fibers and Fabrics, 14, 1558925019865697. https://doi.org/10.1177/1558925019865697 | |
dc.relation.references | Neacșa, A., Diniță, A., & Iacob, Ștefan V. (2025). Can the Dimensional Optimisation of 3D FDM-Manufactured Parts Be a Solution for a Correct Design? Materials, 18(2), 408. https://doi.org/10.3390/ma18020408 | |
dc.relation.references | Nemecek, T., & Schnetzer, J. (2011). Methods of assessment of direct field emissions for LCIs of agricultural production systems. | |
dc.relation.references | Neumann, D., Karl, M., Radtke, H., Matthias, V., Friedland, R., & Neumann, T. (2020). Quantifying the contribution of shipping NO x emissions to the marine nitrogen inventory – a case study for the western Baltic Sea. Ocean Science, 16(1), 115-134. https://doi.org/10.5194/os-16-115-2020 | |
dc.relation.references | Ngatia, L., M. Grace Iii, J., Moriasi, D., & Taylor, R. (2019). Nitrogen and Phosphorus Eutrophication in Marine Ecosystems. En H. Bachari Fouzia (Ed.), Monitoring of Marine Pollution. IntechOpen. https://doi.org/10.5772/intechopen.81869 | |
dc.relation.references | O’Donoughue, P. R., Heath, G. A., Dolan, S. L., & Vorum, M. (2014). Life Cycle Greenhouse Gas Emissions of Electricity Generated from Conventionally Produced Natural Gas: Systematic Review and Harmonization. Journal of Industrial Ecology, 18(1), 125-144. https://doi.org/10.1111/jiec.12084 | |
dc.relation.references | Orlandi, R., Pucciarelli, M., Ragni, G., Serra, A., & Fantozzi, F. (2024). A Carbon Footprint Comparison Through LCA of Forging vs. Wire Arc Additive Manufacturing (WAAM) Processes for the Internal Casing of a Gas Turbine. Volume 2: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels, V002T03A007. https://doi.org/10.1115/GT2024-123183 | |
dc.relation.references | Pan, X. (2011). Sulfur Oxides: Sources, Exposures and Health Effects. En Encyclopedia of Environmental Health (pp. 290-296). Elsevier. https://doi.org/10.1016/B978-0-444-52272-6.00069-6 | |
dc.relation.references | Parlak, M., Taş, İ., Görgişen, C., & Gökalp, Z. (2024). Spatial distribution and health risk assessment for heavy metals of the soils around coal-fired power plants of northwest Turkey. International Journal of Environmental Analytical Chemistry, 104(20), 9708-9722. https://doi.org/10.1080/03067319.2023.2243231 | |
dc.relation.references | Patel, B. Y., & Patel, H. K. (2022). Retting of banana pseudostem fibre using Bacillus strains to get excellent mechanical properties as biomaterial in textile & fiber industry. Heliyon, 8(9), e10652. https://doi.org/10.1016/j.heliyon.2022.e10652 | |
dc.relation.references | Paternina reyes, M. J. (2023). Caracterización química, física y mecánica de materiales compuestos con matriz de ácido poliláctico y refuerzo particulado de cáscaras de marañón elaborados a través de la técnica de moldeo por deposición fundida [Universidad de Córdoba]. https://repositorio.unicordoba.edu.co/server/api/core/bitstreams/2976b566-74a2-48d4-80c7-24736c2e8e6e/content | |
dc.relation.references | Paternina Reyes, M. J., Unfried Silgado, J., Santa Marín, J. F., Colorado Lopera, H. A., & Espitia Sanjuán, L. A. (2023). Cashew Nutshells: A Promising Filler for 3D Printing Filaments. Polymers, 15(22), 4347. https://doi.org/10.3390/polym15224347 | |
dc.relation.references | Pei, B. (2013). Field measurement for lead emission in the plumes of coal-fired power plants. Acta Sci. Circumstantiae, 33, 1697-1702. | |
dc.relation.references | Pelletier, N., Allacker, K., Pant, R., & Manfredi, S. (2014). The European Commission Organisation Environmental Footprint method: Comparison with other methods, and rationales for key requirements. The International Journal of Life Cycle Assessment, 19(2), 387-404. https://doi.org/10.1007/s11367-013-0609-x | |
dc.relation.references | Petousis, M., Vidakis, N., Mountakis, N., Karapidakis, E., & Moutsopoulou, A. (2023). Functionality Versus Sustainability for PLA in MEX 3D Printing: The Impact of Generic Process Control Factors on Flexural Response and Energy Efficiency. Polymers, 15(5), 1232. https://doi.org/10.3390/polym15051232 | |
dc.relation.references | Phiri, R., Mavinkere Rangappa, S., Siengchin, S., Oladijo, O. P., & Dhakal, H. N. (2023). Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Advanced Industrial and Engineering Polymer Research, 6(4), 436-450. https://doi.org/10.1016/j.aiepr.2023.04.004 | |
dc.relation.references | Plhalova, L., Stepanova, S., Praskova, E., Hostovsky, M., Skoric, M., & Bedanova, I. (2012). The effects of subchronic exposure to terbuthylazine on zebrafish. Neuroendocrinol Lett, 33(3), 113-119. | |
dc.relation.references | Popescu, C., Dissanayake, H., Mansi, E., & Stancu, A. (2024). Eco Breakthroughs: Sustainable Materials Transforming the Future of Our Planet. Sustainability, 16(23), 10790. https://doi.org/10.3390/su162310790 | |
dc.relation.references | Rahman, M. A., Haque, S., Rangarajalu, N. S., & Rajendran, D. R. (2024). Sustainability and Efficiency: The Green Potential of Additive Manufacturing. En S. Kunar, T. Jagadeesha, S. Rama Sree, K. V. S. R. Murthy, & M. Sreenivasa Reddy (Eds.), Advances in Additive Manufacturing (1.a ed., pp. 317-342). Wiley. https://doi.org/10.1002/9781394238316.ch18 | |
dc.relation.references | Raja S., Rusho, M. A., Thimothy, P., Bahar, M. A., Mustafa Egla Kadhim, Shwan, S. A., Jawad, Z. N., Mustafa, M. A., & Kumar, A. P. (2024). Minimizing environmental footprint in FDM additive manufacturing: Analyzing process efficiency through advanced optimization techniques. Applied Chemical Engineering, 7(4). https://doi.org/10.59429/ace.v7i4.5533 | |
dc.relation.references | Ramanujan, D., Bernstein, W. Z., Chandrasegaran, S. K., & Ramani, K. (2017). Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities. Journal of Mechanical Design, 139(11), 111415. https://doi.org/10.1115/1.4037479 | |
dc.relation.references | Raza, U., Ahmed, A., Waheed, S., Abid, M., Tahir, M., Zahid, A., Ahmed, A., Bilal, M., Hussain, T., & Mustafa, G. (2025). Recent Advancements in Fused Deposition Modeling. Polymers for Advanced Technologies, 36(1), e70028. https://doi.org/10.1002/pat.70028 | |
dc.relation.references | Rezvani Ghomi, E. R., Khosravi, F., Saedi Ardahaei, A. S., Dai, Y., Neisiany, R. E., Foroughi, F., Wu, M., Das, O., & Ramakrishna, S. (2021). The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers, 13(11), 1854. https://doi.org/10.3390/polym13111854 | |
dc.relation.references | Riesch, R., Tobler, M., & Plath, M. (2015). Hydrogen Sulfide-Toxic Habitats. En R. Riesch, M. Tobler, & M. Plath (Eds.), Extremophile Fishes (pp. 137-159). Springer International Publishing. https://doi.org/10.1007/978-3-319-13362-1_7 | |
dc.relation.references | Rm, H. (2024). Design and Fabrication of Banana Fiber Reinforced Bio Composite. International Journal for Research in Applied Science and Engineering Technology, 12(5), 1902-1906. https://doi.org/10.22214/ijraset.2024.61961 | |
dc.relation.references | Rodríguez, L. J., Fabbri, S., Orrego, C. E., & Owsianiak, M. (2020). Comparative life cycle assessment of coffee jar lids made from biocomposites containing poly(lactic acid) and banana fiber. Journal of Environmental Management, 266, 110493. https://doi.org/10.1016/j.jenvman.2020.110493 | |
dc.relation.references | Rodríguez, L. J., Ospina, S., Ribeiro, I., Peças, P., & Orrego, C. E. (2021). Banana fibre-biocomposite applied to bottle lid case—Life-cycle engineering model for material selection. International Journal of Sustainable Engineering, 14(5), 1181-1192. https://doi.org/10.1080/19397038.2021.1913531 | |
dc.relation.references | Rojek, I., Mikołajewski, D., Macko, M., Szczepański, Z., & Dostatni, E. (2021). Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development. Materials, 14(11), 2737. https://doi.org/10.3390/ma14112737 | |
dc.relation.references | Romani, A., Rognoli, V., & Levi, M. (2021). Design, Materials, and Extrusion-Based Additive Manufacturing in Circular Economy Contexts: From Waste to New Products. Sustainability, 13(13), 7269. https://doi.org/10.3390/su13137269 | |
dc.relation.references | Romero Rivero, O. (2023). Efecto de la variación del contenido y la orientación de fibra en las propiedades mecánicas de un compuesto termoplástico reforzado con fibra de plátano obtenido mediante fabricación por filamento fundido con impregnación in-situ. Universidad de Córdoba. | |
dc.relation.references | Rybaczewska-Błażejowska, M., & Jezierski, D. (2024). Comparison of ReCiPe 2016, ILCD 2011, CML-IA baseline and IMPACT 2002+ LCIA methods: A case study based on the electricity consumption mix in Europe. The International Journal of Life Cycle Assessment, 29(10), 1799-1817. https://doi.org/10.1007/s11367-024-02326-6 | |
dc.relation.references | Sala, S., Biganzoli, F., Mengual, E. S., & Saouter, E. (2022). Toxicity impacts in the environmental footprint method: Calculation principles. The International Journal of Life Cycle Assessment, 27(4), 587-602. https://doi.org/10.1007/s11367-022-02033-0 | |
dc.relation.references | Sam-Daliri, O., Flanagan, T., Modi, V., Finnegan, W., Harrison, N., & Ghabezi, P. (2025). Composite upcycling: An experimental study on mechanical behaviour of injection moulded parts prepared from recycled material extrusion printed parts, previously prepared using glass fibre polypropylene composite industry waste. Journal of Cleaner Production, 499, 145280. https://doi.org/10.1016/j.jclepro.2025.145280 | |
dc.relation.references | Samuel, H. S., Ekpan, F.-D. M., & Ori, M. O. (2024). Biodegradable, Recyclable, and Renewable Polymers as Alternatives to Traditional Petroleum-based Plastics. Asian Journal of Environmental Research, 1(3), 152-165. https://doi.org/10.69930/ajer.v1i3.86 | |
dc.relation.references | Shahroodi, Z., Momeni, V., Moshkriz, A., Rajabifar, N., & Darvishi, R. (2025). Mechanical and Morphological Perspectives on PLA‐Based Thermoplastic Vulcanizates (TPVs): A Brief Review. Macromolecular Materials and Engineering, 310(2), 2400209. https://doi.org/10.1002/mame.202400209 | |
dc.relation.references | Sholokhova, A., Varžinskas, V., & Rutkaitė, R. (2024). Valorization of Agro-waste in Bio-based and Biodegradable Polymer Composites: A Comprehensive Review with Emphasis on Europe Perspective. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-024-02856-y | |
dc.relation.references | Sojo, A. (s. f.). Análisis de Ciclo de Vida: Análisis de inventario. | |
dc.relation.references | Sola, A., Rosa, R., & Ferrari, A. M. (2024). Environmental Impact of Fused Filament Fabrication: What Is Known from Life Cycle Assessment? Polymers, 16(14), 1986. https://doi.org/10.3390/polym16141986 | |
dc.relation.references | Stara, A., Zuskova, E., Kouba, A., & Velisek, J. (2016). Effects of terbuthylazine-desethyl, a terbuthylazine degradation product, on red swamp crayfish (Procambarus clarkii). Science of The Total Environment, 566-567, 733-740. https://doi.org/10.1016/j.scitotenv.2016.05.113 | |
dc.relation.references | Subagyo, A., & Chafidz, A. (2020). Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications. En A. I. O. Jideani & T. A. Anyasi (Eds.), Banana Nutrition—Function and Processing Kinetics. IntechOpen. https://doi.org/10.5772/intechopen.82204 | |
dc.relation.references | Subramani, R., Ali Rusho, M., Sekhar, K. Ch., Mohammed, S. A., Abdulah, S. A., Hashim, R. D., Jawad, Z. N., Mustafa, M. A., & Kumar, A. P. (2024). Utilizing bio-energy and waste reduction techniques in FDM: Toward sustainable production practices. Applied Chemical Engineering, 7(4). https://doi.org/10.59429/ace.v7i4.5540 | |
dc.relation.references | Sudprasert, P., Ogino, K., & Kanehashi, S. (2022). Cashew Nut Shell Liquid (CNSL)-Derived Epoxy Composite Reinforced by Cellulose Nanofiber. Journal of Fiber Science and Technology, 78(10), 161-168. https://doi.org/10.2115/fiberst.2022-0020 | |
dc.relation.references | Sun, K., Song, Y., Zong, W., Tang, J., & Liu, R. (2020). Anthracene-induced DNA damage and oxidative stress: A combined study at molecular and cellular levels. Environmental Science and Pollution Research, 27(33), 41458-41474. https://doi.org/10.1007/s11356-020-10049-y | |
dc.relation.references | Sundarakannan, R., Arumugaprabu, V., Manikandan, V., & Vigneshwaran, S. (2020). Mechanical property analysis of biochar derived from cashew nut shell waste reinforced polymer matrix. Materials Research Express, 6(12), 125349. https://doi.org/10.1088/2053-1591/ab6197 | |
dc.relation.references | Suppen-Reynaga, N., Guerrero, A. B., Dominguez, E. R., Sacayón, E., & Solano, A. (2024). Life cycle assessment of bananas, melons, and watermelons from Costa Rica. Cleaner and Circular Bioeconomy, 9, 100120. https://doi.org/10.1016/j.clcb.2024.100120 | |
dc.relation.references | Takeda, T., Suzuki, M., Kano, H., Matsumoto, M., & Umeda, Y. (2023). Clear evidence of the carcinogenic potential of anthracene: A 2‐year feeding study in rats and mice. Environmental Toxicology, 38(4), 709-726. https://doi.org/10.1002/tox.23722 | |
dc.relation.references | Thorat, Y. V., Chavan, S. S., Mohite, D. D., & Pawar, U. S. (2024). Development of eco-friendly bio-composites using banana fibers for enhanced tensile and flexural properties. Materials Today: Proceedings, S2214785324002499. https://doi.org/10.1016/j.matpr.2024.04.061 | |
dc.relation.references | Turconi, R., Boldrin, A., & Astrup, T. (2013). Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Reviews, 28, 555-565. https://doi.org/10.1016/j.rser.2013.08.013 | |
dc.relation.references | (UPME), U. D. P. M. E. (2019). PLAN ENERGÉTICO NACIONAL 2020-2050. https://www1.upme.gov.co/DemandaEnergetica/PEN_documento_para_consulta.pdf | |
dc.relation.references | Urbaite, G. (2024). 3D Printing and Additive Manufacturing: Revolutionizing the Production Process. Luminis Applied Science and Engineering, 1(1), 73-83. https://doi.org/10.69760/lumin.202400001 | |
dc.relation.references | Val, S., & Lambán, M. P. (2025). Enhancing Sustainability with LCA: A Comparative Analysis of Design and Manufacturing Processes. Processes, 13(1), 195. https://doi.org/10.3390/pr13010195 | |
dc.relation.references | Veliz, K., Chico-Santamarta, L., & Ramirez, A. D. (2022). The Environmental Profile of Ecuadorian Export Banana: A Life Cycle Assessment. Foods, 11(20), 3288. https://doi.org/10.3390/foods11203288 | |
dc.relation.references | Vink, E. T. H., Rábago, K. R., Glassner, D. A., & Gruber, P. R. (2003a). Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5 | |
dc.relation.references | Walker, T. R. (2024). Consuming Plastics. En M. J. Hird, Consuming the Environment (1.a ed., pp. 105-117). Routledge. https://doi.org/10.4324/9781003412526-9 | |
dc.relation.references | Wang, S. (2011). Tellurium, its resourcefulness and recovery. JOM, 63(8), 90-93. https://doi.org/10.1007/s11837-011-0146-7 | |
dc.relation.references | Weligama Thuppahige, V. T., & Karim, M. A. (2022). A comprehensive review on the properties and functionalities of biodegradable and semibiodegradable food packaging materials. Comprehensive Reviews in Food Science and Food Safety, 21(1), 689-718. https://doi.org/10.1111/1541-4337.12873 | |
dc.relation.references | Wu, J., Guan, Z., & Ling, Y. (2023). Arsenic Emission Control from Coal Combustion Flue Gas. En S. M. Imamul Huq (Ed.), Arsenic in the Environment—Sources, Impacts and Remedies. IntechOpen. https://doi.org/10.5772/intechopen.1002351 | |
dc.relation.references | Xia, Y., Gao, T., Liu, Y., Qi, M., Zhu, J.-M., Tong, H., Lv, Y., & Liu, C. (2025). Cd/Pb behavior during combustion in a coal-fired power plant and their spatiotemporal impacts on soils: New insights from Cd/Pb isotopes. Journal of Environmental Sciences, 150, 582-593. https://doi.org/10.1016/j.jes.2024.03.002 | |
dc.relation.references | Yadav, J., Singh, V. P., & Kumar, A. (2024). Life Cycle Assessment of sustainable building materials. En C. S. Meena, A. Kumar, V. P. Singh, & A. Ghosh, Sustainable Technologies for Energy Efficient Buildings (1.a ed., pp. 64-101). CRC Press. https://doi.org/10.1201/9781003496656-4 | |
dc.relation.references | Yaragatti, N., & Patnaik, A. (2021). A review on additive manufacturing of polymers composites. Materials Today: Proceedings, 44, 4150-4157. https://doi.org/10.1016/j.matpr.2020.10.490 | |
dc.relation.references | Zgodavová, K., Lengyelová, K., Bober, P., Eguren, J. A., & Moreno, A. (2021). 3D Printing Optimization for Environmental Sustainability: Experimenting with Materials of Protective Face Shield Frames. Materials, 14(21), 6595. https://doi.org/10.3390/ma14216595 | |
dc.relation.references | Zhao, C., Li, A., Zhang, G., Pan, Y., Meng, L., Yang, R., Li, Y., Zhang, Q., & Jiang, G. (2022). Parent and Halogenated Polycyclic Aromatic Hydrocarbons in the Serum of Coal-Fired Power Plant Workers: Levels, Sex Differences, Accumulation Trends, and Risks. Environmental Science & Technology, 56(17), 12431-12439. https://doi.org/10.1021/acs.est.2c03099 | |
dc.relation.references | Ziemińska-Stolarska, A., Sobulska, M., Pietrzak, M., & Zbiciński, I. (2024). Application of Life Cycle Assessment to Analysis of Fibre Composite Manufacturing Technologies in Shipyards Industry. Processes, 12(3), 461. https://doi.org/10.3390/pr12030461 | |
dc.relation.references | Živančević, K., Živanović, J., Baralić, K., Božić, D., Marić, Đ., Vukelić, D., Miljaković, E. A., Djordjevic, A. B., Ćurčić, M., Bulat, Z., Antonijević, B., & Đukić-Ćosić, D. (2024). Integrative investigation of hematotoxic effects induced by low doses of lead, cadmium, mercury and arsenic mixture: In vivo and in silico approach. Science of The Total Environment, 930, 172608. https://doi.org/10.1016/j.scitotenv.2024.172608 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Life Cycle Assessment (LCA) | eng |
dc.subject.keywords | Biocomposites | eng |
dc.subject.keywords | 3D Printing | eng |
dc.subject.keywords | Agricultural Waste | eng |
dc.subject.keywords | PLA | eng |
dc.subject.proposal | Análisis de Ciclo de Vida (ACV) | spa |
dc.subject.proposal | Biocompuestos | spa |
dc.subject.proposal | Impresión 3D | spa |
dc.subject.proposal | Residuos Agrícolas | spa |
dc.subject.proposal | PLA | spa |
dc.title | Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: