Publicación:
Evaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátano

dc.contributor.advisorSoto Barrera, Viviana Cecilia
dc.contributor.authorFernández Hoyos, Daniel Fernando
dc.contributor.juryCampo Daza, Gabriel Antonio
dc.contributor.juryTavera Quiróz, María José
dc.date.accessioned2025-07-14T14:26:28Z
dc.date.available2025-07-14T14:26:28Z
dc.date.issued2025-07-14
dc.description.abstractEsta investigación evaluó y comparó el desempeño ambiental de la fabricación de biocompuestos de matriz PLA reforzados con residuos agrícolas locales: fibra de pseudotallo de plátano (FP) y partículas de cáscara de nuez de marañón (PCNM), utilizando impresión 3D (FDM e impregnación in situ). El objetivo fue determinar la opción con menor impacto ambiental mediante la metodología de Análisis de Ciclo de Vida (ACV) según la norma ISO 14040/44, con un enfoque "cuna-a-producción" y una unidad funcional de 1 kg de biocompuesto. El proceso de inventario de ciclo de vida (ICV) incluyó la recopilación de datos primarios (entrevistas, procesos de laboratorio como secado, molienda, extrusión e impresión) y secundarios (literatura, bases de datos Ecoinvent 3.10), utilizando el software SimaPro y el método de evaluación Environmental Footprint 3.1. Los resultados indican que el biocompuesto PLA-FP presenta un desempeño ambiental más favorable que el PLA-PCNM, destacando que presenta una huella de carbono reducida de 5,13 kg CO2 eq/kg, atribuida principalmente a parámetros de impresión más eficientes energéticamente para el PLA-FP. Los puntos críticos identificados fueron el alto consumo de energía eléctrica en la etapa de impresión 3D (60-76.4% del impacto total) y la producción de PLA virgen (22.6-30.4%). Se demostró un beneficio ambiental adicional al usar FP cuando se evita la disposición convencional del residuo, mientras que el uso de PCNM no mostró una ventaja clara frente a su disposición actual en vertedero.spa
dc.description.abstractThis research evaluated and compared the environmental performance of manufacturing PLA-matrix biocomposites reinforced with local agricultural residues: banana pseudostem fiber (FP) and cashew nutshell particles (PCNM), using 3D printing (FDM and in-situ impregnation). The objective was to determine the option with the lowest environmental impact using the Life Cycle Assessment (LCA) methodology according to ISO 14040/44, with a "cradle-to-gate" approach and a functional unit of 1 kg of biocomposite. The life cycle inventory (LCI) process included the collection of primary data (interviews, laboratory processes such as drying, milling, extrusion, and printing) and secondary data (literature, Ecoinvent 3.10 database), using SimaPro software and the Environmental Footprint 3.1 assessment method. The results indicate that the PLA-FP biocomposite exhibits a more favorable environmental performance than PLA-PCNM, highlighting a carbon footprint 5.13 kg CO2 eq/kg lower, primarily attributed to more energy-efficient printing parameters for PLA-FP. The identified hotspots were the high electricity consumption during the 3D printing stage (accounting for 60-76.4% of the total impact) and virgin PLA production (22.6- 30.4%). An additional environmental benefit was demonstrated when using FP by avoiding conventional waste disposal, whereas the use of PCNM did not show a clear advantage over its current disposal in landfills.eng
dc.description.degreelevelPregrado
dc.description.degreenameIngeniero(a) Ambiental
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontents1 INTRODUCCIÓN 3spa
dc.description.tableofcontents2 OBJETIVOS 5spa
dc.description.tableofcontents2.1 Objetivo general 5spa
dc.description.tableofcontents2.2 Objetivos específicos 5spa
dc.description.tableofcontents3 REVISIÓN BIBLIOGRÁFICA 6spa
dc.description.tableofcontents3.1 Material compuesto 6spa
dc.description.tableofcontents3.2 Ácido poliláctico 7spa
dc.description.tableofcontents3.3 Cascaras de nuez de marañón 7spa
dc.description.tableofcontents3.4 Fibras de pseudotallo de plátano 8spa
dc.description.tableofcontents3.5 Fabricación aditiva 9spa
dc.description.tableofcontents3.6 Análisis de ciclo de vida (ACV) 9spa
dc.description.tableofcontents3.7 Metodologías de evaluación de impacto de ciclo de vida (EICV) 12spa
dc.description.tableofcontents3.8 ACV biocompuestos 13spa
dc.description.tableofcontents3.9 Sostenibilidad y economía circular en la producción de materiales 14spa
dc.description.tableofcontents4 ESTADO DEL ARTE 16spa
dc.description.tableofcontents5 MATERIALES Y MÉTODOS 20spa
dc.description.tableofcontents5.1 Descripción de la zona de estudio 21spa
dc.description.tableofcontents5.2 Metodología para fase de definición de objetivos y alcance 22spa
dc.description.tableofcontents5.2.1 Unidad funcional 22spa
dc.description.tableofcontents5.2.2 Límites del sistema 23spa
dc.description.tableofcontents5.2.3 Escenarios de comparación 27spa
dc.description.tableofcontents5.3 Metodología para fase Análisis de inventario de ciclo de vida 28spa
dc.description.tableofcontents5.3.1 Parámetro de modelado de datos 29spa
dc.description.tableofcontents5.3.2 Etapa de cultivo, cosecha y procesamiento de marañón 29spa
dc.description.tableofcontents5.3.3 Etapa de producción de partículas de cascara de nuez de marañón 32spa
dc.description.tableofcontents5.3.4 Etapa de producción de biocompuesto (PLA-PCNM) 33spa
dc.description.tableofcontents5.3.5 Etapa de cultivo y cosecha del plátano 36spa
dc.description.tableofcontents5.3.6 Etapa de extracción de las fibras de pseudotallo de plátano 36spa
dc.description.tableofcontents5.3.7 Etapa de producción del biocompuesto (PLA-FP) 37spa
dc.description.tableofcontents5.4 Metodología para la fase de Evaluación de impacto del ciclo de vida 39spa
dc.description.tableofcontents5.5 Metodología para la fase de Interpretación 40spa
dc.description.tableofcontents5.5.1 Análisis de calidad de los datos 41spa
dc.description.tableofcontents6 RESULTADOS Y DISCUSIONES 42spa
dc.description.tableofcontents6.1 Inventario del ciclo de vida 43spa
dc.description.tableofcontents6.2 Análisis de calidad de datos 46spa
dc.description.tableofcontents6.3 Resultados de la evaluación del ciclo de vida 49spa
dc.description.tableofcontents6.3.1 Análisis de contribución 49spa
dc.description.tableofcontents6.4 Análisis comparativo de la evaluación de impactos 53spa
dc.description.tableofcontents6.5 Puntos críticos ambientales 79spa
dc.description.tableofcontents6.6 Influencia de los refuerzos de residuos agrícolas en los biocompuestos 81spa
dc.description.tableofcontents7 CONCLUSIONES 83spa
dc.description.tableofcontents8 RECOMENDACIONES 85spa
dc.description.tableofcontents9 BIBLIOGRAFÍA 87spa
dc.description.tableofcontents10 ANEXOS 105spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9314
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programIngeniería Ambiental
dc.relation.referencesAbarikwu, S. O. (2013). Lead, Arsenic, Cadmium, Mercury: Occurrence, Toxicity and Diseases. En E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), Pollutant Diseases, Remediation and Recycling (Vol. 4, pp. 351-386). Springer International Publishing. https://doi.org/10.1007/978-3-319-02387-8_7
dc.relation.referencesAgrawal, P., Mittal, A., Prakash, R., Kumar, M., Singh, T. B., & Tripathi, S. K. (2010). Assessment of Contamination of Soil due to Heavy Metals around Coal Fired Thermal Power Plants at Singrauli Region of India. Bulletin of Environmental Contamination and Toxicology, 85(2), 219-223. https://doi.org/10.1007/s00128-010-0043-8
dc.relation.referencesAndersen, J. H., Fossing, H., Hansen, J. W., Manscher, O. H., Murray, C., & Petersen, D. L. J. (2014). Nitrogen Inputs from Agriculture: Towards Better Assessments of Eutrophication Status in Marine Waters. AMBIO, 43(7), 906-913. https://doi.org/10.1007/s13280-014-0514-y
dc.relation.referencesAndreozzi, M., Forcellese, A., Gentili, S., Mancia, T., & Verdini, T. (2024). Comparative Life Cycle Assessment of molding process and 3D printing of High-Performance Long-fiber Reinforced Composites. Procedia CIRP, 122, 909-914. https://doi.org/10.1016/j.procir.2024.01.124
dc.relation.referencesÁngel Hidalgo-Salazar, M., Pablo Correa-Aguirre, J., Manuel Montalvo-Navarrete, J., Fernando Lopez-Rodriguez, D., & Felipe Rojas-González, A. (2020). Recycled Polypropylene-Coffee Husk and Coir Coconut Biocomposites: Morphological, Mechanical, Thermal and Environmental Studies. En G. Akın Evingür, Ö. Pekcan, & D. S. Achilias (Eds.), Thermosoftening Plastics. IntechOpen. https://doi.org/10.5772/intechopen.81635
dc.relation.referencesAppusamy, A. M., Prakash, E., Madheswaran, S., Rajamanickam, A., Selvakumar, V. K., & Chandrasekar, P. (2021). Characterization and Fabrication of ABS and PLA-Based Polymer Matrix Composites Using 3D Printing. En G. Kumaresan, N. S. Shanmugam, & V. Dhinakaran (Eds.), Advances in Materials Research (Vol. 5, pp. 499-510). Springer Nature Singapore. https://doi.org/10.1007/978-981-15-8319-3_50
dc.relation.referencesAydin, M., & Kaynak, B. (2023, mayo 15). Prediction of H2S Concentration Around Geothermal Power Plants Using Multiple Regression Analysis. https://doi.org/10.5194/egusphere-egu23-14483
dc.relation.referencesBabaee, S., Loughlin, D. H., & Kaplan, P. O. (2020). Incorporating upstream emissions into electric sector nitrogen oxide reduction targets. Cleaner Engineering and Technology, 1, 100017. https://doi.org/10.1016/j.clet.2020.100017
dc.relation.referencesBach, V., Lehmann, A., Görmer, M., & Finkbeiner, M. (2018). Product Environmental Footprint (PEF) Pilot Phase—Comparability over Flexibility? Sustainability, 10(8), 2898. https://doi.org/10.3390/su10082898
dc.relation.referencesBadanayak, P., Jose, S., & Bose, G. (2023). Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification. Journal of Natural Fibers, 20(1), 2168821. https://doi.org/10.1080/15440478.2023.2168821
dc.relation.referencesBadhotiya, G. K., Avikal, S., Soni, G., & Sengar, N. (2022). Analyzing barriers for the adoption of circular economy in the manufacturing sector. International Journal of Productivity and Performance Management, 71(3), 912-931. https://doi.org/10.1108/IJPPM-01-2021-0021
dc.relation.referencesBadreddine, S., Abdelhafidh, K., Dellali, M., Mahmoudi, E., Sheehan, D., & Hamouda, B. (2017). The effects of anthracene on biochemical responses of Mediterranean mussels Mytilus galloprovincialis. Chemistry and Ecology, 33(4), 309-324. https://doi.org/10.1080/02757540.2017.1309393
dc.relation.referencesBajdur, W. M., Włodarczyk-Makuła, M., & Krukowska-Miler, A. (2024). Application of the Life Cycle Assessment (LCA) Method in Assessing the Environmental Impact of New Materials Derived from Waste Polymers in Terms of Sustainability. Sustainability, 16(22), 9759. https://doi.org/10.3390/su16229759
dc.relation.referencesBałdowska-Witos, P., Kruszelnicka, W., Kasner, R., Tomporowski, A., Flizikowski, J., Kłos, Z., Piotrowska, K., & Markowska, K. (2020). Application of LCA Method for Assessment of Environmental Impacts of a Polylactide (PLA) Bottle Shaping. Polymers, 12(2), 388. https://doi.org/10.3390/polym12020388
dc.relation.referencesBalla, V. K., Kate, K. H., Satyavolu, J., Singh, P., & Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 174, 106956. https://doi.org/10.1016/j.compositesb.2019.106956
dc.relation.referencesBarde, M., Auad, M., Jones, J., Yan, Y., Lu, N., Pillay, S., & Ning, H. (2022). Natural Fiber Composite with α-Resorcylic Acid Based Bio-Epoxy Matrix. Universal Journal of Materials Science, 10(2), 9-20. https://doi.org/10.13189/ujms.2022.100201
dc.relation.referencesBarnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205
dc.relation.referencesBehera, A. K., Pattnaik, S. S., Behera, D., Behera, S., Kumar, J., Manna, S., & Das, N. (2025). Enhancement of Green Composite Performance Through the Synergistic Influence of Cashew Nut Shell Liquid and Nanoclay on Natural Fiber Reinforcement. Journal of Applied Polymer Science, 142(12), e56640. https://doi.org/10.1002/app.56640
dc.relation.referencesBenavides, P. T., Lee, U., & Zarè-Mehrjerdi, O. (2020). Life cycle greenhouse gas emissions and energy use of polylactic acid, bio-derived polyethylene, and fossil-derived polyethylene. Journal of Cleaner Production, 277, 124010. https://doi.org/10.1016/j.jclepro.2020.124010
dc.relation.referencesBertassini, A. C., Ometto, A. R., Severengiz, S., & Gerolamo, M. C. (2021). Circular economy and sustainability: The role of organizational behaviour in the transition journey. Business Strategy and the Environment, 30(7), 3160-3193. https://doi.org/10.1002/bse.2796
dc.relation.referencesBoone, L., Van Linden, V., De Meester, S., Vandecasteele, B., Muylle, H., Roldán-Ruiz, I., Nemecek, T., & Dewulf, J. (2016). Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of The Total Environment, 553, 551-564. https://doi.org/10.1016/j.scitotenv.2016.02.089
dc.relation.referencesBorda, F., La Rosa, A. D., Filice, L., & Gagliardi, F. (2024). Environmental comparison of opposing manufacturing strategies at changing of energy sources, EoL approaches and shape peculiarity for an automotive component. Advances in Materials and Processing Technologies, 1-21. https://doi.org/10.1080/2374068X.2024.2432724
dc.relation.referencesBrito De Figueirêdo, M. C., Potting, J., Lopes Serrano, L. A., Bezerra, M. A., Da Silva Barros, V., Gondim, R. S., & Nemecek, T. (2016). Environmental assessment of tropical perennial crops: The case of the Brazilian cashew. Journal of Cleaner Production, 112, 131-140. https://doi.org/10.1016/j.jclepro.2015.05.134
dc.relation.referencesCardona, D., Tamayo, J. A., & Eslava-Garzón, J. S. (2024). Hacia una matriz energética sostenible en Colombia. Una revisión sistemática de la literatura. Información Tecnológica, 35(5), 1-16. https://doi.org/10.4067/S0718-07642024000500001
dc.relation.referencesCastañeda-Niño, J. P., Mina Hernandez, J. H., & Solanilla Duque, J. F. (2024). Potential of Plantain Pseudostems (Musa AAB Simmonds) for Developing Biobased Composite Materials. Polymers, 16(10), 1357. https://doi.org/10.3390/polym16101357
dc.relation.referencesChairi, M., El Bahaoui, J., Hanafi, I., Mata Cabrera, F., & Di Bella, G. (2023). Composite Materials: A Review of Polymer and Metal Matrix Composites, Their Mechanical Characterization, and Mechanical Properties. En L. Li, A. B. Pereira, & A. L. Pereira (Eds.), Next Generation Fiber-Reinforced Composites—New Insights. IntechOpen. https://doi.org/10.5772/intechopen.106624
dc.relation.referencesChung, K. W. Y., Blin, J., Lanvin, C., Martin, E., Valette, J., & Van De Steene, L. (2024). Pyrolysis of cashew nut shells-focus on extractives. Journal of Analytical and Applied Pyrolysis, 179, 106452. https://doi.org/10.1016/j.jaap.2024.106452
dc.relation.referencesCiroth, A., Muller, S., Weidema, B., & Lesage, P. (2016). Empirically based uncertainty factors for the pedigree matrix in ecoinvent. The International Journal of Life Cycle Assessment, 21(9), 1338-1348. https://doi.org/10.1007/s11367-013-0670-5
dc.relation.referencesCisneros-López, E. O., Pal, A. K., Rodriguez, A. U., Wu, F., Misra, M., Mielewski, D. F., Kiziltas, A., & Mohanty, A. K. (2020). Recycled poly(lactic acid)–based 3D printed sustainable biocomposites: A comparative study with injection molding. Materials Today Sustainability, 7-8, 100027. https://doi.org/10.1016/j.mtsust.2019.100027
dc.relation.referencesCoban, K., Ekici, S., & Karakoc, T. H. (2024). Life Cycle Assessment: A Brief Definition and Overview. En T. H. Karakoc, S. Ekici, & A. Dalkiran (Eds.), Life Cycle Assessment in Aviation (pp. 11-23). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-52772-2_2
dc.relation.referencesCruz, T., Maranon, A., Hernandez, C., Alvarez, O., Ayala-García, C., & Porras, A. (2024). Exploring the potential of cashew nutshells: A critical review of alternative applications. BioResources, 19(3). https://doi.org/10.15376/biores.19.3.Cruz
dc.relation.referencesDe Farias Braz, C. J., De Oliveira Dias, A. R., Figueiredo, S. N., Dos Santos Rosa, A. C. F., De Sousa Barros, I., Alves, A. T., De Lima Silva, S. M., De Carvalho, L. H., Barbosa, R., & Alves, T. S. (2024). Biodegradable composites filled with agro‐industrial waste and fertilizers for filament production and application in active manufacturing. Polymer Composites, pc.29375. https://doi.org/10.1002/pc.29375
dc.relation.referencesDe Simone, F., Artaxo, P., Bencardino, M., Cinnirella, S., Carbone, F., D’Amore, F., Dommergue, A., Feng, X. B., Gencarelli, C. N., Hedgecock, I. M., Landis, M. S., Sprovieri, F., Suzuki, N., Wängberg, I., & Pirrone, N. (2017). Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: A modelling assessment. Atmospheric Chemistry and Physics, 17(3), 1881-1899. https://doi.org/10.5194/acp-17-1881-2017
dc.relation.referencesDeng Shuang Deng Shuang, Zhang Fan Zhang Fan, Liu Yu Liu Yu, Shi YingJie Shi YingJie, Wang HongMei Wang HongMei, Zhang Chen Zhang Chen, Wang XiangFeng Wang XiangFeng, & Cao Qing Cao Qing. (2013). Lead emission and speciation of coal-fired power plants in China. China Environmental Science, 33(7), 1199-1206.
dc.relation.referencesDíaz Ponce, M. A., Cervantes Molina, X. P., & Chesme Rios, C. L. (2023). Sostenibilidad en el Cultivo de Cacao (Theobroma Cacao L.) Por las Oportunidades de Economía Circular para la Provincia los Ríos. Ciencia Latina Revista Científica Multidisciplinar, 7(4), 5182-5197. https://doi.org/10.37811/cl_rcm.v7i4.7342
dc.relation.referencesDing, M., Shi, S., Qie, S., Li, J., & Xi, X. (2023). Association between heavy metals exposure (cadmium, lead, arsenic, mercury) and child autistic disorder: A systematic review and meta-analysis. Frontiers in Pediatrics, 11, 1169733. https://doi.org/10.3389/fped.2023.1169733
dc.relation.referencesDong, Y. (2024). Life Cycle Assessment in the Building and Construction Sector. En C. S. Goh & H.-Y. Chong, Rethinking Pathways to a Sustainable Built Environment (1.a ed., pp. 191-212). Routledge. https://doi.org/10.1201/9781003317890-12
dc.relation.referencesDriouach, L., Zarbane, K., & Beidouri, Z. (2023). The impacts of additive manufacturing technology on lean manufacturing. Journal of Achievements in Materials and Manufacturing Engineering, 120(1), 22-32. https://doi.org/10.5604/01.3001.0053.9641
dc.relation.referencesDubey, K. A., & Bhardwaj, Y. K. (2021). High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations. En A. K. Tyagi & R. S. Ningthoujam (Eds.), Handbook on Synthesis Strategies for Advanced Materials (pp. 1-25). Springer Singapore. https://doi.org/10.1007/978-981-16-1892-5_1
dc.relation.referencesEgon, A., Bell, C., & Shad, R. (2024). Sustainability in Additive Manufacturing: Analyzing the Environmental Impact of Additive Manufacturing Processes. Chemistry and Materials Science. https://doi.org/10.20944/preprints202407.2573.v1
dc.relation.referencesElsonbaty, A. A., MRashad, A., Abass, Omnia. Y., Y.Abdelghany, T., & MAlfauiomy, A. (2024). A Survey of Fused Deposition Modeling (FDM) Technology in 3D Printing. Journal of Engineering Research and Reports, 26(11), 304-312. https://doi.org/10.9734/jerr/2024/v26i111332
dc.relation.referencesFarah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012
dc.relation.referencesFarhan, M., Mohammad Taha, M., Yusuf, Y., Azwan Sundi, S., & Zakaria, N. H. (2024). Environmental Assessment on Fabrication of Bio-composite Filament Fused Deposition Modeling Through Life Cycle Analysis. Pertanika Journal of Science and Technology, 32(S2). https://doi.org/10.47836/pjst.32.S2.03
dc.relation.referencesFelfil Evo | Extrusora de filamento en Kit o ensamblado para impresora 3D. (s. f.). Felfil. Recuperado 14 de febrero de 2025, de https://felfil.com/es/felfil-evo/
dc.relation.referencesFernández-López, L., González-García, P., Fernández-Ríos, A., Aldaco, R., Laso, J., Martínez-Ibáñez, E., Gutiérrez-Fernández, D., Pérez-Martínez, M. M., Marchisio, V., Figueroa, M., De Sousa, D. B., Méndez, D., & Margallo, M. (2024). Life cycle assessment of single cell protein production–A review of current technologies and emerging challenges. Cleaner and Circular Bioeconomy, 8, 100079. https://doi.org/10.1016/j.clcb.2024.100079
dc.relation.referencesFico, D., Rizzo, D., Malinconico, F., & Esposito Corcione, C. (2024). A SUSTAINABLE APPROACH TO RECYCLING WASTE: EXAMPLES OF THE APPLICATION OF 3D PRINTING TO EXTEND THE LIFE CYCLE OF MATERIALS. Detritus, 28, 60-69. https://doi.org/10.31025/2611-4135/2024.19408
dc.relation.referencesFogue Matchum, S., Sikame Tagne, N. R., Huisken Mejouyo, P. W., Tido Tiwa, S., Wenga, B., Njeugna, E., Drean, J.-Y., Bistac-Brogly, S., & Harzallah, O. (2024). Investigation of chemical, physical and morpho-mechanical properties of banana-plantain stalk fibers for ropes and woven fabrics used in composite and limited-lifespan geotextile. Heliyon, 10(8), e29656. https://doi.org/10.1016/j.heliyon.2024.e29656
dc.relation.referencesFoley, M. E., Sigler, V., & Gruden, C. L. (2008). A multiphasic characterization of the impact of the herbicide acetochlor on freshwater bacterial communities. The ISME Journal, 2(1), 56-66. https://doi.org/10.1038/ismej.2007.99
dc.relation.referencesFonseca, A., Ramalho, E., Gouveia, A., Figueiredo, F., & Nunes, J. (2023). Life Cycle Assessment of PLA Products: A Systematic Literature Review. Sustainability, 15(16), 12470. https://doi.org/10.3390/su151612470
dc.relation.referencesFriedli, H. R., Radke, L. F., & Lu, J. Y. (2001). Mercury in smoke from biomass fires. Geophysical Research Letters, 28(17), 3223-3226. https://doi.org/10.1029/2000GL012704
dc.relation.referencesFüchsl, S., Rheude, F., & Röder, H. (2022). Life cycle assessment (LCA) of thermal insulation materials: A critical review. Cleaner Materials, 5, 100119. https://doi.org/10.1016/j.clema.2022.100119
dc.relation.referencesGarcía, G. F., Álvarez, H. B., Echeverría, R. S., De Alba, S. R., Rueda, V. M., Dosantos, E. C., & Cruz, G. V. (2017). Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico. Journal of the Air & Waste Management Association, 67(9), 973-985. https://doi.org/10.1080/10962247.2017.1314871
dc.relation.referencesGarnier, J., Riou, P., Le Gendre, R., Ramarson, A., Billen, G., Cugier, P., Schapira, M., Théry, S., Thieu, V., & Ménesguen, A. (2019). Managing the Agri-Food System of Watersheds to Combat Coastal Eutrophication: A Land-to-Sea Modelling Approach to the French Coastal English Channel. Geosciences, 9(10), 441. https://doi.org/10.3390/geosciences9100441
dc.relation.referencesGeissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757-768. https://doi.org/10.1016/j.jclepro.2016.12.048
dc.relation.referencesGeyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
dc.relation.referencesGhabezi, P., Sam-Daliri, O., Flanagan, T., Walls, M., & Harrison, N. M. (2024). Circular economy innovation: A deep investigation on 3D printing of industrial waste polypropylene and carbon fibre composites. Resources, Conservation and Recycling, 206, 107667. https://doi.org/10.1016/j.resconrec.2024.107667
dc.relation.referencesGloria Opoku Darkoh. (2024). EVALUATING THE CIRCULAR ECONOMY AS A TOOL FOR ACHIEVING SUSTAINABILITY: BALANCING ENVIRONMENTAL, ECONOMIC, AND SOCIAL IMPACTS. EPRA International Journal of Socio-Economic and Environmental Outlook, 14-17. https://doi.org/10.36713/epra19532
dc.relation.referencesGodoy León, M. F., & Dewulf, J. (2020). Data quality assessment framework for critical raw materials. The case of cobalt. Resources, Conservation and Recycling, 157, 104564. https://doi.org/10.1016/j.resconrec.2019.104564
dc.relation.referencesGolsteijn, L., & Vieira, M. (2020). Applicability of the European Environmental Footprint (EF) methodology in Southern Mediterranean countries—Learnings and recommendations for enabling EF-compliant studies in regions outside of Europe. The International Journal of Life Cycle Assessment, 25(12), 2407-2416. https://doi.org/10.1007/s11367-019-01681-z
dc.relation.referencesGopinath, A., Kumar, M. S., & Elayaperumal, A. (2014). Experimental Investigations on Mechanical Properties Of Jute Fiber Reinforced Composites with Polyester and Epoxy Resin Matrices. Procedia Engineering, 97, 2052-2063. https://doi.org/10.1016/j.proeng.2014.12.448
dc.relation.referencesGuo, Y., Yang, Q., Yan, W., Li, B., Qian, K., Li, T., Xiao, W., & He, L. (2014). Controlled release of acetochlor from poly (butyl methacrylate-diacetone acrylamide) based formulation prepared by nanoemulsion polymerisation method and evaluation of the efficacy. International Journal of Environmental Analytical Chemistry, 94(10), 1001-1012. https://doi.org/10.1080/03067319.2014.930844
dc.relation.referencesHaylock, R., & Rosentrater, K. A. (2018). Cradle-to-Grave Life Cycle Assessment and Techno-Economic Analysis of Polylactic Acid Composites with Traditional and Bio-Based Fillers. Journal of Polymers and the Environment, 26(4), 1484-1503. https://doi.org/10.1007/s10924-017-1041-2
dc.relation.referencesHu, C., Zhang, Y., Pang, X., & Chen, X. (2024). Poly(Lactic Acid): Recent Stereochemical Advances and New Materials Engineering. Advanced Materials, 2412185. https://doi.org/10.1002/adma.202412185
dc.relation.referencesHuang, M. H., Chen, W. H., Trinh, M. M., & Chang, M. B. (2023). Mass flows and characteristic of mercury emitted from coal-fired power plant equipped with seawater flue gas desulphurization. Sustainable Environment Research, 33(1), 8. https://doi.org/10.1186/s42834-023-00168-9
dc.relation.referencesHussain, M., & Shafqat, A. R. (2025). Sustainability and Materials. En K. Shaker & Y. Nawab (Eds.), Engineering Materials (pp. 257-274). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-72263-9_11
dc.relation.referencesImoisili, P. E., & Jen, T. C. (2024). Effect of Mercerization on the Crystallographic, Macromolecular, and Thermal Properties of Plantain Fibers for Fiber Reinforced Composite. Materials Science Forum, 1115, 63-70. https://doi.org/10.4028/p-ki55Mr
dc.relation.references(ISO), I. O. for S. (2006). Environmental management. Life cycle assessment. Requirements and guidelines (b). International Organization for Standardization.
dc.relation.referencesJomova, K., Alomar, S. Y., Nepovimova, E., Kuca, K., & Valko, M. (2025). Heavy metals: Toxicity and human health effects. Archives of Toxicology, 99(1), 153-209. https://doi.org/10.1007/s00204-024-03903-2
dc.relation.referencesJordaan, S. M., Xu, Q., & Hobbs, B. F. (2020). Grid-Scale Life Cycle Greenhouse Gas Implications of Renewable, Storage, and Carbon Pricing Options. Environmental Science & Technology, 54(17), 10435-10445. https://doi.org/10.1021/acs.est.0c01861
dc.relation.referencesKai Che, Chong-Ming Chen, Qing-Yu Zheng, Hui Fan, Ming-Lei Wei, Peng Luo, & Jin-Xing Yu. (2022). Heavy Metal Emissions from Coal-fired Power Plants and Heavy Metal Pollution Characteristics and Health Risks in Surrounding Soils. Huan Jing Ke Xue= Huanjing Kexue, 43(10), 4578-4589.
dc.relation.referencesKalkanis, K., Bourtsalas, A., & Psomopoulos, C. S. (2024). Life Cycle Assessment applied to waste-to-energy technologies. En Waste Valorization for Bioenergy and Bioproducts (pp. 527-543). Elsevier. https://doi.org/10.1016/B978-0-443-19171-8.00014-6
dc.relation.referencesKaptan, A., & Kartal, F. (2024). Advancements in polylactic acid research: From material properties to sustainable applications. European Mechanical Science, 8(2), 104-114. https://doi.org/10.26701/ems.1440630
dc.relation.referencesKavlak, G., & Graedel, T. E. (2013). Global anthropogenic tellurium cycles for 1940–2010. Resources, Conservation and Recycling, 76, 21-26. https://doi.org/10.1016/j.resconrec.2013.04.007
dc.relation.referencesKhalid, M., & Peng, Q. (2021). Sustainability and Environmental Impact of Additive Manufacturing: A Literature Review. Computer-Aided Design and Applications, 18(6), 1210-1232. https://doi.org/10.14733/cadaps.2021.1210-1232
dc.relation.referencesKhatib, I., Horyn, O., Bodnar, O., Lushchak, O., Rychter, P., & Falfushynska, H. (2023). Molecular and Biochemical Evidence of the Toxic Effects of Terbuthylazine and Malathion in Zebrafish. Animals, 13(6), 1029. https://doi.org/10.3390/ani13061029
dc.relation.referencesKirschnick, U., Ravindran, B., Sieberer, M., Fauster, E., & Feuchter, M. (2025). The Fossil, the Green and the in-Between: Life Cycle Assessment of Manufacturing Composites with Varying Bio-Based Content. Chemistry and Materials Science. https://doi.org/10.20944/preprints202501.1145.v1
dc.relation.referencesKiš, F., Vasin, J., Milovac, Ž., Zeremski, T., Milić, S., & Savić, J. (2024). Environmental impact assessment of rapeseed production using the LCA method: Part one: Life cycle inventory analysis. Selekcija i Semenarstvo, 30(1), 13-33. https://doi.org/10.5937/SelSem2401013K
dc.relation.referencesKomal, U. K., Lila, M. K., & Singh, I. (2020). PLA/banana fiber based sustainable biocomposites: A manufacturing perspective. Composites Part B: Engineering, 180, 107535. https://doi.org/10.1016/j.compositesb.2019.107535
dc.relation.referencesKottuparambil, S., & Park, J. (2019). Anthracene phytotoxicity in the freshwater flagellate alga Euglena agilis Carter. Scientific Reports, 9(1), 15323. https://doi.org/10.1038/s41598-019-51451-y
dc.relation.referencesKoziol, M., Wieczorek, J., Bogdan-Włodek, A., & Myalski, J. (2013). Evaluation of jute fiber preforms absorbability using optical profilographometer. Journal of Composite Materials, 47(19), 2309-2319. https://doi.org/10.1177/0021998312457197
dc.relation.referencesKreiger, M., & Pearce, J. M. (2013). Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products. ACS Sustainable Chemistry & Engineering, 1(12), 1511-1519. https://doi.org/10.1021/sc400093k
dc.relation.referencesKumar, R., Singh, R., Kumar, V., & Ranjan, N. (2024). On secondary recycling of high-density polyethylene with reinforcement of stubble powder by a material extrusion process for construction applications. Journal of Thermoplastic Composite Materials, 08927057241309822. https://doi.org/10.1177/08927057241309822
dc.relation.referencesLaca, A., Laca, A., Herrero, M., & Díaz, M. (2019). Life Cycle Assessment in Biotechnology. En Comprehensive Biotechnology (pp. 994-1006). Elsevier. https://doi.org/10.1016/B978-0-444-64046-8.00109-9
dc.relation.referencesLaurenz, J., Lietz, L., Brendelberger, H., Lehmann, K., & Georg, A. (2020). Noble Crayfish Are More Sensitive to Terbuthylazine than Parthenogenetic Marbled Crayfish. Water, Air, & Soil Pollution, 231(11), 548. https://doi.org/10.1007/s11270-020-04921-3
dc.relation.referencesLestari, A. D. A. & Farida Pulansari. (2024). Environmental Impact Analysis on Furniture Industry by Implementing Life Cycle Assessment (LCA) Method. Advance Sustainable Science Engineering and Technology, 7(1), 0250106. https://doi.org/10.26877/asset.v7i1.747
dc.relation.referencesLi, X., Lin, Y., Liu, M., Meng, L., & Li, C. (2023). A review of research and application of polylactic acid composites. Journal of Applied Polymer Science, 140(7), e53477. https://doi.org/10.1002/app.53477
dc.relation.referencesLim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. https://doi.org/10.1016/j.progpolymsci.2008.05.004
dc.relation.referencesLiu, Q., Gao, J., Li, G., Zheng, Y., Li, R., & Yue, T. (2023). Bibliometric Analysis on Mercury Emissions from Coal-fired Power Plants: A Systematic Review and Future Prospect. In Review. https://doi.org/10.21203/rs.3.rs-2972030/v1
dc.relation.referencesLopes Silva, D. A., Nunes, A. O., Piekarski, C. M., Da Silva Moris, V. A., De Souza, L. S. M., & Rodrigues, T. O. (2019). Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustainable Production and Consumption, 20, 304-315. https://doi.org/10.1016/j.spc.2019.07.005
dc.relation.referencesLozano Miralles, J. A. (2022). Análisis de ciclo de vida (ACV) comparativo entre probetas obtenidas mediante fabricación tradicional por inyección (FI) y fabricación aditiva (FA). Técnica Industrial, 332, 50-57. https://doi.org/10.23800/10523
dc.relation.referencesLu, A., Ivantsova, E., & Martyniuk, C. J. (2023). A comparative review and computational assessment of acetochlor toxicity in fish: A novel endocrine disruptor? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 271, 109685. https://doi.org/10.1016/j.cbpc.2023.109685
dc.relation.referencesŁuszkiewicz, D., Jędrusik, M., & Świerczok, A. (2021). Technology of mercury removal from exhaust from coal fired boilers. E3S Web of Conferences, 323, 00024. https://doi.org/10.1051/e3sconf/202132300024
dc.relation.referencesMahalle, L., Alemdar, A., Mihai, M., & Legros, N. (2014). A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites. The International Journal of Life Cycle Assessment, 19(6), 1305-1315. https://doi.org/10.1007/s11367-014-0731-4
dc.relation.referencesMaiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., & Karim, N. (2022). Sustainable Fiber‐Reinforced Composites: A Review. Advanced Sustainable Systems, 6(11), 2200258. https://doi.org/10.1002/adsu.202200258
dc.relation.referencesMares, L. G., Villarruel, S. C., & Garcidueñas, M. G. R. (2018). Análisis de ciclo de vida: Factor clave para la innovación tecnológica de productos ambientalmente integrados. Repositorio de la Red Internacional de Investigadores en Competitividad, 12, 515-533.
dc.relation.referencesMecheter, A., & Tarlochan, F. (2023). Fused Filament Fabrication Three-Dimensional Printing: Assessing the Influence of Geometric Complexity and Process Parameters on Energy and the Environment. Sustainability, 15(16), 12319. https://doi.org/10.3390/su151612319
dc.relation.referencesMeskers, C., Bartie, N. J., & Reuter, M. A. (2024). Life cycle assessment (LCA). En Handbook of Recycling (pp. 701-721). Elsevier. https://doi.org/10.1016/B978-0-323-85514-3.00010-5
dc.relation.referencesMiller, B. G. (2017a). Formation and Control of Nitrogen Oxides. En Clean Coal Engineering Technology (pp. 507-538). Elsevier. https://doi.org/10.1016/B978-0-12-811365-3.00010-7
dc.relation.referencesMiller, B. G. (2017b). Formation and Control of Sulfur Oxides. En Clean Coal Engineering Technology (pp. 467-506). Elsevier. https://doi.org/10.1016/B978-0-12-811365-3.00009-0
dc.relation.referencesMohanty, A. K., Misra, M., & Drzal, L. T. (Eds.). (2005). Natural fibers, biopolymers, and biocomposites. Taylor & Francis.
dc.relation.referencesMontoya, J., & Negrete, J. (2023). CARACTERIZACIÓN DE LA FIBRA DEL PSEUDOTALLO DEL PLÁTANO COMO POTENCIAL REFUERZO PARA LA ELABORACIÓN DE MATERIALES. Universidad de Córdoba.
dc.relation.referencesMumthas, A. C. S. I., Wickramasinghe, G. L. D., & Gunasekera, U. S. (2019). Effect of physical, chemical and biological extraction methods on the physical behaviour of banana pseudo-stem fibres: Based on fibres extracted from five common Sri Lankan cultivars. Journal of Engineered Fibers and Fabrics, 14, 1558925019865697. https://doi.org/10.1177/1558925019865697
dc.relation.referencesNeacșa, A., Diniță, A., & Iacob, Ștefan V. (2025). Can the Dimensional Optimisation of 3D FDM-Manufactured Parts Be a Solution for a Correct Design? Materials, 18(2), 408. https://doi.org/10.3390/ma18020408
dc.relation.referencesNemecek, T., & Schnetzer, J. (2011). Methods of assessment of direct field emissions for LCIs of agricultural production systems.
dc.relation.referencesNeumann, D., Karl, M., Radtke, H., Matthias, V., Friedland, R., & Neumann, T. (2020). Quantifying the contribution of shipping NO x emissions to the marine nitrogen inventory – a case study for the western Baltic Sea. Ocean Science, 16(1), 115-134. https://doi.org/10.5194/os-16-115-2020
dc.relation.referencesNgatia, L., M. Grace Iii, J., Moriasi, D., & Taylor, R. (2019). Nitrogen and Phosphorus Eutrophication in Marine Ecosystems. En H. Bachari Fouzia (Ed.), Monitoring of Marine Pollution. IntechOpen. https://doi.org/10.5772/intechopen.81869
dc.relation.referencesO’Donoughue, P. R., Heath, G. A., Dolan, S. L., & Vorum, M. (2014). Life Cycle Greenhouse Gas Emissions of Electricity Generated from Conventionally Produced Natural Gas: Systematic Review and Harmonization. Journal of Industrial Ecology, 18(1), 125-144. https://doi.org/10.1111/jiec.12084
dc.relation.referencesOrlandi, R., Pucciarelli, M., Ragni, G., Serra, A., & Fantozzi, F. (2024). A Carbon Footprint Comparison Through LCA of Forging vs. Wire Arc Additive Manufacturing (WAAM) Processes for the Internal Casing of a Gas Turbine. Volume 2: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels, V002T03A007. https://doi.org/10.1115/GT2024-123183
dc.relation.referencesPan, X. (2011). Sulfur Oxides: Sources, Exposures and Health Effects. En Encyclopedia of Environmental Health (pp. 290-296). Elsevier. https://doi.org/10.1016/B978-0-444-52272-6.00069-6
dc.relation.referencesParlak, M., Taş, İ., Görgişen, C., & Gökalp, Z. (2024). Spatial distribution and health risk assessment for heavy metals of the soils around coal-fired power plants of northwest Turkey. International Journal of Environmental Analytical Chemistry, 104(20), 9708-9722. https://doi.org/10.1080/03067319.2023.2243231
dc.relation.referencesPatel, B. Y., & Patel, H. K. (2022). Retting of banana pseudostem fibre using Bacillus strains to get excellent mechanical properties as biomaterial in textile & fiber industry. Heliyon, 8(9), e10652. https://doi.org/10.1016/j.heliyon.2022.e10652
dc.relation.referencesPaternina reyes, M. J. (2023). Caracterización química, física y mecánica de materiales compuestos con matriz de ácido poliláctico y refuerzo particulado de cáscaras de marañón elaborados a través de la técnica de moldeo por deposición fundida [Universidad de Córdoba]. https://repositorio.unicordoba.edu.co/server/api/core/bitstreams/2976b566-74a2-48d4-80c7-24736c2e8e6e/content
dc.relation.referencesPaternina Reyes, M. J., Unfried Silgado, J., Santa Marín, J. F., Colorado Lopera, H. A., & Espitia Sanjuán, L. A. (2023). Cashew Nutshells: A Promising Filler for 3D Printing Filaments. Polymers, 15(22), 4347. https://doi.org/10.3390/polym15224347
dc.relation.referencesPei, B. (2013). Field measurement for lead emission in the plumes of coal-fired power plants. Acta Sci. Circumstantiae, 33, 1697-1702.
dc.relation.referencesPelletier, N., Allacker, K., Pant, R., & Manfredi, S. (2014). The European Commission Organisation Environmental Footprint method: Comparison with other methods, and rationales for key requirements. The International Journal of Life Cycle Assessment, 19(2), 387-404. https://doi.org/10.1007/s11367-013-0609-x
dc.relation.referencesPetousis, M., Vidakis, N., Mountakis, N., Karapidakis, E., & Moutsopoulou, A. (2023). Functionality Versus Sustainability for PLA in MEX 3D Printing: The Impact of Generic Process Control Factors on Flexural Response and Energy Efficiency. Polymers, 15(5), 1232. https://doi.org/10.3390/polym15051232
dc.relation.referencesPhiri, R., Mavinkere Rangappa, S., Siengchin, S., Oladijo, O. P., & Dhakal, H. N. (2023). Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Advanced Industrial and Engineering Polymer Research, 6(4), 436-450. https://doi.org/10.1016/j.aiepr.2023.04.004
dc.relation.referencesPlhalova, L., Stepanova, S., Praskova, E., Hostovsky, M., Skoric, M., & Bedanova, I. (2012). The effects of subchronic exposure to terbuthylazine on zebrafish. Neuroendocrinol Lett, 33(3), 113-119.
dc.relation.referencesPopescu, C., Dissanayake, H., Mansi, E., & Stancu, A. (2024). Eco Breakthroughs: Sustainable Materials Transforming the Future of Our Planet. Sustainability, 16(23), 10790. https://doi.org/10.3390/su162310790
dc.relation.referencesRahman, M. A., Haque, S., Rangarajalu, N. S., & Rajendran, D. R. (2024). Sustainability and Efficiency: The Green Potential of Additive Manufacturing. En S. Kunar, T. Jagadeesha, S. Rama Sree, K. V. S. R. Murthy, & M. Sreenivasa Reddy (Eds.), Advances in Additive Manufacturing (1.a ed., pp. 317-342). Wiley. https://doi.org/10.1002/9781394238316.ch18
dc.relation.referencesRaja S., Rusho, M. A., Thimothy, P., Bahar, M. A., Mustafa Egla Kadhim, Shwan, S. A., Jawad, Z. N., Mustafa, M. A., & Kumar, A. P. (2024). Minimizing environmental footprint in FDM additive manufacturing: Analyzing process efficiency through advanced optimization techniques. Applied Chemical Engineering, 7(4). https://doi.org/10.59429/ace.v7i4.5533
dc.relation.referencesRamanujan, D., Bernstein, W. Z., Chandrasegaran, S. K., & Ramani, K. (2017). Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities. Journal of Mechanical Design, 139(11), 111415. https://doi.org/10.1115/1.4037479
dc.relation.referencesRaza, U., Ahmed, A., Waheed, S., Abid, M., Tahir, M., Zahid, A., Ahmed, A., Bilal, M., Hussain, T., & Mustafa, G. (2025). Recent Advancements in Fused Deposition Modeling. Polymers for Advanced Technologies, 36(1), e70028. https://doi.org/10.1002/pat.70028
dc.relation.referencesRezvani Ghomi, E. R., Khosravi, F., Saedi Ardahaei, A. S., Dai, Y., Neisiany, R. E., Foroughi, F., Wu, M., Das, O., & Ramakrishna, S. (2021). The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers, 13(11), 1854. https://doi.org/10.3390/polym13111854
dc.relation.referencesRiesch, R., Tobler, M., & Plath, M. (2015). Hydrogen Sulfide-Toxic Habitats. En R. Riesch, M. Tobler, & M. Plath (Eds.), Extremophile Fishes (pp. 137-159). Springer International Publishing. https://doi.org/10.1007/978-3-319-13362-1_7
dc.relation.referencesRm, H. (2024). Design and Fabrication of Banana Fiber Reinforced Bio Composite. International Journal for Research in Applied Science and Engineering Technology, 12(5), 1902-1906. https://doi.org/10.22214/ijraset.2024.61961
dc.relation.referencesRodríguez, L. J., Fabbri, S., Orrego, C. E., & Owsianiak, M. (2020). Comparative life cycle assessment of coffee jar lids made from biocomposites containing poly(lactic acid) and banana fiber. Journal of Environmental Management, 266, 110493. https://doi.org/10.1016/j.jenvman.2020.110493
dc.relation.referencesRodríguez, L. J., Ospina, S., Ribeiro, I., Peças, P., & Orrego, C. E. (2021). Banana fibre-biocomposite applied to bottle lid case—Life-cycle engineering model for material selection. International Journal of Sustainable Engineering, 14(5), 1181-1192. https://doi.org/10.1080/19397038.2021.1913531
dc.relation.referencesRojek, I., Mikołajewski, D., Macko, M., Szczepański, Z., & Dostatni, E. (2021). Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development. Materials, 14(11), 2737. https://doi.org/10.3390/ma14112737
dc.relation.referencesRomani, A., Rognoli, V., & Levi, M. (2021). Design, Materials, and Extrusion-Based Additive Manufacturing in Circular Economy Contexts: From Waste to New Products. Sustainability, 13(13), 7269. https://doi.org/10.3390/su13137269
dc.relation.referencesRomero Rivero, O. (2023). Efecto de la variación del contenido y la orientación de fibra en las propiedades mecánicas de un compuesto termoplástico reforzado con fibra de plátano obtenido mediante fabricación por filamento fundido con impregnación in-situ. Universidad de Córdoba.
dc.relation.referencesRybaczewska-Błażejowska, M., & Jezierski, D. (2024). Comparison of ReCiPe 2016, ILCD 2011, CML-IA baseline and IMPACT 2002+ LCIA methods: A case study based on the electricity consumption mix in Europe. The International Journal of Life Cycle Assessment, 29(10), 1799-1817. https://doi.org/10.1007/s11367-024-02326-6
dc.relation.referencesSala, S., Biganzoli, F., Mengual, E. S., & Saouter, E. (2022). Toxicity impacts in the environmental footprint method: Calculation principles. The International Journal of Life Cycle Assessment, 27(4), 587-602. https://doi.org/10.1007/s11367-022-02033-0
dc.relation.referencesSam-Daliri, O., Flanagan, T., Modi, V., Finnegan, W., Harrison, N., & Ghabezi, P. (2025). Composite upcycling: An experimental study on mechanical behaviour of injection moulded parts prepared from recycled material extrusion printed parts, previously prepared using glass fibre polypropylene composite industry waste. Journal of Cleaner Production, 499, 145280. https://doi.org/10.1016/j.jclepro.2025.145280
dc.relation.referencesSamuel, H. S., Ekpan, F.-D. M., & Ori, M. O. (2024). Biodegradable, Recyclable, and Renewable Polymers as Alternatives to Traditional Petroleum-based Plastics. Asian Journal of Environmental Research, 1(3), 152-165. https://doi.org/10.69930/ajer.v1i3.86
dc.relation.referencesShahroodi, Z., Momeni, V., Moshkriz, A., Rajabifar, N., & Darvishi, R. (2025). Mechanical and Morphological Perspectives on PLA‐Based Thermoplastic Vulcanizates (TPVs): A Brief Review. Macromolecular Materials and Engineering, 310(2), 2400209. https://doi.org/10.1002/mame.202400209
dc.relation.referencesSholokhova, A., Varžinskas, V., & Rutkaitė, R. (2024). Valorization of Agro-waste in Bio-based and Biodegradable Polymer Composites: A Comprehensive Review with Emphasis on Europe Perspective. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-024-02856-y
dc.relation.referencesSojo, A. (s. f.). Análisis de Ciclo de Vida: Análisis de inventario.
dc.relation.referencesSola, A., Rosa, R., & Ferrari, A. M. (2024). Environmental Impact of Fused Filament Fabrication: What Is Known from Life Cycle Assessment? Polymers, 16(14), 1986. https://doi.org/10.3390/polym16141986
dc.relation.referencesStara, A., Zuskova, E., Kouba, A., & Velisek, J. (2016). Effects of terbuthylazine-desethyl, a terbuthylazine degradation product, on red swamp crayfish (Procambarus clarkii). Science of The Total Environment, 566-567, 733-740. https://doi.org/10.1016/j.scitotenv.2016.05.113
dc.relation.referencesSubagyo, A., & Chafidz, A. (2020). Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications. En A. I. O. Jideani & T. A. Anyasi (Eds.), Banana Nutrition—Function and Processing Kinetics. IntechOpen. https://doi.org/10.5772/intechopen.82204
dc.relation.referencesSubramani, R., Ali Rusho, M., Sekhar, K. Ch., Mohammed, S. A., Abdulah, S. A., Hashim, R. D., Jawad, Z. N., Mustafa, M. A., & Kumar, A. P. (2024). Utilizing bio-energy and waste reduction techniques in FDM: Toward sustainable production practices. Applied Chemical Engineering, 7(4). https://doi.org/10.59429/ace.v7i4.5540
dc.relation.referencesSudprasert, P., Ogino, K., & Kanehashi, S. (2022). Cashew Nut Shell Liquid (CNSL)-Derived Epoxy Composite Reinforced by Cellulose Nanofiber. Journal of Fiber Science and Technology, 78(10), 161-168. https://doi.org/10.2115/fiberst.2022-0020
dc.relation.referencesSun, K., Song, Y., Zong, W., Tang, J., & Liu, R. (2020). Anthracene-induced DNA damage and oxidative stress: A combined study at molecular and cellular levels. Environmental Science and Pollution Research, 27(33), 41458-41474. https://doi.org/10.1007/s11356-020-10049-y
dc.relation.referencesSundarakannan, R., Arumugaprabu, V., Manikandan, V., & Vigneshwaran, S. (2020). Mechanical property analysis of biochar derived from cashew nut shell waste reinforced polymer matrix. Materials Research Express, 6(12), 125349. https://doi.org/10.1088/2053-1591/ab6197
dc.relation.referencesSuppen-Reynaga, N., Guerrero, A. B., Dominguez, E. R., Sacayón, E., & Solano, A. (2024). Life cycle assessment of bananas, melons, and watermelons from Costa Rica. Cleaner and Circular Bioeconomy, 9, 100120. https://doi.org/10.1016/j.clcb.2024.100120
dc.relation.referencesTakeda, T., Suzuki, M., Kano, H., Matsumoto, M., & Umeda, Y. (2023). Clear evidence of the carcinogenic potential of anthracene: A 2‐year feeding study in rats and mice. Environmental Toxicology, 38(4), 709-726. https://doi.org/10.1002/tox.23722
dc.relation.referencesThorat, Y. V., Chavan, S. S., Mohite, D. D., & Pawar, U. S. (2024). Development of eco-friendly bio-composites using banana fibers for enhanced tensile and flexural properties. Materials Today: Proceedings, S2214785324002499. https://doi.org/10.1016/j.matpr.2024.04.061
dc.relation.referencesTurconi, R., Boldrin, A., & Astrup, T. (2013). Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Reviews, 28, 555-565. https://doi.org/10.1016/j.rser.2013.08.013
dc.relation.references(UPME), U. D. P. M. E. (2019). PLAN ENERGÉTICO NACIONAL 2020-2050. https://www1.upme.gov.co/DemandaEnergetica/PEN_documento_para_consulta.pdf
dc.relation.referencesUrbaite, G. (2024). 3D Printing and Additive Manufacturing: Revolutionizing the Production Process. Luminis Applied Science and Engineering, 1(1), 73-83. https://doi.org/10.69760/lumin.202400001
dc.relation.referencesVal, S., & Lambán, M. P. (2025). Enhancing Sustainability with LCA: A Comparative Analysis of Design and Manufacturing Processes. Processes, 13(1), 195. https://doi.org/10.3390/pr13010195
dc.relation.referencesVeliz, K., Chico-Santamarta, L., & Ramirez, A. D. (2022). The Environmental Profile of Ecuadorian Export Banana: A Life Cycle Assessment. Foods, 11(20), 3288. https://doi.org/10.3390/foods11203288
dc.relation.referencesVink, E. T. H., Rábago, K. R., Glassner, D. A., & Gruber, P. R. (2003a). Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5
dc.relation.referencesWalker, T. R. (2024). Consuming Plastics. En M. J. Hird, Consuming the Environment (1.a ed., pp. 105-117). Routledge. https://doi.org/10.4324/9781003412526-9
dc.relation.referencesWang, S. (2011). Tellurium, its resourcefulness and recovery. JOM, 63(8), 90-93. https://doi.org/10.1007/s11837-011-0146-7
dc.relation.referencesWeligama Thuppahige, V. T., & Karim, M. A. (2022). A comprehensive review on the properties and functionalities of biodegradable and semibiodegradable food packaging materials. Comprehensive Reviews in Food Science and Food Safety, 21(1), 689-718. https://doi.org/10.1111/1541-4337.12873
dc.relation.referencesWu, J., Guan, Z., & Ling, Y. (2023). Arsenic Emission Control from Coal Combustion Flue Gas. En S. M. Imamul Huq (Ed.), Arsenic in the Environment—Sources, Impacts and Remedies. IntechOpen. https://doi.org/10.5772/intechopen.1002351
dc.relation.referencesXia, Y., Gao, T., Liu, Y., Qi, M., Zhu, J.-M., Tong, H., Lv, Y., & Liu, C. (2025). Cd/Pb behavior during combustion in a coal-fired power plant and their spatiotemporal impacts on soils: New insights from Cd/Pb isotopes. Journal of Environmental Sciences, 150, 582-593. https://doi.org/10.1016/j.jes.2024.03.002
dc.relation.referencesYadav, J., Singh, V. P., & Kumar, A. (2024). Life Cycle Assessment of sustainable building materials. En C. S. Meena, A. Kumar, V. P. Singh, & A. Ghosh, Sustainable Technologies for Energy Efficient Buildings (1.a ed., pp. 64-101). CRC Press. https://doi.org/10.1201/9781003496656-4
dc.relation.referencesYaragatti, N., & Patnaik, A. (2021). A review on additive manufacturing of polymers composites. Materials Today: Proceedings, 44, 4150-4157. https://doi.org/10.1016/j.matpr.2020.10.490
dc.relation.referencesZgodavová, K., Lengyelová, K., Bober, P., Eguren, J. A., & Moreno, A. (2021). 3D Printing Optimization for Environmental Sustainability: Experimenting with Materials of Protective Face Shield Frames. Materials, 14(21), 6595. https://doi.org/10.3390/ma14216595
dc.relation.referencesZhao, C., Li, A., Zhang, G., Pan, Y., Meng, L., Yang, R., Li, Y., Zhang, Q., & Jiang, G. (2022). Parent and Halogenated Polycyclic Aromatic Hydrocarbons in the Serum of Coal-Fired Power Plant Workers: Levels, Sex Differences, Accumulation Trends, and Risks. Environmental Science & Technology, 56(17), 12431-12439. https://doi.org/10.1021/acs.est.2c03099
dc.relation.referencesZiemińska-Stolarska, A., Sobulska, M., Pietrzak, M., & Zbiciński, I. (2024). Application of Life Cycle Assessment to Analysis of Fibre Composite Manufacturing Technologies in Shipyards Industry. Processes, 12(3), 461. https://doi.org/10.3390/pr12030461
dc.relation.referencesŽivančević, K., Živanović, J., Baralić, K., Božić, D., Marić, Đ., Vukelić, D., Miljaković, E. A., Djordjevic, A. B., Ćurčić, M., Bulat, Z., Antonijević, B., & Đukić-Ćosić, D. (2024). Integrative investigation of hematotoxic effects induced by low doses of lead, cadmium, mercury and arsenic mixture: In vivo and in silico approach. Science of The Total Environment, 930, 172608. https://doi.org/10.1016/j.scitotenv.2024.172608
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsLife Cycle Assessment (LCA)eng
dc.subject.keywordsBiocompositeseng
dc.subject.keywords3D Printingeng
dc.subject.keywordsAgricultural Wasteeng
dc.subject.keywordsPLAeng
dc.subject.proposalAnálisis de Ciclo de Vida (ACV)spa
dc.subject.proposalBiocompuestosspa
dc.subject.proposalImpresión 3Dspa
dc.subject.proposalResiduos Agrícolasspa
dc.subject.proposalPLAspa
dc.titleEvaluación del ciclo de vida de la producción de biocompuestos con matriz de ácido poliláctico y refuerzos de residuos agrícolas: un estudio comparativo entre la cáscara de marañón y el pseudotallo de plátanospa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
FernandezHoyosDaniel.pdf
Tamaño:
2.8 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formatodeautorización.pdf
Tamaño:
527.82 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: