Publicación: Caracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilización
dc.audience | ||
dc.contributor.advisor | Cantero Guevara, Miriam Elena | |
dc.contributor.advisor | Betin Ruiz , Andrés José | |
dc.contributor.author | Mercado Rosso, Sara Yomar | |
dc.contributor.jury | Oviedo Zumaqué, Luis Eliécer | |
dc.contributor.jury | Villalba Anaya, Mara de la Concepción | |
dc.date.accessioned | 2024-11-16T16:34:05Z | |
dc.date.available | 2025-11-14 | |
dc.date.available | 2024-11-16T16:34:05Z | |
dc.date.issued | 2024-11-15 | |
dc.description.abstract | Los microorganismos del suelo son fundamentales para el equilibrio ecológico, debido a que participan activamente en los ciclos de elementos esenciales como el carbono, nitrógeno, azufre y fósforo. Entre estos, las bacterias solubilizadoras de fósforo y productoras de ácido indol acético desempeñan un papel crucial en la rizosfera. Estas bacterias han atraído un gran interés en el campo de la agricultura por su potencial uso como biofertilizantes para mejorar la nutrición de los cultivos. El objetivo de esta investigación fue caracterizar bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco-arenoso como alternativa de biofertilización. A las cepas aisladas se les realizó la prueba de solubilización de fósforo empleando el Método de Molibdovanadato y la producción de ácido indol acético se evaluó a través del reactivo de Salkowski. Las cepas fueron identificadas molecularmente utilizando los cebadores universales 27F, 5′-AGAGTTTGATCMTGGCTCAG-3′ y 1492R, 5′-TACGGYTACCTTGTTACGACTT-3′, que amplifican el gen 16S rRNA. Se realizó un análisis de varianza unidireccional (ANOVA) siguiendo la prueba post hoc de Tukey (p <0.05), con un nivel de significancia del 5%. La secuenciación del gen 16S rRNA revela la confirmación de aislamientos de Enterobacter cloacae (cepa S105E PP405613.1 y S106F PP2688674632) y Enterobacter hormaechei (cepa S104B PP 2688674632. En condiciones in vitro, se encontró que la cepa S105E solubilizó una concentración de fósforo de 2224.73 ± 26.16 mg L-1, seguida por S104B con 2169.11 ± 49.31 mg L-1 y S106F con 2028.62 ± 44.03 mg L-1, por otro lado, las cepas 11 y 19 produjeron una concentración de ácido indol acético de 27.60 ± 0.25 mg L-1. Las cepas nativas S105E, S106F, S104B, 11 y 19 demostraron gran capacidad de solubilización de fósforo y producción de ácido indol acético en condiciones in vitro. | spa |
dc.description.abstract | Soil microorganisms are essential for ecological balance, since they actively participate in the cycles of essential elements such as carbon, nitrogen, sulfur and phosphorus. Among these, phosphorus-solubilizing and indole-acetic acid-producing bacteria play a crucial role in the rhizosphere. These bacteria have attracted great interest in the field of agriculture for their potential use as biofertilizers to improve crop nutrition. The objective of this research was to characterize native phosphorus-solubilizing and indole-acetic acid-producing bacteria isolated from sandy loam soil as an alternative for biofertilization. The isolated strains were tested for phosphorus solubilization using the Molybdovanadate Method and the production of indole-acetic acid was evaluated through the Salkowski reagent. Strains were molecularly identified using universal primers 27F, 5′-AGAGTTTGATCMTGGCTCAG-3′ and 1492R, 5′-TACGGYTACCTTGTTACGACTT-3′, which amplify the 16S rRNA gene. A one-way analysis of variance (ANOVA) was performed following Tukey's post hoc test (p < 0.05), with a significance level of 5%. 16S rRNA gene sequencing reveals confirmation of Enterobacter cloacae (strain S105E PP405613.1 and S106F PP2688674632) and Enterobacter hormaechei (strain S104B PP 2688674632) isolates. Under in vitro conditions, strain S105E was found to solubilise a phosphorus concentration of 2224.73 ± 26.16 mg L-1, followed by S104B with 2169.11 ± 49.31 mg L-1 and S106F with 2028.62 ± 44.03 mg L-1, on the other hand, strains 11 and 19 produced an indole acetic acid concentration of 27.60 ± 0.25 mg L-1. Native strains S105E, S106F, S104B, 11 and 19 showed great capacity for phosphorus solubilization and indole acetic acid production under in vitro conditions. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Químico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Resumen....................................................................11 | |
dc.description.tableofcontents | 1. Introducción ................................................... 13 | |
dc.description.tableofcontents | 2. Objetivos...................................................... 15 | |
dc.description.tableofcontents | 2.1. Objetivo General ..........................................15 | |
dc.description.tableofcontents | 2.2. Objetivos Específicos.................................15 | |
dc.description.tableofcontents | 3. Antecedentes................................................. 16 | |
dc.description.tableofcontents | 4. Marco Teórico............................................ 18 | |
dc.description.tableofcontents | 4.1. Formas Básicas y Ciclos del Fósforo en el Suelo ....................... 18 | |
dc.description.tableofcontents | 4.1.1. Fosforo Inorgánico en el Suelo ....................................19 | |
dc.description.tableofcontents | 4.2. Ácido Indol Acético (AIA)........................................ 20 | |
dc.description.tableofcontents | 4.2. Bacterias Promotoras del Crecimiento Vegetal (PGPB) .......................21 | |
dc.description.tableofcontents | 4.2.1. Bacterias Solubilizadoras de Fósforo ........................22 | |
dc.description.tableofcontents | 4.2.1.1. Biodiversidad de Bacterias Solubilizadoras de Fósforo ....................22 | |
dc.description.tableofcontents | 4.2.2.2. Mecanismo de Solubilización de Fósforo................... 23 | |
dc.description.tableofcontents | 5. Metodología ...................................................... 27 | |
dc.description.tableofcontents | 5.1. Tipo de Estudio ..............................................27 | |
dc.description.tableofcontents | 5.2. Área de Estudio ........................................27 | |
dc.description.tableofcontents | 5.3. Identificación de Bacterias Nativas Solubilizadoras de Fósforo y Productoras de Ácido Indol Acético Aisladas a Partir de Muestras de Suelo Franco-Arenoso...........27 | |
dc.description.tableofcontents | 5.3.1. Muestreo de Suelo...................................... 27 | |
dc.description.tableofcontents | 5.3.2. Aislamiento de Bacterias Nativas Solubilizadoras de Fósforo y Productoras de Ácido Indol Acético ............................27 | |
dc.description.tableofcontents | 5.3.3. Identificación Molecular de BSF y Productoras de AIA........................................28 | |
dc.description.tableofcontents | 5.3.3.1. Extracción de ADN Genómico..................................28 | |
dc.description.tableofcontents | 5.3.3.2. Amplificación de ADN Mediante Reacción en Cadena de la Polimerasa (PCR) 28 | |
dc.description.tableofcontents | 5.3.3.3. Secuenciación de Productos de PCR y Análisis de Secuencia............................ 29 | |
dc.description.tableofcontents | 5.4. Evaluación in vitro de la Capacidad Solubilizadora de Fosforo y Productora de AIA de las Cepas Aisladas .................... 29 | |
dc.description.tableofcontents | 5.4.1. Detección in vitro de la Actividad Solubilizadora de Fósforo................................ 29 | |
dc.description.tableofcontents | 5.4.2. Cuantificación in vitro de la Producción de AIA................ 30 | |
dc.description.tableofcontents | 6. Resultados y Discusión...........................................31 | |
dc.description.tableofcontents | 6.1. Aislamiento de BSF y Productora de AIA ..................31 | |
dc.description.tableofcontents | 6.2. Evaluación in vitro de la Actividad Solubilizadora de Fósforo y Productora de AIA....32 | |
dc.description.tableofcontents | 6.2.1. Detección in vitro de la Actividad Solubilizadora de Fósforo................................ 32 | |
dc.description.tableofcontents | 6.2.2. Cuantificación in vitro de la Producción de AIA..................... 36 | |
dc.description.tableofcontents | 6.3. Identificación Molecular de BSF y Productoras de AIA...............................................37 | |
dc.description.tableofcontents | 7. Conclusiones......................................... 39 | |
dc.description.tableofcontents | 8. Recomendaciones..............................................40 | |
dc.description.tableofcontents | 9. Referencias Bibliográficas................................41 | |
dc.description.tableofcontents | 10. Anexos ............................................. 53 | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8746 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Química | |
dc.relation.references | Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8, 971. 42 https://doi.org/10.3389/fmicb.2017.00971 | |
dc.relation.references | Asea, P. E. A., Kucey, R. M. N., & Stewart, J. W. B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry, 20(4), 459-464. https://doi.org/10.1016/0038-0717(88)90058-2 | |
dc.relation.references | Babu-Khan, S., Yeo, T., Martin, W., Duron, M., Rogers, R., & Goldstein, A. (1995). Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61(3), 972-978. https://doi.org/10.1128/aem.61.3.972- 978.1995 | |
dc.relation.references | Baggam, S., Padal, S., Department of Botany, Andhra University, Visakhapatnam, India. Pin- 530 003., Ummidi, Vr., TRIMS Lab Visakhapatnam India., Paltati, A., TRIMS Lab Visakhapatnam India., Thanagala, N., & Department of Botany, Andhra University, Visakhapatnam, India. Pin- 530 003. (2017). ISOLATION OF IAA PRODUCING BACTERIA FROM SOIL AND OPTIMISATION OF CULTURE CONDITIONS FOR MAXIMUM IAA PRODUCTION. International Journal of Advanced Research, 5(10), 1003-1010. https://doi.org/10.21474/IJAR01/5617 | |
dc.relation.references | Banik, S., & Dey, B. K. (1983). Phosphate-Solubilizing Potentiality of the Microorganisms Capable of Utilizing Aluminium Phosphate as a Sole Phosphate Source. Zentralblatt Für Mikrobiologie, 138(1), 17-23. https://doi.org/10.1016/S0232-4393(83)80060-2 | |
dc.relation.references | Bar-Yosef, B., Rogers, R. D., Wolfram, J. H., & Richman, E. (1999). Pseudomonas cepacia – Mediated Rock Phosphate Solubilization in Kaolinite and Montmorillonite Suspensions. Soil Science Society of America Journal, 63(6), 1703-1708. https://doi.org/10.2136/sssaj1999.6361703x | |
dc.relation.references | Bidondo, L. F., Silvani, V., Colombo, R., Pérgola, M., Bompadre, J., & Godeas, A. (2011). Presymbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus 43 species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biology and Biochemistry, 43(9), 1866-1872. https://doi.org/10.1016/j.soilbio.2011.05.004 | |
dc.relation.references | Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A., & Melo, I. S. (2020). Phosphorussolubilizing Trichoderma spp. From Amazon soils improve soybean plant growth. Scientific Reports, 10(1), 2858. https://doi.org/10.1038/s41598-020-59793-8 | |
dc.relation.references | Brito, L. F., López, M. G., Straube, L., Passaglia, L. M. P., & Wendisch, V. F. (2020). Inorganic Phosphate Solubilization by Rhizosphere Bacterium Paenibacillus sonchi: Gene Expression and Physiological Functions. Frontiers in Microbiology, 11, 588605. https://doi.org/10.3389/fmicb.2020.588605 | |
dc.relation.references | Buch, A., Archana, G., & Naresh Kumar, G. (2010). Heterologous expression of phosphoenolpyruvate carboxylase enhances the phosphate solubilizing ability of fluorescent pseudomonads by altering the glucose catabolism to improve biomass yield. Bioresource Technology, 101(2), 679-687. https://doi.org/10.1016/j.biortech.2009.08.075 | |
dc.relation.references | Cai, G., Li, J., Zhou, M., Zhu, G., Li, Y., Lv, N., Wang, R., Li, C., & Pan, X. (2022). Compostderived indole-3-acetic-acid-producing bacteria and their effects on enhancing the secondary fermentation of a swine manure-corn stalk composting. Chemosphere, 291, 132750. https://doi.org/10.1016/j.chemosphere.2021.132750 | |
dc.relation.references | Campos, P., Borie, F., Cornejo, P., López-Ráez, J. A., López-García, Á., & Seguel, A. (2018). Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping? Frontiers in Plant Science, 9, 752. https://doi.org/10.3389/FPLS.2018.00752/BIBTEX | |
dc.relation.references | Castagno, L. N., Sannazzaro, A. I., Gonzalez, M. E., Pieckenstain, F. L., & Estrella, M. J. (2021). Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Annals of 44 Applied Biology, 178(2), 256-267. https://doi.org/10.1111/aab.12673 | |
dc.relation.references | Chakraborty, U., Chakraborty, B. N., Basnet, M., & Chakraborty, A. P. (2009). Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. Journal of Applied Microbiology, 107(2), 625-634. https://doi.org/10.1111/j.1365-2672.2009.04242.x | |
dc.relation.references | Chandra, S., Askari, K., & Kumari, M. (2018). Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Journal of Genetic Engineering and Biotechnology, 16(2), 581-586. https://doi.org/10.1016/j.jgeb.2018.09.001 | |
dc.relation.references | Chen, W., Yang, F., Zhang, L., & Wang, J. (2016). Organic Acid Secretion and Phosphate Solubilizing Efficiency of Pseudomonas sp . PSB12: Effects of Phosphorus Forms and Carbon Sources. Geomicrobiology Journal, 33(10), 870-877. https://doi.org/10.1080/01490451.2015.1123329 | |
dc.relation.references | Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W.-A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1), 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002 | |
dc.relation.references | Choi, O., Kim, J., Kim, J.-G., Jeong, Y., Moon, J. S., Park, C. S., & Hwang, I. (2008). Pyrroloquinoline Quinone Is a Plant Growth Promotion Factor Produced by Pseudomonas fluorescens B16. Plant Physiology, 146(2), 657-668. https://doi.org/10.1104/pp.107.112748 | |
dc.relation.references | Chung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H., & Sa, T. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37(10), 1970-1974. https://doi.org/10.1016/j.soilbio.2005.02.025 | |
dc.relation.references | Datta, C., & Basu, P. S. (2000). Producción de ácido indol acético por una especie de Rhizobium a partir de nódulos de la raíz de un arbusto leguminoso, Cajanus cajan. Microbiological Research, 155(2), 123-127. https://doi.org/10.1016/S0944-5013(00)80047-6 | |
dc.relation.references | De Freitas, J. R., Banerjee, M. R., & Germida, J. J. (1997). Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biology and Fertility of Soils, 24(4), 358-364. https://doi.org/10.1007/s003740050258 | |
dc.relation.references | Dey, G., Maity, J. P., Banerjee, P., Sharma, R. K., Etesami, H., Bastia, T. K., Rath, P., Sukul, U., Huang, H.-B., Huang, K.-W., & Chen, C.-Y. (2024). Characterization of halotolerant phosphate-solubilizing rhizospheric bacteria from mangrove (Avicennia sp.) with biotechnological potential in agriculture and pollution mitigation. Biocatalysis and Agricultural Biotechnology, 55, 102960. https://doi.org/10.1016/j.bcab.2023.102960 | |
dc.relation.references | Ferreira, C. M. H., Soares, H. M. V. M., & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of The Total Environment, 682, 779-799. https://doi.org/10.1016/j.scitotenv.2019.04.225 | |
dc.relation.references | Gao, C., Zhang, M., Song, K., Wei, Y., & Zhang, S. (2020). Spatiotemporal analysis of anthropogenic phosphorus fluxes in China. Science of the Total Environment, 721. https://doi.org/10.1016/j.scitotenv.2020.137588 | |
dc.relation.references | Goldstein, A. H. (1995). Recent Progress in Understanding the Molecular Genetics and Biochemistry of Calcium Phosphate Solubilization by Gram Negative Bacteria. Biological Agriculture & Horticulture, 12(2), 185-193. https://doi.org/10.1080/01448765.1995.9754736 | |
dc.relation.references | Goldstein, A. H., & Liu, S. T. (1987). Molecular Cloning and Regulation of a Mineral Phosphate Solubilizing Gene from Erwinia Herbicola. Nature Biotechnology, 5(1), 72-74. 46 https://doi.org/10.1038/nbt0187-72 | |
dc.relation.references | Gulati, A., Vyas, P., Rahi, P., & Kasana, R. C. (2009). Plant Growth-Promoting and RhizosphereCompetent Acinetobacter rhizosphaerae Strain BIHB 723 from the Cold Deserts of the Himalayas. Current Microbiology, 58(4), 371-377. https://doi.org/10.1007/s00284-008- 9339-x | |
dc.relation.references | Illmer, P., & Schinner, F. (1995). Solubilization of inorganic calcium phosphates—Solubilization mechanisms. Soil Biology and Biochemistry, 27(3), 257-263. https://doi.org/10.1016/0038- 0717(94)00190-C | |
dc.relation.references | Jalali, M., & Sajadi Tabar, S. (2011). Chemical fractionation of phosphorus in calcareous soils of Hamedan, western Iran under different land use. Journal of Plant Nutrition and Soil Science, 174(4), 523-531. https://doi.org/10.1002/jpln.201000217 | |
dc.relation.references | Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture—A review. Agronomy for Sustainable Development, 27(1), 29-43. https://doi.org/10.1051/agro:2006011 | |
dc.relation.references | Kim, K. Y., Hwangbo, H., Park, R. D., Kim, Y. W., Rim, Y. S., Park, K. H., Kim, T. H., & Suh, J. S. (2003). 2-Ketogluconic Acid Production and Phosphate Solubilization by Enterobacter intermedium. Current Microbiology, 47(2), 87-92. https://doi.org/10.1007/s00284-002- 3951-y | |
dc.relation.references | Kim, Y., Bae, B., & Choung, Y. (2005). Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. Journal of Bioscience and Bioengineering, 99(1), 23-29. https://doi.org/10.1263/jbb.99.23 | |
dc.relation.references | Kumar, C., Yadav, K., Archana, G., & Naresh Kumar, G. (2013). 2-Ketogluconic Acid Secretion by Incorporation of Pseudomonas putida KT 2440 Gluconate Dehydrogenase (gad) Operon in Enterobacter asburiae PSI3 Improves Mineral Phosphate Solubilization. Current 47 Microbiology, 67(3), 388-394. https://doi.org/10.1007/s00284-013-0372-z | |
dc.relation.references | Kumar, M. S., Reddy, G. C., Phogat, M., & Korav, S. (2018). Role of bio-fertilizers towards sustainable agricultural development: A review. Journal of Pharmacognosy and Phytochemistry, 7(6), 1915-1921. | |
dc.relation.references | Lata, D. L., Abdie, O., & Rezene, Y. (2024). IAA-producing bacteria from the rhizosphere of chickpea (Cicer arietinum L.): Isolation, characterization, and their effects on plant growth performance. Heliyon, 10(21), e39702. https://doi.org/10.1016/j.heliyon.2024.e39702 | |
dc.relation.references | Lebrazi, S., Niehaus, K., Bednarz, H., Fadil, M., Chraibi, M., & Fikri-Benbrahim, K. (2020). Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. Journal of Genetic Engineering and Biotechnology, 18(1), 71. https://doi.org/10.1186/s43141-020-00090-2 | |
dc.relation.references | Li, C., Li, Q., Wang, Z., Ji, G., Zhao, H., Gao, F., Su, M., Jiao, J., Li, Z., & Li, H. (2019). Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Scientific Reports, 9(1), 15291. https://doi.org/10.1038/s41598- 019-51804-7 | |
dc.relation.references | Li, H.-P., Han, Q.-Q., Liu, Q.-M., Gan, Y.-N., Rensing, C., Rivera, W. L., Zhao, Q., & Zhang, J.- L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 272, 127375. https://doi.org/10.1016/j.micres.2023.127375 | |
dc.relation.references | Li, Q., Fu, L., Wang, Y., Zhou, D., & Rittmann, B. E. (2018). Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresource Technology, 268, 266-270. https://doi.org/10.1016/j.biortech.2018.07.148 | |
dc.relation.references | Liang, J.-L., Liu, J., Jia, P., Yang, T., Zeng, Q., Zhang, S., Liao, B., Shu, W., & Li, J. (2020). Novel 48 phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal, 14(6), 1600-1613. https://doi.org/10.1038/s41396-020-0632-4 | |
dc.relation.references | Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S., & Zhang, M. (2015a). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224. https://doi.org/10.1016/j.apsoil.2015.08.003 | |
dc.relation.references | Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S., & Zhang, M. (2015b). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224. https://doi.org/10.1016/j.apsoil.2015.08.003 | |
dc.relation.references | Makki, R. M. (2023). SUSTAINABLE FARMING USING PLANT GROWTHPROMOTING BACTERIA. Applied Ecology and Environmental Research, 21(3), 2363-2382. https://doi.org/10.15666/aeer/2103_23632382 | |
dc.relation.references | Meyer, J. B., Frapolli, M., Keel, C., & Maurhofer, M. (2011). Pyrroloquinoline Quinone Biosynthesis Gene pqqC , a Novel Molecular Marker for Studying the Phylogeny and Diversity of Phosphate-Solubilizing Pseudomonads. Applied and Environmental Microbiology, 77(20), 7345-7354. https://doi.org/10.1128/AEM.05434-11 | |
dc.relation.references | Nejati Sini, H., Barzegar, R., Soodaee Mashaee, S., Ghasemi Ghahsare, M., Mousavi-Fard, S., & Mozafarian, M. (2024). Effects of biofertilizer on the production of bell pepper (Capsicum annuum L.) in greenhouse. Journal of Agriculture and Food Research, 16, 101060. https://doi.org/10.1016/j.jafr.2024.101060 | |
dc.relation.references | Pantoja-Guerra, M., Burkett-Cadena, M., Cadena, J., Dunlap, C. A., & Ramírez, C. A. (2023). Lysinibacillus spp.: An IAA-producing endospore forming-bacteria that promotes plant growth. Antonie van Leeuwenhoek, 116(7), 615-630. https://doi.org/10.1007/s10482-023- 01828-x | |
dc.relation.references | Park, J. H., Bolan, N., Megharaj, M., & Naidu, R. (2011). Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials, 185(2-3), 829-836. https://doi.org/10.1016/j.jhazmat.2010.09.095 | |
dc.relation.references | Patel, D. K., Archana, G., & Kumar, G. N. (2008). Variation in the Nature of Organic Acid Secretion and Mineral Phosphate Solubilization by Citrobacter sp. DHRSS in the Presence of Different Sugars. Current Microbiology, 56(2), 168-174. https://doi.org/10.1007/s00284-007-9053-0 | |
dc.relation.references | Pedraza, R. O., Bellone, C. H., Carrizo de Bellone, S., Boa Sorte, P. M. F., & Teixeira, K. R. dos S. (2009). Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. European Journal of Soil Biology, 45(1), 36-43. https://doi.org/10.1016/J.EJSOBI.2008.09.007 | |
dc.relation.references | Postma, J., Nijhuis, E. H., & Someus, E. (2010). Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Applied Soil Ecology, 46(3), 464-469. https://doi.org/10.1016/j.apsoil.2010.08.016 | |
dc.relation.references | Raymond, N. S., Gómez‐Muñoz, B., Van Der Bom, F. J. T., Nybroe, O., Jensen, L. S., Müller‐ Stöver, D. S., Oberson, A., & Richardson, A. E. (2021). Phosphate‐solubilising microorganisms for improved crop productivity: A critical assessment. New Phytologist, 229(3), 1268-1277. https://doi.org/10.1111/nph.16924 | |
dc.relation.references | Rehman, A., Ma, H., Ahmad, M., Irfan, M., Traore, O., & Chandio, A. A. (2021). Towards environmental Sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecological Indicators, 125, 107460. https://doi.org/10.1016/j.ecolind.2021.107460 | |
dc.relation.references | Rodríguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and 50 Soil, 287(1-2), 15-21. https://doi.org/10.1007/s11104-006-9056-9 | |
dc.relation.references | Rodríguez-Vázquez, R., & Mesa-Marín, J. (2023). Plant responses to plant growth promoting bacteria: Insights from proteomics. Journal of Plant Physiology, 287, 154031. https://doi.org/10.1016/J.JPLPH.2023.154031 | |
dc.relation.references | Sashidhar, B., & Podile, A. R. (2009). Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings. Microbial Biotechnology, 2(4), 521-529. https://doi.org/10.1111/j.1751- 7915.2009.00119.x | |
dc.relation.references | Secco, D., Bouain, N., Rouached, A., Prom-u-thai, C., Hanin, M., Pandey, A. K., & Rouached, H. (2017). Phosphate, phytate and phytases in plants: From fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Critical Reviews in Biotechnology, 37(7), 898-910. https://doi.org/10.1080/07388551.2016.1268089 | |
dc.relation.references | Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587 | |
dc.relation.references | Singh, A., Parmar, N., Kuhad, R. C., & Ward, O. P. (2011). Bioaugmentation, Biostimulation, and Biocontrol in Soil Biology. En A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, Biostimulation and Biocontrol (Vol. 108, pp. 1-23). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_1 | |
dc.relation.references | Singh, V., & Kumar, B. (2024). A review of agricultural microbial inoculants and their carriers in bioformulation. Rhizosphere, 29, 100843. https://doi.org/10.1016/j.rhisph.2023.100843 | |
dc.relation.references | Son, H.-J., Park, G.-T., Cha, M.-S., & Heo, M.-S. (2006). Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97(2), 204-210. 51 https://doi.org/10.1016/j.biortech.2005.02.021 | |
dc.relation.references | Song, O.-R., Lee, S.-J., Lee, Y.-S., Lee, S.-C., Kim, K.-K., & Choi, Y.-L. (2008). Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology, 39, 151-156. https://doi.org/10.1590/S1517- 83822008000100030 | |
dc.relation.references | Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021a). Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10(2), 158. https://doi.org/10.3390/biology10020158 | |
dc.relation.references | Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021b). Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10(2), 158. https://doi.org/10.3390/biology10020158 | |
dc.relation.references | Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphatesolubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5-6), 460-468. https://doi.org/10.1007/s003740050024 | |
dc.relation.references | Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20(1), 5-15. https://doi.org/10.1890/08-0127.1 | |
dc.relation.references | Vyas, P., & Gulati, A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9(1), 174. https://doi.org/10.1186/1471-2180-9-174 | |
dc.relation.references | Wagh, J., Shah, S., Bhandari, P., Archana, G., & Kumar, G. N. (2014). Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Applied Microbiology and Biotechnology, 52 98(11), 5117-5129. https://doi.org/10.1007/s00253-014-5610-1 | |
dc.relation.references | Walpola, B., & Yoon, M.-H. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African journal of microbiology research, 6, 6600-6605. https://doi.org/10.5897/AJMR12.889 | |
dc.relation.references | Wang, S., Li, Y., Zhang, J., Wang, X., Hong, J., Qiu, C., & Meng, H. (2022). Transcriptome Profiling Analysis of Phosphate-Solubilizing Mechanism of Pseudomonas Strain W134. Microorganisms, 10(10), 1998. https://doi.org/10.3390/microorganisms10101998 | |
dc.relation.references | Wei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. (2018). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology, 247, 190-199. https://doi.org/10.1016/j.biortech.2017.09.092 | |
dc.relation.references | Yi, Y., Huang, W., & Ge, Y. (2008). Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology and Biotechnology, 24(7), 1059-1065. https://doi.org/10.1007/s11274-007-9575-4 | |
dc.relation.references | Zaidi, A., Khan, M., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56(3), 263-284. https://doi.org/10.1556/AMicr.56.2009.3.6 | |
dc.relation.references | Zhang, X., Zhi, X., Chen, L., & Shen, Z. (2020). Spatiotemporal variability and key influencing factors of river fecal coliform within a typical complex watershed. Water Research, 178, 115835. https://doi.org/10.1016/j.watres.2020.115835 | |
dc.relation.references | Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., & Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 169(1), 76-82. 53 https://doi.org/10.1016/j.micres.2013.07.003 | |
dc.relation.references | Zhao, L. F., Xu, Y. J., & Lai, X. H. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49(2), 269-278. https://doi.org/10.1016/J.BJM.2017.06.007 | |
dc.relation.references | Zhao, Y. (2010). Auxin Biosynthesis and Its Role in Plant Development. Annual Review of Plant Biology, 61(1), 49-64. https://doi.org/10.1146/annurev-arplant-042809-112308 | |
dc.relation.references | Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of The Total Environment, 612, 522- 537. https://doi.org/10.1016/j.scitotenv.2017.08.095 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.keywords | Biofertilizers | |
dc.subject.keywords | plant growth promoting bacteria | |
dc.subject.keywords | Department of Córdoba | |
dc.subject.proposal | Biofertilizantes | |
dc.subject.proposal | Bacterias promotoras del crecimiento vegetal | |
dc.subject.proposal | Departamento de Córdoba | |
dc.title | Caracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilización | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: