Publicación:
Desarrollo de materiales compuestos reforzados basados en fibras de carbono recicladas modificadas con nanoalambres: caracterización, conformación y evaluación mediante nanoindentación

dc.contributor.advisorCantero Guevara, Miriam Elenaspa
dc.contributor.advisorMeléndrez Castro, Manuel Franciscospa
dc.contributor.authorEsquivel Galarcio, Samir Enriquespa
dc.date.accessioned2023-02-10T14:29:27Z
dc.date.available2023-02-10T14:29:27Z
dc.date.issued2023-02-09
dc.description.abstractLos materiales compuestos reforzados con fibras de carbono (CFRP), presentan excelentes propiedades mecánicas, debido a sus elevadas propiedades específicas, por esto cada día están siendo implementados por diversos sectores industriales, como el aeroespacial, automotriz, marino, entre otros. Lo que genera un aumento en los residuos de este material, los cuales son eliminados mediante dos métodos no sostenibles, los vertederos y la incineración. Una solución a esta problemática consiste en reciclar estos materiales, sin embargo, luego del reciclaje existe una reducción de las propiedades al usar fibras de carbono recicladas (rCF), como la pérdida de resistencia a la tracción y la poca adherencia entre el material reciclado y la nueva matriz. El objetivo de este trabajo es desarrollar CFRP, incorporando nanorods de ZnO alineados verticalmente sobre rCF, para mejorar la interfase resina-fibra y de esta manera mejorar las propiedades mecánicas del material compuesto. Las rCFs se modificaron superficialmente por oxidación ácida (HNO3), posteriormente se hicieron crecer nanorods de ZnO utilizando el proceso por vía húmeda. Luego, fueron funcionalizadas con APTES (3-aminopropiltrietoxisilano) mediante el proceso de hidrolisis para mejorar la interacción físico/química con la matriz epoxi. Las fibras fueron caracterizadas mediante la microscopía electrónica de barrido (SEM), microscopía electrónica de transmisión (TEM), microscopía de fuerza atómica (AFM), espectroscopia ultravioleta-visible (UV-V), difracción de rayos X (DRX), espectroscopia Raman y espectroscopia infrarroja (FT-IR). Por último, se evaluaron las propiedades mecánicas de todas las fibras mediante una prueba de tracción al compuesto y nanoindentación. En la caracterización estructural Raman, se aprecia que la relación 𝐼𝐷/𝐼𝐺, son de 2.037 para las rCF-P-NRDs ZnO y 2.066 para rCF-M-NRDs ZnO, lo que indica que hay un menor daño morfológico respecto a las rCF de control, afirmando que el crecimiento indujo en la recuperación de las fibras. Por otro lado, según los resultados SEM, se puede hacer crecer nanorods de ZnO alineados verticalmente sobre rCF mediante la reacción por vía húmeda, obteniendo diámetros de 179.642 nm. Por último, los valores obtenidos mediante los ensayos de tracción indicaron que hubo una mejora del 45% (rCF-P-NRDs ZnO) y 56% (rCF-M-NRDs ZnO) respecto a la fibra de carbono virgen.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico(a)spa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontents1. INTRODUCCIÓN. ................................................................................................... 1spa
dc.description.tableofcontents2. HIPÓTESIS .............................................................................................................. 4spa
dc.description.tableofcontents3. OBJETIVOS ............................................................................................................. 4spa
dc.description.tableofcontents3.1. Objetivo General ................................................................................................ 4spa
dc.description.tableofcontents3.2. Objetivos Específicos ........................................................................................ 4spa
dc.description.tableofcontents4. ESTADO DE ARTE. ................................................................................................ 5spa
dc.description.tableofcontents4.1. Fibras de Carbono. ............................................................................................. 5spa
dc.description.tableofcontents4.1.1. Precursores para obtener fibras de carbono. ............................................... 6spa
dc.description.tableofcontents4.1.2. Demanda mundial de las fibras de carbono. ............................................... 9spa
dc.description.tableofcontents4.2. Materiales Compuestos. ................................................................................... 11spa
dc.description.tableofcontents4.2.1. Tipos de matrices poliméricas. ................................................................. 11spa
dc.description.tableofcontents4.3. Propiedades Mecánicas. ................................................................................... 14spa
dc.description.tableofcontents4.3.1. Tracción al Compuesto. ............................................................................ 15spa
dc.description.tableofcontents4.3.2. Nanoindentación. ...................................................................................... 15spa
dc.description.tableofcontents4.4. Reciclaje de Fibras de Carbono. ...................................................................... 16spa
dc.description.tableofcontents4.4.1. Tipos de reciclaje. ..................................................................................... 17spa
dc.description.tableofcontents4.4.2. Recuperación de rCF a partir de modificaciones superficiales. ............... 20spa
dc.description.tableofcontents5. METODOLOGÍA. .................................................................................................. 27spa
dc.description.tableofcontents5.1. Modificación superficial de Fibras de Carbono con HNO3 ............................. 27spa
dc.description.tableofcontents5.2. Síntesis de nanopartículas de ZnO. .................................................................. 28spa
dc.description.tableofcontents5.3. Crecimiento de Nanorods de ZnO. .................................................................. 30spa
dc.description.tableofcontents5.4. Funcionalización amínica de fibras de Carbono con Nanorods de ZnO ......... 32spa
dc.description.tableofcontents5.5. Fabricación del material compuesto. ............................................................... 33spa
dc.description.tableofcontents5.5.1. Caracterización de material compuesto. ................................................... 33spa
dc.description.tableofcontents6. RESULTADOS Y DISCUSIÓN DE RESULTADOS. .......................................... 35spa
dc.description.tableofcontents6.1. Modificación superficial con HNO3 ................................................................ 35spa
dc.description.tableofcontents6.1.1. Resultados FT-IR. ..................................................................................... 35spa
dc.description.tableofcontents6.1.2. Resultados Raman. ................................................................................... 37spa
dc.description.tableofcontents6.2. Síntesis de Nanopartículas de ZnO .................................................................. 41spa
dc.description.tableofcontents6.2.1. Resultados UV-Visible. ............................................................................ 41spa
dc.description.tableofcontents6.2.2. Resultados de Microscopia de fuerza atómica AFM. ............................... 41spa
dc.description.tableofcontents6.3. Crecimiento de Nanorods de ZnO alineados verticalmente en fibras de carbono recicladas. ................................................................................................................... 43spa
dc.description.tableofcontents6.3.1. Resultados de Microscopia Electrónica de Barrido SEM y Microscopia Electrónica de Trasmisión (TEM). ......................................................................... 43spa
dc.description.tableofcontents6.3.2. Resultados de Difracción de Rayos X (DRX). ......................................... 46spa
dc.description.tableofcontents6.3.3. Resultados Raman. ................................................................................... 49spa
dc.description.tableofcontents6.4. Funcionalización amínica de fibras de carbono recicladas con nanorods de ZnO. 52spa
dc.description.tableofcontents6.4.1. Resultados FT-IR. ..................................................................................... 52spa
dc.description.tableofcontents6.4.2. Resultados Raman. ................................................................................... 53spa
dc.description.tableofcontents6.5. Fabricación del Material Compuesto. .............................................................. 55spa
dc.description.tableofcontents6.5.1. Resultados de tracción al compuesto. ....................................................... 55spa
dc.description.tableofcontents6.5.2. Resultados de Nanoindentación................................................................ 60spa
dc.description.tableofcontents7. CONCLUSIONES .................................................................................................. 63spa
dc.description.tableofcontents8. REFERENCIAS BIBLIOGRAFICAS ................................................................... 64spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7062
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programQuímicaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsAcid oxidationeng
dc.subject.keywordsZnO Nanorods,eng
dc.subject.keywordsFunctionalizationeng
dc.subject.proposalOxidación ácidaspa
dc.subject.proposalNanorods de ZnOspa
dc.subject.proposalFuncionalizaciónspa
dc.titleDesarrollo de materiales compuestos reforzados basados en fibras de carbono recicladas modificadas con nanoalambres: caracterización, conformación y evaluación mediante nanoindentaciónspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.references1. Aoki, R., Yamaguchi, A., Hashimoto, T., Urushisaki, M., Sakaguchi, T., Kawabe, K., Kondo, K., & Iyo, H. (2019). Preparation of carbon fibers coated with epoxy sizing agents containing degradable acetal linkages and synthesis of carbon fiber-reinforced plastics (CFRPs) for chemical recycling. Polymer Journal, 51(9), 909–920. https://doi.org/10.1038/s41428-019-0202-7spa
dcterms.references2. Arundhathi, K. (2019). Synthesis of ZnO Nanoparticles by Simple Precipitation Method. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3881017spa
dcterms.references3. Bîrcă, A., Gherasim, O., Grumezescu, V., & Grumezescu, A. M. (2019). Introduction in thermoplastic and thermosetting polymers. Materials for Biomedical Engineering, 1–28. https://doi.org/10.1016/b978-0-12-816874-5.00001-3spa
dcterms.references4. Borjan, D., Knez, E., & Knez, M. (2021). Recycling of Carbon Fiber-Reinforced Composites—Difficulties and Future Perspectives. Materials, 14(15), 4191. https://doi.org/10.3390/ma14154191spa
dcterms.references5. Butenegro, J. A., Bahrami, M., Abenojar, J., & Martínez, M. N. (2021). Recent Progress in Carbon Fiber Reinforced Polymers Recycling: A Review of Recycling Methods and Reuse of Carbon Fibers. Materials, 14(21), 6401. https://doi.org/10.3390/ma14216401spa
dcterms.references6. Calas, M. M. D. (2022, January 24). Análisis experimental del fresado de materiales compuestos reforzados con fibra de basalto. https://riunet.upv.es/handle/10251/177645spa
dcterms.references6. Calas, M. M. D. (2022, January 24). Análisis experimental del fresado de materiales compuestos reforzados con fibra de basalto. https://riunet.upv.es/handle/10251/177645spa
dcterms.references8. Cao, W. W., Zhu, B., Jing, M., & Wang, C. G. (2008). Raman spectra of PAN-based carbon fibers during surface treatment. Guang pu xue yu Guang pu fen xi= Guang pu, 28(12), 2885-2889.spa
dcterms.references9. Cha, J., Jin, S., Shim, J. H., Park, C. S., Ryu, H. J., & Hong, S. H. (2016). Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Materials &Amp; Design, 95, 1–8. https://doi.org/10.1016/j.matdes.2016.01.077spa
dcterms.references10. Cha, J., Jun, G. H., Park, J. K., Kim, J. C., Ryu, H. J., & Hong, S. H. (2017). Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes. Composites Part B: Engineering, 129, 169–179. https://doi.org/10.1016/j.compositesb.2017.07.070spa
dcterms.references11. Chen, C. H., Chiang, C. L., Wang, J. X., & Shen, M. Y. (2022). A circular economy study on the characterization and thermal properties of thermoplastic composite created using regenerated carbon fiber recycled from waste thermoset CFRP bicycle part as reinforcement. Composites Science and Technology, 230, 109761. https://doi.org/10.1016/j.compscitech.2022.109761spa
dcterms.references12. Colucci, G., Ostrovskaya, O., Frache, A., Martorana, B., & Badini, C. (2015). The effect of mechanical recycling on the microstructure and properties of PA66 composites reinforced with carbon fibers. Journal of Applied Polymer Science, 132(29), n/a-n/a. https://doi.org/10.1002/app.42275spa
dcterms.references13. Das, S., Warren, J., West, D., & Schexnayder, S. M. (2016, May 1). Global Carbon Fiber Composites Supply Chain Competitiveness Analysis. https://www.osti.gov/biblio/1333049/spa
dcterms.references14. Ding, R., Sun, Y., Lee, J., Nam, J. D. & Suhr, J. (2021). Enhancing interfacial properties of carbon fiber reinforced epoxy composites by grafting MXene sheets (Ti2C). Composites Part B: Engineering, 207, 108580. https://doi.org/10.1016/j.compositesb.2020.108580spa
dcterms.references15. Dumanlı, A. G. & Windle, A. H. (2012). Carbon fibres from cellulosic precursors: a review. Journal of Materials Science, 47(10), 4236-4250. https://doi.org/10.1007/s10853-011-6081-8spa
dcterms.references16. Fei, J., Luo, D., Huang, J., Zhang, C., Duan, X. & Zhang, L. (2018). Growth of aligned ZnO nanorods on carbon fabric and its composite for superior mechanical and tribological performance. Surface and Coatings Technology, 344, 433-440. https://doi.org/10.1016/j.surfcoat.2018.03.056spa
dcterms.references17. Fernández, A., Lopes, C. S., González, C. & López, F. A. (2018). Characterization of Carbon Fibers Recovered by Pyrolysis of Cured Prepregs and Their Reuse in New Composites. Recent Developments in the Field of Carbon Fibers. https://doi.org/10.5772/intechopen.74281spa
dcterms.references18. Frank, E., Hermanutz, F., & Buchmeiser, M. R. (2012). Carbon Fibers: Precursors, Manufacturing, and Properties. Macromolecular Materials and Engineering, 297(6), 493–501. https://doi.org/10.1002/mame.201100406spa
dcterms.references19. Galdámez-Martinez, A., Santana, G., Güell, F., Martínez-Alanis, P. R., & Dutt, A. (2020). Photoluminescence of ZnO Nanowires: A Review. Nanomaterials, 10(5), 857. https://doi.org/10.3390/nano10050857spa
dcterms.references20. Garaycochea, A. C. A. (2017, August 30). Estudio de la influencia en la resistencia y ductilidad de las fibras de carbono utilizadas como reforzamiento de vigas de concreto armado. https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/9254spa
dcterms.references21. Gómez Torres, F. D. C., Luis Cervantes López, J., López Rodríguez, A. S., Sifuentes Gallardo, P., Ramírez Morales, E., Pérez Hernández, G., Díaz Guillen, J. C., & Díaz Flores, L. L. (2022). Sol–gel/hydrothermal synthesis of well-aligned ZnO nanorods. Boletín De La Sociedad Española De Cerámica Y Vidrio. https://doi.org/10.1016/j.bsecv.2022.05.004spa
dcterms.references22. González, M. P. C. (2016, November 17). Lumieres - Repositorio institucional Universidad de América: Evaluación para la obtención de resina epoxica a partir de aceite de ricino a nivel laboratorio. https://repository.uamerica.edu.co/handle/20.500.11839/616spa
dcterms.references23. Gotro, J. (2014, 9 marzo). Thermoset Cure Chemistry Part 3: Epoxy Curing Agents. Polymer Innovation Blog. https://polymerinnovationblog.com/thermoset-cure-chemistry-part-3-epoxy-curing-agents/spa
dcterms.references24. Jiang, L., Ulven, C. A., Gutschmidt, D., Anderson, M., Balo, S., Lee, M. & Vigness, J. (2015). Recycling carbon fiber composites using microwave irradiation: Reinforcement study of the recycled fiber in new composites. Journal of Applied Polymer Science, 132(41), n/a-n/a. https://doi.org/10.1002/app.42658spa
dcterms.references25. Jongvivatsakul, P., Thongchom, C., Mathuros, A., Prasertsri, T., Adamu, M., Orasutthikul, S., Lenwari, A., & Charainpanitkul, T. (2022). Enhancing bonding behavior between carbon fiber-reinforced polymer plates and concrete using carbon nanotube reinforced epoxy composites. Case Studies in Construction Materials, 17, e01407. https://doi.org/10.1016/j.cscm.2022.e01407spa
dcterms.references26. Kara, M., Erdag Nomer, A., Kepir, Y., Gunoz, A., & Avci, A. (2022). Low-energy repeated impact response of nanoparticle reinforced carbon fiber epoxy composite pipes. Composite Structures, 299, 116100. https://doi.org/10.1016/j.compstruct.2022.116100spa
dcterms.references27. Karuppannan Gopalraj, S., & Kärki, T. (2020). A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis. SN Applied Sciences, 2(3). https://doi.org/10.1007/s42452-020-2195-4spa
dcterms.references28. Konstantopoulos, G., Soulis, S., Dragatogiannis, D., & Charitidis, C. (2020). Introduction of a Methodology to Enhance the Stabilization Process of PAN Fibers ~ 67 ~ by Modeling and Advanced Characterization. Materials, 13(12), 2749. https://doi.org/10.3390/ma13122749spa
dcterms.references29. Lavin, J. (2002). FRACTURE OF CARBON FIBERS. Fiber Fracture, 157-179. https://doi.org/10.1016/b978-008044104-7/50009-5spa
dcterms.references30. Lee, J. E., Choi, J., Lee, D. J., Lee, S., & Chae, H. G. (2022). Radial microstructure development of polyacrylonitrile (PAN)-based carbon fibers. Carbon, 191, 515–524. https://doi.org/10.1016/j.carbon.2022.02.023spa
dcterms.references31. Lin, G. M., Xie, G. Y., Sui, G. X., & Yang, R. (2012). Hybrid effect of nanoparticles with carbon fibers on the mechanical and wear properties of polymer composites. Composites Part B: Engineering, 43(1), 44–49. https://doi.org/10.1016/j.compositesb.2011.04.029spa
dcterms.references32. Liu, X., Cui, X., Zhang, C., Zhang, X., & Wu, G. (2018). Effects of different silanization followed via the sol-gel growing of silica nanoparticles onto carbon fiber on interfacial strength of silicone resin composites. Chemical Physics Letters, 707, 1–7. https://doi.org/10.1016/j.cplett.2018.07.034spa
dcterms.references33. Mahmood, N. B., Saeed, F. R., Gbashi, K. R. & Mahmood, U. S. (2022). Synthesis and characterization of zinc oxide nanoparticles via oxalate co-precipitation method. Materials Letters: X, 13, 100126. https://doi.org/10.1016/j.mlblux.2022.100126spa
dcterms.references34. Martinez-Ayala, L., Molina-Ruiz, H. D., & García-Salgado, G. (2021). Síntesis de nanohojuelas de ZnO mediante la técnica rocío químico por ultrasonicación. TEPEXI Boletín Científico De La Escuela Superior Tepeji Del Río, 8(15), 6–9. https://doi.org/10.29057/estr.v8i15.6558spa
dcterms.references35. Melanitis, N., Tetlow, P. L. & Galiotis, C. (1996). Characterization of PAN-based carbon fibres with laser Raman spectroscopy. Journal of Materials Science, 31(4), 851-860. https://doi.org/10.1007/bf00352882spa
dcterms.references36. Meng, F., Cui, Y., Pickering, S., & McKechnie, J. (2020). From aviation to aviation: Environmental and financial viability of closed-loop recycling of carbon fibre composite. Composites Part B: Engineering, 200, 108362. https://doi.org/10.1016/j.compositesb.2020.108362spa
dcterms.references37. Meng, F., McKechnie, J., Turner, T., Wong, K. H., & Pickering, S. J. (2017). Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications. Environmental Science &Amp; Technology, 51(21), 12727–12736. https://doi.org/10.1021/acs.est.7b04069spa
dcterms.references38. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A., & Mohajeri, A. (2010). Mechanical properties of multi-walled carbon nanotube/epoxy composites. Materials &Amp; Design, 31(9), 4202–4208. https://doi.org/10.1016/j.matdes.2010.04.018spa
dcterms.references39. Mutis, M. A. G. (2020, October 21). Repositorio Institucional de la Universidad de Guanajuato: Desarrollo de un Horno de Bajo Costo para el Curado de Piezas Fabricadas de Material Compuesto. http://repositorio.ugto.mx/handle/20.500.12059/3149spa
dcterms.references40. Nahil, M. A., & Williams, P. T. (2011). Recycling of carbon fibre reinforced polymeric waste for the production of activated carbon fibres. Journal of Analytical and Applied Pyrolysis, 91(1), 67–75. https://doi.org/10.1016/j.jaap.2011.01.005spa
dcterms.references41. Naqvi, S., Prabhakara, H. M., Bramer, E., Dierkes, W., Akkerman, R., & Brem, G. (2018). A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources, Conservation and Recycling, 136, 118–129. https://doi.org/10.1016/j.resconrec.2018.04.013spa
dcterms.references42. Newcomb, B. A. (2016). Processing, structure, and properties of carbon fibers. Composites Part A: Applied Science and Manufacturing, 91, 262–282. https://doi.org/10.1016/j.compositesa.2016.10.018spa
dcterms.references43. Newman, B., Creighton, C., Henderson, L. C., & Stojcevski, F. (2022). A review of milled carbon fibres in composite materials. Composites Part A: Applied Science and Manufacturing, 163, 107249. https://doi.org/10.1016/j.compositesa.2022.107249spa
dcterms.references44. Ning, N., Wang, M., Zhou, G., Qiu, Y., & Wei, Y. (2022). Effect of polymer nanoparticle morphology on fracture toughness enhancement of carbon fiber reinforced epoxy composites. Composites Part B: Engineering, 234, 109749. https://doi.org/10.1016/j.compositesb.2022.109749spa
dcterms.references45. Obunai, K., Fukuta, T., & Ozaki, K. (2015). Carbon fiber extraction from waste CFRP by microwave irradiation. Composites Part A: Applied Science and Manufacturing, 78, 160–165. https://doi.org/10.1016/j.compositesa.2015.08.012spa
dcterms.references46. Oliveux, G., Dandy, L. O., & Leeke, G. A. (2015). Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science, 72, 61–99. https://doi.org/10.1016/j.pmatsci.2015.01.004spa
dcterms.references47. Pillain, B., Loubet, P., Pestalozzi, F., Woidasky, J., Erriguible, A., Aymonier, C., & Sonnemann, G. (2019). Positioning supercritical solvolysis among innovative recycling and current waste management scenarios for carbon fiber reinforced plastics ~ 69 ~ thanks to comparative life cycle assessment. The Journal of Supercritical Fluids, 154, 104607. https://doi.org/10.1016/j.supflu.2019.104607spa
dcterms.references48. Piñero-Hernanz, R., Dodds, C., Hyde, J., García-Serna, J., Poliakoff, M., Lester, E., Cocero, M. J., Kingman, S., Pickering, S., & Wong, K. H. (2008). Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Composites Part A: Applied Science and Manufacturing, 39(3), 454–461. https://doi.org/10.1016/j.compositesa.2008.01.001spa
dcterms.references49. Qin, J., Wang, C., Lu, R., Su, S., Yao, Z., Zheng, L., Gao, Q., Wang, Y., Wang, Q. & Wei, H. (2020). Uniform growth of carbon nanotubes on carbon fiber cloth after surface oxidation treatment to enhance interfacial strength of composites. Composites Science and Technology, 195, 108198. https://doi.org/10.1016/j.compscitech.2020.108198spa
dcterms.references50. Qin, Y., Summerscales, J., Graham-Jones, J., Meng, M., & Pemberton, R. (2020). Monomer Selection for In Situ Polymerization Infusion Manufacture of Natural-Fiber Reinforced Thermoplastic-Matrix Marine Composites. Polymers, 12(12), 2928. https://doi.org/10.3390/polym12122928spa
dcterms.references51. Raha, S., & Ahmaruzzaman, M. (2022). ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Advances, 4(8), 1868–1925. https://doi.org/10.1039/d1na00880cspa
dcterms.references52. Rasouli, S. (2017). Radial growth of zinc oxide nanowire for piezoelectric nanogenerator application. Applied Physics A, 123(4). https://doi.org/10.1007/s00339-017-0856-yspa
dcterms.references53. Reale Batista, M. D. & Drzal, L. T. (2018). Carbon fiber/epoxy matrix composite interphases modified with cellulose nanocrystals. Composites Science and Technology, 164, 274-281. https://doi.org/10.1016/j.compscitech.2018.05.010spa
dcterms.references54. Roux, M., Eguémann, N., Dransfeld, C., Thiébaud, F., & Perreux, D. (2016). Thermoplastic carbon fibre-reinforced polymer recycling with electrodynamical fragmentation. Journal of Thermoplastic Composite Materials, 30(3), 381–403. https://doi.org/10.1177/0892705715599431spa
dcterms.references55. Rudyak, V., Efimova, E., Guseva, D., & Chertovich, A. (2018). Thermoset Polymer Matrix Structure and Properties: Coarse-Grained Simulations. Polymers, 11(1), 36. https://doi.org/10.3390/polym11010036spa
dcterms.references56. Saba, N., Jawaid, M., & Sultan, M. (2019). An overview of mechanical and physical testing of composite materials. Mechanical and Physical Testing of Biocomposites, ~ 70 ~ Fibre-Reinforced Composites and Hybrid Composites, 1–12. https://doi.org/10.1016/b978-0-08-102292-4.00001-1spa
dcterms.references57. Selva, T. M. G., Selva, J. S. G. & Prata, R. B. (2023). Sensing Materials: Diamond-Based Materials. Encyclopedia of Sensors and Biosensors, 45-72. https://doi.org/10.1016/b978-0-12-822548-6.00081-9spa
dcterms.references58. Shubham, Jena, A., Balaboina, A. R., Prusty, R. K., & Ray, B. C. (2022). Influence of alumina nanoparticles addition on the tribological behaviour of the random discontinuous carbon fibers reinforced epoxy composites. Materialia, 26, 101589. https://doi.org/10.1016/j.mtla.2022.101589spa
dcterms.references59. Solís-Pomar, F., Martínez, E., Meléndrez, M. F., & Pérez-Tijerina, E. (2011). Growth of vertically aligned ZnO nanorods using textured ZnO films. Nanoscale Research Letters, 6(1). https://doi.org/10.1186/1556-276x-6-524spa
dcterms.references60. Souto, F., Calado, V., & Pereira Junior, N. (2015). Fibras de carbono a partir de lignina: uma revisão da literatura. Matéria (Rio De Janeiro), 20(1), 100–114. https://doi.org/10.1590/s1517-707620150001.0012spa
dcterms.references61. Tamaño del mercado de fibra de carbono, informe (2022 - 27) | Análisis de la Indústria. (n.d.). https://www.mordorintelligence.com/es/industry-reports/carbon-fiber-marketspa
dcterms.references62. Theurer, M. M. (2016). Las fibras de carbono como una alternativa para reforzamiento de estructuras. Redalyc.org. https://www.redalyc.org/articulo.oa?id=46750927006spa
dcterms.references63. Tiwari, S., & Bijwe, J. (2014). Surface Treatment of Carbon Fibers - A Review. Procedia Technology, 14, 505–512. https://doi.org/10.1016/j.protcy.2014.08.064spa
dcterms.references64. Tiwari, S., Bijwe, J., & Panier, S. (2011). Tribological studies on polyetherimide composites based on carbon fabric with optimized oxidation treatment. Wear, 271(9–10), 2252–2260. https://doi.org/10.1016/j.wear.2010.11.052spa
dcterms.references65. Tran Thi, V. H., & Lee, B. K. (2017). Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. Journal of Hazardous Materials, 324, 329–339. https://doi.org/10.1016/j.jhazmat.2016.10.066spa
dcterms.references66. Uthaman, A. (n.d.). Durability of an Epoxy Resin and Its Carbon Fiber- Reinforced Polymer Composite upon Immersion in Water, Acidic, and Alkaline Solutions. MDPI. https://www.mdpi.com/2073-4360/12/3/614spa
dcterms.references67. van de Werken, N., Reese, M. S., Taha, M. R., & Tehrani, M. (2019). Investigating the effects of fiber surface treatment and alignment on mechanical properties of recycled carbon fiber composites. Composites Part A: Applied Science and Manufacturing, 119, 38–47. https://doi.org/10.1016/j.compositesa.2019.01.012spa
dcterms.references68. Wernik, J., & Meguid, S. (2014). On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Materials &Amp; Design, 59, 19–32. https://doi.org/10.1016/j.matdes.2014.02.034spa
dcterms.references69. Woodhead, A. L., de Souza, M. L. & Church, J. S. (2017). An investigation into the surface heterogeneity of nitric acid oxidized carbon fiber. Applied Surface Science, 401, 79-88. https://doi.org/10.1016/j.apsusc.2016.12.218spa
dcterms.references70. Wu, G., Ma, L., Jiang, H., Liu, L. & Huang, Y. (2017). Improving the interfacial strength of silicone resin composites by chemically grafting silica nanoparticles on carbon fiber. Composites Science and Technology, 153, 160-167. https://doi.org/10.1016/j.compscitech.2017.10.02spa
dcterms.references71. Wu, X., Han, X., Ma, X., Zhang, W., Deng, Y., Zhong, C., & Hu, W. (2017). Morphology-Controllable Synthesis of Zn–Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc–Air Batteries and Water Electrolysis. ACS Applied Materials &Amp; Interfaces, 9(14), 12574–12583. https://doi.org/10.1021/acsami.6b16602spa
dcterms.references72. Yang, Y., Boom, R., Irion, B., van Heerden, D. J., Kuiper, P., & de Wit, H. (2012). Recycling of composite materials. Chemical Engineering and Processing: Process Intensification, 51, 53–68. https://doi.org/10.1016/j.cep.2011.09.007spa
dcterms.references73. Yanhong, L., Dejun, W., Qidong, Z., Min, Y. & Qinglin, Z. (2004). A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy. The Journal of Physical Chemistry B, 108(10), 3202-3206. https://doi.org/10.1021/jp037201kspa
dcterms.references74. Yildirir, E., Onwudili, J. A., & Williams, P. T. (2014). Recovery of carbon fibres and production of high quality fuel gas from the chemical recycling of carbon fibre reinforced plastic wastes. The Journal of Supercritical Fluids, 92, 107–114. https://doi.org/10.1016/j.supflu.2014.05.015spa
dcterms.references75. Zhang, G., Sun, S., Yang, D., Dodelet, J. P. & Sacher, E. (2008). The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon, 46(2), 196-205. https://doi.org/10.1016/j.carbon.2007.11.002spa
dcterms.references76. Zhang, J., Chevali, V. S., Wang, H., & Wang, C. H. (2020). Current status of carbon fibre and carbon fibre composites recycling. Composites Part B: Engineering, 193, 108053. https://doi.org/10.1016/j.compositesb.2020.108053spa
dcterms.references77. Zhang, M., Qian, X., Ma, K., Ma, H., & Zhang, Y. (2021). Enhanced Interfacial Properties of High-Modulus Carbon Fiber Reinforced PEKK Composites by a Two-Step Surface Treatment: Electrochemical Oxidation Followed by Thermoplastic Sizing. Applied Composite Materials, 29(2), 745–764. https://doi.org/10.1007/s10443-021-09995-8spa
dcterms.references78. Zheng, W., Hu, J., Han, Z., Wang, Z., Zheng, Z., Langer, J., & Economy, J. (2015). Synthesis of porous carbon fibers with strong anion exchange functional groups. Chemical Communications, 51(48), 9853–9856. https://doi.org/10.1039/c5cc02695dspa
dcterms.references79. Zhu, J., Lang, F. C., Wang, S. Y., Li, Z. & Xing, Y. M. (2021). Determination of the interfacial properties of carbon fiber reinforced polymers using nanoindentation. Journal of Reinforced Plastics and Composites, 41(13-14), 509-516. https://doi.org/10.1177/07316844211063571spa
dcterms.references80. Gramajo, M. L. (2021). Parámetros que afectan el crecimiento de nanoestructuras de ZnO por síntesis hidrotermal (Doctoral dissertation, Universidad Nacional de Tucumán).spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
SAMIR ENRIQUE ESQUIVEL GALARCIO.pdf
Tamaño:
3.83 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación..pdf
Tamaño:
437.19 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: