Publicación: Desarrollo de materiales compuestos reforzados basados en fibras de carbono recicladas modificadas con nanoalambres: caracterización, conformación y evaluación mediante nanoindentación
dc.contributor.advisor | Cantero Guevara, Miriam Elena | spa |
dc.contributor.advisor | Meléndrez Castro, Manuel Francisco | spa |
dc.contributor.author | Esquivel Galarcio, Samir Enrique | spa |
dc.date.accessioned | 2023-02-10T14:29:27Z | |
dc.date.available | 2023-02-10T14:29:27Z | |
dc.date.issued | 2023-02-09 | |
dc.description.abstract | Los materiales compuestos reforzados con fibras de carbono (CFRP), presentan excelentes propiedades mecánicas, debido a sus elevadas propiedades específicas, por esto cada día están siendo implementados por diversos sectores industriales, como el aeroespacial, automotriz, marino, entre otros. Lo que genera un aumento en los residuos de este material, los cuales son eliminados mediante dos métodos no sostenibles, los vertederos y la incineración. Una solución a esta problemática consiste en reciclar estos materiales, sin embargo, luego del reciclaje existe una reducción de las propiedades al usar fibras de carbono recicladas (rCF), como la pérdida de resistencia a la tracción y la poca adherencia entre el material reciclado y la nueva matriz. El objetivo de este trabajo es desarrollar CFRP, incorporando nanorods de ZnO alineados verticalmente sobre rCF, para mejorar la interfase resina-fibra y de esta manera mejorar las propiedades mecánicas del material compuesto. Las rCFs se modificaron superficialmente por oxidación ácida (HNO3), posteriormente se hicieron crecer nanorods de ZnO utilizando el proceso por vía húmeda. Luego, fueron funcionalizadas con APTES (3-aminopropiltrietoxisilano) mediante el proceso de hidrolisis para mejorar la interacción físico/química con la matriz epoxi. Las fibras fueron caracterizadas mediante la microscopía electrónica de barrido (SEM), microscopía electrónica de transmisión (TEM), microscopía de fuerza atómica (AFM), espectroscopia ultravioleta-visible (UV-V), difracción de rayos X (DRX), espectroscopia Raman y espectroscopia infrarroja (FT-IR). Por último, se evaluaron las propiedades mecánicas de todas las fibras mediante una prueba de tracción al compuesto y nanoindentación. En la caracterización estructural Raman, se aprecia que la relación 𝐼𝐷/𝐼𝐺, son de 2.037 para las rCF-P-NRDs ZnO y 2.066 para rCF-M-NRDs ZnO, lo que indica que hay un menor daño morfológico respecto a las rCF de control, afirmando que el crecimiento indujo en la recuperación de las fibras. Por otro lado, según los resultados SEM, se puede hacer crecer nanorods de ZnO alineados verticalmente sobre rCF mediante la reacción por vía húmeda, obteniendo diámetros de 179.642 nm. Por último, los valores obtenidos mediante los ensayos de tracción indicaron que hubo una mejora del 45% (rCF-P-NRDs ZnO) y 56% (rCF-M-NRDs ZnO) respecto a la fibra de carbono virgen. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN. ................................................................................................... 1 | spa |
dc.description.tableofcontents | 2. HIPÓTESIS .............................................................................................................. 4 | spa |
dc.description.tableofcontents | 3. OBJETIVOS ............................................................................................................. 4 | spa |
dc.description.tableofcontents | 3.1. Objetivo General ................................................................................................ 4 | spa |
dc.description.tableofcontents | 3.2. Objetivos Específicos ........................................................................................ 4 | spa |
dc.description.tableofcontents | 4. ESTADO DE ARTE. ................................................................................................ 5 | spa |
dc.description.tableofcontents | 4.1. Fibras de Carbono. ............................................................................................. 5 | spa |
dc.description.tableofcontents | 4.1.1. Precursores para obtener fibras de carbono. ............................................... 6 | spa |
dc.description.tableofcontents | 4.1.2. Demanda mundial de las fibras de carbono. ............................................... 9 | spa |
dc.description.tableofcontents | 4.2. Materiales Compuestos. ................................................................................... 11 | spa |
dc.description.tableofcontents | 4.2.1. Tipos de matrices poliméricas. ................................................................. 11 | spa |
dc.description.tableofcontents | 4.3. Propiedades Mecánicas. ................................................................................... 14 | spa |
dc.description.tableofcontents | 4.3.1. Tracción al Compuesto. ............................................................................ 15 | spa |
dc.description.tableofcontents | 4.3.2. Nanoindentación. ...................................................................................... 15 | spa |
dc.description.tableofcontents | 4.4. Reciclaje de Fibras de Carbono. ...................................................................... 16 | spa |
dc.description.tableofcontents | 4.4.1. Tipos de reciclaje. ..................................................................................... 17 | spa |
dc.description.tableofcontents | 4.4.2. Recuperación de rCF a partir de modificaciones superficiales. ............... 20 | spa |
dc.description.tableofcontents | 5. METODOLOGÍA. .................................................................................................. 27 | spa |
dc.description.tableofcontents | 5.1. Modificación superficial de Fibras de Carbono con HNO3 ............................. 27 | spa |
dc.description.tableofcontents | 5.2. Síntesis de nanopartículas de ZnO. .................................................................. 28 | spa |
dc.description.tableofcontents | 5.3. Crecimiento de Nanorods de ZnO. .................................................................. 30 | spa |
dc.description.tableofcontents | 5.4. Funcionalización amínica de fibras de Carbono con Nanorods de ZnO ......... 32 | spa |
dc.description.tableofcontents | 5.5. Fabricación del material compuesto. ............................................................... 33 | spa |
dc.description.tableofcontents | 5.5.1. Caracterización de material compuesto. ................................................... 33 | spa |
dc.description.tableofcontents | 6. RESULTADOS Y DISCUSIÓN DE RESULTADOS. .......................................... 35 | spa |
dc.description.tableofcontents | 6.1. Modificación superficial con HNO3 ................................................................ 35 | spa |
dc.description.tableofcontents | 6.1.1. Resultados FT-IR. ..................................................................................... 35 | spa |
dc.description.tableofcontents | 6.1.2. Resultados Raman. ................................................................................... 37 | spa |
dc.description.tableofcontents | 6.2. Síntesis de Nanopartículas de ZnO .................................................................. 41 | spa |
dc.description.tableofcontents | 6.2.1. Resultados UV-Visible. ............................................................................ 41 | spa |
dc.description.tableofcontents | 6.2.2. Resultados de Microscopia de fuerza atómica AFM. ............................... 41 | spa |
dc.description.tableofcontents | 6.3. Crecimiento de Nanorods de ZnO alineados verticalmente en fibras de carbono recicladas. ................................................................................................................... 43 | spa |
dc.description.tableofcontents | 6.3.1. Resultados de Microscopia Electrónica de Barrido SEM y Microscopia Electrónica de Trasmisión (TEM). ......................................................................... 43 | spa |
dc.description.tableofcontents | 6.3.2. Resultados de Difracción de Rayos X (DRX). ......................................... 46 | spa |
dc.description.tableofcontents | 6.3.3. Resultados Raman. ................................................................................... 49 | spa |
dc.description.tableofcontents | 6.4. Funcionalización amínica de fibras de carbono recicladas con nanorods de ZnO. 52 | spa |
dc.description.tableofcontents | 6.4.1. Resultados FT-IR. ..................................................................................... 52 | spa |
dc.description.tableofcontents | 6.4.2. Resultados Raman. ................................................................................... 53 | spa |
dc.description.tableofcontents | 6.5. Fabricación del Material Compuesto. .............................................................. 55 | spa |
dc.description.tableofcontents | 6.5.1. Resultados de tracción al compuesto. ....................................................... 55 | spa |
dc.description.tableofcontents | 6.5.2. Resultados de Nanoindentación................................................................ 60 | spa |
dc.description.tableofcontents | 7. CONCLUSIONES .................................................................................................. 63 | spa |
dc.description.tableofcontents | 8. REFERENCIAS BIBLIOGRAFICAS ................................................................... 64 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7062 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Química | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Acid oxidation | eng |
dc.subject.keywords | ZnO Nanorods, | eng |
dc.subject.keywords | Functionalization | eng |
dc.subject.proposal | Oxidación ácida | spa |
dc.subject.proposal | Nanorods de ZnO | spa |
dc.subject.proposal | Funcionalización | spa |
dc.title | Desarrollo de materiales compuestos reforzados basados en fibras de carbono recicladas modificadas con nanoalambres: caracterización, conformación y evaluación mediante nanoindentación | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | 1. Aoki, R., Yamaguchi, A., Hashimoto, T., Urushisaki, M., Sakaguchi, T., Kawabe, K., Kondo, K., & Iyo, H. (2019). Preparation of carbon fibers coated with epoxy sizing agents containing degradable acetal linkages and synthesis of carbon fiber-reinforced plastics (CFRPs) for chemical recycling. Polymer Journal, 51(9), 909–920. https://doi.org/10.1038/s41428-019-0202-7 | spa |
dcterms.references | 2. Arundhathi, K. (2019). Synthesis of ZnO Nanoparticles by Simple Precipitation Method. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3881017 | spa |
dcterms.references | 3. Bîrcă, A., Gherasim, O., Grumezescu, V., & Grumezescu, A. M. (2019). Introduction in thermoplastic and thermosetting polymers. Materials for Biomedical Engineering, 1–28. https://doi.org/10.1016/b978-0-12-816874-5.00001-3 | spa |
dcterms.references | 4. Borjan, D., Knez, E., & Knez, M. (2021). Recycling of Carbon Fiber-Reinforced Composites—Difficulties and Future Perspectives. Materials, 14(15), 4191. https://doi.org/10.3390/ma14154191 | spa |
dcterms.references | 5. Butenegro, J. A., Bahrami, M., Abenojar, J., & Martínez, M. N. (2021). Recent Progress in Carbon Fiber Reinforced Polymers Recycling: A Review of Recycling Methods and Reuse of Carbon Fibers. Materials, 14(21), 6401. https://doi.org/10.3390/ma14216401 | spa |
dcterms.references | 6. Calas, M. M. D. (2022, January 24). Análisis experimental del fresado de materiales compuestos reforzados con fibra de basalto. https://riunet.upv.es/handle/10251/177645 | spa |
dcterms.references | 6. Calas, M. M. D. (2022, January 24). Análisis experimental del fresado de materiales compuestos reforzados con fibra de basalto. https://riunet.upv.es/handle/10251/177645 | spa |
dcterms.references | 8. Cao, W. W., Zhu, B., Jing, M., & Wang, C. G. (2008). Raman spectra of PAN-based carbon fibers during surface treatment. Guang pu xue yu Guang pu fen xi= Guang pu, 28(12), 2885-2889. | spa |
dcterms.references | 9. Cha, J., Jin, S., Shim, J. H., Park, C. S., Ryu, H. J., & Hong, S. H. (2016). Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Materials &Amp; Design, 95, 1–8. https://doi.org/10.1016/j.matdes.2016.01.077 | spa |
dcterms.references | 10. Cha, J., Jun, G. H., Park, J. K., Kim, J. C., Ryu, H. J., & Hong, S. H. (2017). Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes. Composites Part B: Engineering, 129, 169–179. https://doi.org/10.1016/j.compositesb.2017.07.070 | spa |
dcterms.references | 11. Chen, C. H., Chiang, C. L., Wang, J. X., & Shen, M. Y. (2022). A circular economy study on the characterization and thermal properties of thermoplastic composite created using regenerated carbon fiber recycled from waste thermoset CFRP bicycle part as reinforcement. Composites Science and Technology, 230, 109761. https://doi.org/10.1016/j.compscitech.2022.109761 | spa |
dcterms.references | 12. Colucci, G., Ostrovskaya, O., Frache, A., Martorana, B., & Badini, C. (2015). The effect of mechanical recycling on the microstructure and properties of PA66 composites reinforced with carbon fibers. Journal of Applied Polymer Science, 132(29), n/a-n/a. https://doi.org/10.1002/app.42275 | spa |
dcterms.references | 13. Das, S., Warren, J., West, D., & Schexnayder, S. M. (2016, May 1). Global Carbon Fiber Composites Supply Chain Competitiveness Analysis. https://www.osti.gov/biblio/1333049/ | spa |
dcterms.references | 14. Ding, R., Sun, Y., Lee, J., Nam, J. D. & Suhr, J. (2021). Enhancing interfacial properties of carbon fiber reinforced epoxy composites by grafting MXene sheets (Ti2C). Composites Part B: Engineering, 207, 108580. https://doi.org/10.1016/j.compositesb.2020.108580 | spa |
dcterms.references | 15. Dumanlı, A. G. & Windle, A. H. (2012). Carbon fibres from cellulosic precursors: a review. Journal of Materials Science, 47(10), 4236-4250. https://doi.org/10.1007/s10853-011-6081-8 | spa |
dcterms.references | 16. Fei, J., Luo, D., Huang, J., Zhang, C., Duan, X. & Zhang, L. (2018). Growth of aligned ZnO nanorods on carbon fabric and its composite for superior mechanical and tribological performance. Surface and Coatings Technology, 344, 433-440. https://doi.org/10.1016/j.surfcoat.2018.03.056 | spa |
dcterms.references | 17. Fernández, A., Lopes, C. S., González, C. & López, F. A. (2018). Characterization of Carbon Fibers Recovered by Pyrolysis of Cured Prepregs and Their Reuse in New Composites. Recent Developments in the Field of Carbon Fibers. https://doi.org/10.5772/intechopen.74281 | spa |
dcterms.references | 18. Frank, E., Hermanutz, F., & Buchmeiser, M. R. (2012). Carbon Fibers: Precursors, Manufacturing, and Properties. Macromolecular Materials and Engineering, 297(6), 493–501. https://doi.org/10.1002/mame.201100406 | spa |
dcterms.references | 19. Galdámez-Martinez, A., Santana, G., Güell, F., Martínez-Alanis, P. R., & Dutt, A. (2020). Photoluminescence of ZnO Nanowires: A Review. Nanomaterials, 10(5), 857. https://doi.org/10.3390/nano10050857 | spa |
dcterms.references | 20. Garaycochea, A. C. A. (2017, August 30). Estudio de la influencia en la resistencia y ductilidad de las fibras de carbono utilizadas como reforzamiento de vigas de concreto armado. https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/9254 | spa |
dcterms.references | 21. Gómez Torres, F. D. C., Luis Cervantes López, J., López Rodríguez, A. S., Sifuentes Gallardo, P., Ramírez Morales, E., Pérez Hernández, G., Díaz Guillen, J. C., & Díaz Flores, L. L. (2022). Sol–gel/hydrothermal synthesis of well-aligned ZnO nanorods. Boletín De La Sociedad Española De Cerámica Y Vidrio. https://doi.org/10.1016/j.bsecv.2022.05.004 | spa |
dcterms.references | 22. González, M. P. C. (2016, November 17). Lumieres - Repositorio institucional Universidad de América: Evaluación para la obtención de resina epoxica a partir de aceite de ricino a nivel laboratorio. https://repository.uamerica.edu.co/handle/20.500.11839/616 | spa |
dcterms.references | 23. Gotro, J. (2014, 9 marzo). Thermoset Cure Chemistry Part 3: Epoxy Curing Agents. Polymer Innovation Blog. https://polymerinnovationblog.com/thermoset-cure-chemistry-part-3-epoxy-curing-agents/ | spa |
dcterms.references | 24. Jiang, L., Ulven, C. A., Gutschmidt, D., Anderson, M., Balo, S., Lee, M. & Vigness, J. (2015). Recycling carbon fiber composites using microwave irradiation: Reinforcement study of the recycled fiber in new composites. Journal of Applied Polymer Science, 132(41), n/a-n/a. https://doi.org/10.1002/app.42658 | spa |
dcterms.references | 25. Jongvivatsakul, P., Thongchom, C., Mathuros, A., Prasertsri, T., Adamu, M., Orasutthikul, S., Lenwari, A., & Charainpanitkul, T. (2022). Enhancing bonding behavior between carbon fiber-reinforced polymer plates and concrete using carbon nanotube reinforced epoxy composites. Case Studies in Construction Materials, 17, e01407. https://doi.org/10.1016/j.cscm.2022.e01407 | spa |
dcterms.references | 26. Kara, M., Erdag Nomer, A., Kepir, Y., Gunoz, A., & Avci, A. (2022). Low-energy repeated impact response of nanoparticle reinforced carbon fiber epoxy composite pipes. Composite Structures, 299, 116100. https://doi.org/10.1016/j.compstruct.2022.116100 | spa |
dcterms.references | 27. Karuppannan Gopalraj, S., & Kärki, T. (2020). A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis. SN Applied Sciences, 2(3). https://doi.org/10.1007/s42452-020-2195-4 | spa |
dcterms.references | 28. Konstantopoulos, G., Soulis, S., Dragatogiannis, D., & Charitidis, C. (2020). Introduction of a Methodology to Enhance the Stabilization Process of PAN Fibers ~ 67 ~ by Modeling and Advanced Characterization. Materials, 13(12), 2749. https://doi.org/10.3390/ma13122749 | spa |
dcterms.references | 29. Lavin, J. (2002). FRACTURE OF CARBON FIBERS. Fiber Fracture, 157-179. https://doi.org/10.1016/b978-008044104-7/50009-5 | spa |
dcterms.references | 30. Lee, J. E., Choi, J., Lee, D. J., Lee, S., & Chae, H. G. (2022). Radial microstructure development of polyacrylonitrile (PAN)-based carbon fibers. Carbon, 191, 515–524. https://doi.org/10.1016/j.carbon.2022.02.023 | spa |
dcterms.references | 31. Lin, G. M., Xie, G. Y., Sui, G. X., & Yang, R. (2012). Hybrid effect of nanoparticles with carbon fibers on the mechanical and wear properties of polymer composites. Composites Part B: Engineering, 43(1), 44–49. https://doi.org/10.1016/j.compositesb.2011.04.029 | spa |
dcterms.references | 32. Liu, X., Cui, X., Zhang, C., Zhang, X., & Wu, G. (2018). Effects of different silanization followed via the sol-gel growing of silica nanoparticles onto carbon fiber on interfacial strength of silicone resin composites. Chemical Physics Letters, 707, 1–7. https://doi.org/10.1016/j.cplett.2018.07.034 | spa |
dcterms.references | 33. Mahmood, N. B., Saeed, F. R., Gbashi, K. R. & Mahmood, U. S. (2022). Synthesis and characterization of zinc oxide nanoparticles via oxalate co-precipitation method. Materials Letters: X, 13, 100126. https://doi.org/10.1016/j.mlblux.2022.100126 | spa |
dcterms.references | 34. Martinez-Ayala, L., Molina-Ruiz, H. D., & García-Salgado, G. (2021). Síntesis de nanohojuelas de ZnO mediante la técnica rocío químico por ultrasonicación. TEPEXI Boletín Científico De La Escuela Superior Tepeji Del Río, 8(15), 6–9. https://doi.org/10.29057/estr.v8i15.6558 | spa |
dcterms.references | 35. Melanitis, N., Tetlow, P. L. & Galiotis, C. (1996). Characterization of PAN-based carbon fibres with laser Raman spectroscopy. Journal of Materials Science, 31(4), 851-860. https://doi.org/10.1007/bf00352882 | spa |
dcterms.references | 36. Meng, F., Cui, Y., Pickering, S., & McKechnie, J. (2020). From aviation to aviation: Environmental and financial viability of closed-loop recycling of carbon fibre composite. Composites Part B: Engineering, 200, 108362. https://doi.org/10.1016/j.compositesb.2020.108362 | spa |
dcterms.references | 37. Meng, F., McKechnie, J., Turner, T., Wong, K. H., & Pickering, S. J. (2017). Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications. Environmental Science &Amp; Technology, 51(21), 12727–12736. https://doi.org/10.1021/acs.est.7b04069 | spa |
dcterms.references | 38. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A., & Mohajeri, A. (2010). Mechanical properties of multi-walled carbon nanotube/epoxy composites. Materials &Amp; Design, 31(9), 4202–4208. https://doi.org/10.1016/j.matdes.2010.04.018 | spa |
dcterms.references | 39. Mutis, M. A. G. (2020, October 21). Repositorio Institucional de la Universidad de Guanajuato: Desarrollo de un Horno de Bajo Costo para el Curado de Piezas Fabricadas de Material Compuesto. http://repositorio.ugto.mx/handle/20.500.12059/3149 | spa |
dcterms.references | 40. Nahil, M. A., & Williams, P. T. (2011). Recycling of carbon fibre reinforced polymeric waste for the production of activated carbon fibres. Journal of Analytical and Applied Pyrolysis, 91(1), 67–75. https://doi.org/10.1016/j.jaap.2011.01.005 | spa |
dcterms.references | 41. Naqvi, S., Prabhakara, H. M., Bramer, E., Dierkes, W., Akkerman, R., & Brem, G. (2018). A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources, Conservation and Recycling, 136, 118–129. https://doi.org/10.1016/j.resconrec.2018.04.013 | spa |
dcterms.references | 42. Newcomb, B. A. (2016). Processing, structure, and properties of carbon fibers. Composites Part A: Applied Science and Manufacturing, 91, 262–282. https://doi.org/10.1016/j.compositesa.2016.10.018 | spa |
dcterms.references | 43. Newman, B., Creighton, C., Henderson, L. C., & Stojcevski, F. (2022). A review of milled carbon fibres in composite materials. Composites Part A: Applied Science and Manufacturing, 163, 107249. https://doi.org/10.1016/j.compositesa.2022.107249 | spa |
dcterms.references | 44. Ning, N., Wang, M., Zhou, G., Qiu, Y., & Wei, Y. (2022). Effect of polymer nanoparticle morphology on fracture toughness enhancement of carbon fiber reinforced epoxy composites. Composites Part B: Engineering, 234, 109749. https://doi.org/10.1016/j.compositesb.2022.109749 | spa |
dcterms.references | 45. Obunai, K., Fukuta, T., & Ozaki, K. (2015). Carbon fiber extraction from waste CFRP by microwave irradiation. Composites Part A: Applied Science and Manufacturing, 78, 160–165. https://doi.org/10.1016/j.compositesa.2015.08.012 | spa |
dcterms.references | 46. Oliveux, G., Dandy, L. O., & Leeke, G. A. (2015). Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science, 72, 61–99. https://doi.org/10.1016/j.pmatsci.2015.01.004 | spa |
dcterms.references | 47. Pillain, B., Loubet, P., Pestalozzi, F., Woidasky, J., Erriguible, A., Aymonier, C., & Sonnemann, G. (2019). Positioning supercritical solvolysis among innovative recycling and current waste management scenarios for carbon fiber reinforced plastics ~ 69 ~ thanks to comparative life cycle assessment. The Journal of Supercritical Fluids, 154, 104607. https://doi.org/10.1016/j.supflu.2019.104607 | spa |
dcterms.references | 48. Piñero-Hernanz, R., Dodds, C., Hyde, J., García-Serna, J., Poliakoff, M., Lester, E., Cocero, M. J., Kingman, S., Pickering, S., & Wong, K. H. (2008). Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Composites Part A: Applied Science and Manufacturing, 39(3), 454–461. https://doi.org/10.1016/j.compositesa.2008.01.001 | spa |
dcterms.references | 49. Qin, J., Wang, C., Lu, R., Su, S., Yao, Z., Zheng, L., Gao, Q., Wang, Y., Wang, Q. & Wei, H. (2020). Uniform growth of carbon nanotubes on carbon fiber cloth after surface oxidation treatment to enhance interfacial strength of composites. Composites Science and Technology, 195, 108198. https://doi.org/10.1016/j.compscitech.2020.108198 | spa |
dcterms.references | 50. Qin, Y., Summerscales, J., Graham-Jones, J., Meng, M., & Pemberton, R. (2020). Monomer Selection for In Situ Polymerization Infusion Manufacture of Natural-Fiber Reinforced Thermoplastic-Matrix Marine Composites. Polymers, 12(12), 2928. https://doi.org/10.3390/polym12122928 | spa |
dcterms.references | 51. Raha, S., & Ahmaruzzaman, M. (2022). ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Advances, 4(8), 1868–1925. https://doi.org/10.1039/d1na00880c | spa |
dcterms.references | 52. Rasouli, S. (2017). Radial growth of zinc oxide nanowire for piezoelectric nanogenerator application. Applied Physics A, 123(4). https://doi.org/10.1007/s00339-017-0856-y | spa |
dcterms.references | 53. Reale Batista, M. D. & Drzal, L. T. (2018). Carbon fiber/epoxy matrix composite interphases modified with cellulose nanocrystals. Composites Science and Technology, 164, 274-281. https://doi.org/10.1016/j.compscitech.2018.05.010 | spa |
dcterms.references | 54. Roux, M., Eguémann, N., Dransfeld, C., Thiébaud, F., & Perreux, D. (2016). Thermoplastic carbon fibre-reinforced polymer recycling with electrodynamical fragmentation. Journal of Thermoplastic Composite Materials, 30(3), 381–403. https://doi.org/10.1177/0892705715599431 | spa |
dcterms.references | 55. Rudyak, V., Efimova, E., Guseva, D., & Chertovich, A. (2018). Thermoset Polymer Matrix Structure and Properties: Coarse-Grained Simulations. Polymers, 11(1), 36. https://doi.org/10.3390/polym11010036 | spa |
dcterms.references | 56. Saba, N., Jawaid, M., & Sultan, M. (2019). An overview of mechanical and physical testing of composite materials. Mechanical and Physical Testing of Biocomposites, ~ 70 ~ Fibre-Reinforced Composites and Hybrid Composites, 1–12. https://doi.org/10.1016/b978-0-08-102292-4.00001-1 | spa |
dcterms.references | 57. Selva, T. M. G., Selva, J. S. G. & Prata, R. B. (2023). Sensing Materials: Diamond-Based Materials. Encyclopedia of Sensors and Biosensors, 45-72. https://doi.org/10.1016/b978-0-12-822548-6.00081-9 | spa |
dcterms.references | 58. Shubham, Jena, A., Balaboina, A. R., Prusty, R. K., & Ray, B. C. (2022). Influence of alumina nanoparticles addition on the tribological behaviour of the random discontinuous carbon fibers reinforced epoxy composites. Materialia, 26, 101589. https://doi.org/10.1016/j.mtla.2022.101589 | spa |
dcterms.references | 59. Solís-Pomar, F., Martínez, E., Meléndrez, M. F., & Pérez-Tijerina, E. (2011). Growth of vertically aligned ZnO nanorods using textured ZnO films. Nanoscale Research Letters, 6(1). https://doi.org/10.1186/1556-276x-6-524 | spa |
dcterms.references | 60. Souto, F., Calado, V., & Pereira Junior, N. (2015). Fibras de carbono a partir de lignina: uma revisão da literatura. Matéria (Rio De Janeiro), 20(1), 100–114. https://doi.org/10.1590/s1517-707620150001.0012 | spa |
dcterms.references | 61. Tamaño del mercado de fibra de carbono, informe (2022 - 27) | Análisis de la Indústria. (n.d.). https://www.mordorintelligence.com/es/industry-reports/carbon-fiber-market | spa |
dcterms.references | 62. Theurer, M. M. (2016). Las fibras de carbono como una alternativa para reforzamiento de estructuras. Redalyc.org. https://www.redalyc.org/articulo.oa?id=46750927006 | spa |
dcterms.references | 63. Tiwari, S., & Bijwe, J. (2014). Surface Treatment of Carbon Fibers - A Review. Procedia Technology, 14, 505–512. https://doi.org/10.1016/j.protcy.2014.08.064 | spa |
dcterms.references | 64. Tiwari, S., Bijwe, J., & Panier, S. (2011). Tribological studies on polyetherimide composites based on carbon fabric with optimized oxidation treatment. Wear, 271(9–10), 2252–2260. https://doi.org/10.1016/j.wear.2010.11.052 | spa |
dcterms.references | 65. Tran Thi, V. H., & Lee, B. K. (2017). Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. Journal of Hazardous Materials, 324, 329–339. https://doi.org/10.1016/j.jhazmat.2016.10.066 | spa |
dcterms.references | 66. Uthaman, A. (n.d.). Durability of an Epoxy Resin and Its Carbon Fiber- Reinforced Polymer Composite upon Immersion in Water, Acidic, and Alkaline Solutions. MDPI. https://www.mdpi.com/2073-4360/12/3/614 | spa |
dcterms.references | 67. van de Werken, N., Reese, M. S., Taha, M. R., & Tehrani, M. (2019). Investigating the effects of fiber surface treatment and alignment on mechanical properties of recycled carbon fiber composites. Composites Part A: Applied Science and Manufacturing, 119, 38–47. https://doi.org/10.1016/j.compositesa.2019.01.012 | spa |
dcterms.references | 68. Wernik, J., & Meguid, S. (2014). On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Materials &Amp; Design, 59, 19–32. https://doi.org/10.1016/j.matdes.2014.02.034 | spa |
dcterms.references | 69. Woodhead, A. L., de Souza, M. L. & Church, J. S. (2017). An investigation into the surface heterogeneity of nitric acid oxidized carbon fiber. Applied Surface Science, 401, 79-88. https://doi.org/10.1016/j.apsusc.2016.12.218 | spa |
dcterms.references | 70. Wu, G., Ma, L., Jiang, H., Liu, L. & Huang, Y. (2017). Improving the interfacial strength of silicone resin composites by chemically grafting silica nanoparticles on carbon fiber. Composites Science and Technology, 153, 160-167. https://doi.org/10.1016/j.compscitech.2017.10.02 | spa |
dcterms.references | 71. Wu, X., Han, X., Ma, X., Zhang, W., Deng, Y., Zhong, C., & Hu, W. (2017). Morphology-Controllable Synthesis of Zn–Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc–Air Batteries and Water Electrolysis. ACS Applied Materials &Amp; Interfaces, 9(14), 12574–12583. https://doi.org/10.1021/acsami.6b16602 | spa |
dcterms.references | 72. Yang, Y., Boom, R., Irion, B., van Heerden, D. J., Kuiper, P., & de Wit, H. (2012). Recycling of composite materials. Chemical Engineering and Processing: Process Intensification, 51, 53–68. https://doi.org/10.1016/j.cep.2011.09.007 | spa |
dcterms.references | 73. Yanhong, L., Dejun, W., Qidong, Z., Min, Y. & Qinglin, Z. (2004). A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy. The Journal of Physical Chemistry B, 108(10), 3202-3206. https://doi.org/10.1021/jp037201k | spa |
dcterms.references | 74. Yildirir, E., Onwudili, J. A., & Williams, P. T. (2014). Recovery of carbon fibres and production of high quality fuel gas from the chemical recycling of carbon fibre reinforced plastic wastes. The Journal of Supercritical Fluids, 92, 107–114. https://doi.org/10.1016/j.supflu.2014.05.015 | spa |
dcterms.references | 75. Zhang, G., Sun, S., Yang, D., Dodelet, J. P. & Sacher, E. (2008). The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon, 46(2), 196-205. https://doi.org/10.1016/j.carbon.2007.11.002 | spa |
dcterms.references | 76. Zhang, J., Chevali, V. S., Wang, H., & Wang, C. H. (2020). Current status of carbon fibre and carbon fibre composites recycling. Composites Part B: Engineering, 193, 108053. https://doi.org/10.1016/j.compositesb.2020.108053 | spa |
dcterms.references | 77. Zhang, M., Qian, X., Ma, K., Ma, H., & Zhang, Y. (2021). Enhanced Interfacial Properties of High-Modulus Carbon Fiber Reinforced PEKK Composites by a Two-Step Surface Treatment: Electrochemical Oxidation Followed by Thermoplastic Sizing. Applied Composite Materials, 29(2), 745–764. https://doi.org/10.1007/s10443-021-09995-8 | spa |
dcterms.references | 78. Zheng, W., Hu, J., Han, Z., Wang, Z., Zheng, Z., Langer, J., & Economy, J. (2015). Synthesis of porous carbon fibers with strong anion exchange functional groups. Chemical Communications, 51(48), 9853–9856. https://doi.org/10.1039/c5cc02695d | spa |
dcterms.references | 79. Zhu, J., Lang, F. C., Wang, S. Y., Li, Z. & Xing, Y. M. (2021). Determination of the interfacial properties of carbon fiber reinforced polymers using nanoindentation. Journal of Reinforced Plastics and Composites, 41(13-14), 509-516. https://doi.org/10.1177/07316844211063571 | spa |
dcterms.references | 80. Gramajo, M. L. (2021). Parámetros que afectan el crecimiento de nanoestructuras de ZnO por síntesis hidrotermal (Doctoral dissertation, Universidad Nacional de Tucumán). | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: