Publicación: Estudio químico y evaluación de las actividades antioxidante y bactericida del calamar Lolliguncula brevis (Blainville, 1823) recolectado en la Bahía de Cispatá
dc.audience | ||
dc.contributor.advisor | Santafé Patiño, Gilmar | |
dc.contributor.author | Rivero Arrieta, Juan Andrés | |
dc.contributor.jury | Valle Zapata, Hernán | |
dc.contributor.jury | Pastrana Franco, Orlando | |
dc.date.accessioned | 2024-08-20T16:19:11Z | |
dc.date.available | 2024-08-20T16:19:11Z | |
dc.date.issued | 2024-08-20 | |
dc.description.abstract | Los problemas actuales de resistencia antimicrobiana y propagación de enfermedades ocasionadas por estrés oxidativo, han incentivado en los últimos años a que la fauna y flora de los océanos sean foco de interés de los investigadores alrededor del mundo, como fuente prometedora de compuestos químicos con potencial terapéutico. Como parte de este gran mundo marino, los cefalópodos, han sido objeto de estudio, principalmente debido a la secreción de tinta como mecanismo de defensa; dentro de ellos, el calamar Lolliguncula brevis es una especie con escasos estudios referentes a su composición química o de actividades biológicas, por ello surgió el interés de identificar sus metabolitos secundarios y evaluar su potencial antioxidante y bactericida. En este estudio, los ensayos químicos preliminares realizados, demostraron la presencia de triterpenoides y/o esteroides, saponinas y posible presencia de alcaloides. A partir de la aplicación de técnicas cromatográficas se logró el aislamiento y posterior identificación mediante cromatografía de gases acoplada a espectrometría de masas (GC-MS) de 23 ácidos grasos, destacándose la gran concentración de los ácidos hexadecanoico y docosahexaenoico (DHA); 2 hidrocarburos (Nonacosano y pentadecano) y 2 esteroles (Colesterol metil éter y colesterol). El extracto etanólico evidenció actividad antioxidante presentando valores de IC50 795,33 y 70,43 ppm en las metodologías DPPH• y ABTS+• respectivamente. En cuanto a la actividad bactericida, se notaron reducciones del crecimiento bacteriano superiores al 75% en todas las concentraciones evaluadas contra Staphylococcus aureus, mientras que Pseudomonas aeruginosa mostró una notable resistencia a las diversas concentraciones evaluadas. | spa |
dc.description.abstract | The current problems of antimicrobial resistance and the spread of diseases caused by oxidative stress, have encouraged in recent years the fauna and flora of the oceans to be the focus of interest of researchers around the world, as a promising source of chemical compounds with therapeutic potential. As part of this large marine world, cephalopods have been studied, mainly due to the secretion of ink as a defense mechanism; Among them, the squid Lolliguncula brevis is a species with few studies regarding its chemical composition or biological activities, therefore the interest arose to identify its secondary metabolites and evaluate its antioxidant and bactericidal potential. In this study, preliminary chemical tests performed showed the presence of triterpenoids and/or steroids, saponins and possible presence of alkaloids. From the application of chromatographic techniques, isolation and subsequent identification by gas chromatography coupled to mass spectrometry (GC-MS) of 23 fatty acids was achieved, highlighting the high concentration of hexadecanoic and docosahexaenoic acids (DHA); 2 hydrocarbons (Nonacosano and pentadecane) and 2 sterols (Cholesterol methyl ether and cholesterol). The ethanolic extract showed antioxidant activity with IC50 values of 795.33 and 70.43 ppm in the DPPH• and ABTS+• methodologies respectively. Bacterial growth was reduced by more than 75% at all concentrations evaluated against Staphylococcus aureus, while Pseudomonas aeruginosa showed remarkable resistance to the various concentrations evaluated. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Químico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | 1. INTRODUCCIÓN ..............................................................................................................17 | spa |
dc.description.tableofcontents | 2. OBJETIVOS .....................................................................................................................20 | spa |
dc.description.tableofcontents | 2.1 Objetivo General .............................................................................................................20 | spa |
dc.description.tableofcontents | 2.2 Objetivos Específicos ......................................................................................................20 | spa |
dc.description.tableofcontents | 3. MARCO TEÓRICO ..............................................................................................................21 | spa |
dc.description.tableofcontents | 3.1 Antecedentes ..............................................................................................................21 | spa |
dc.description.tableofcontents | 3.2 Marco Conceptual ......................................................................................................24 | spa |
dc.description.tableofcontents | 3.2.1 Invertebrados Marinos ......................................................................................24 | spa |
dc.description.tableofcontents | 3.2.2 Phylum Mollusca ......................................................................................................25 | spa |
dc.description.tableofcontents | 3.2.3 Clase: Cephalopoda ..............................................................................................27 | spa |
dc.description.tableofcontents | 3.2.3.1 Metabolitos Secundarios de la Clase Cephalopoda.............................................27 | spa |
dc.description.tableofcontents | 3.2.4 Familia Loliginidae ..............................................................................................30 | spa |
dc.description.tableofcontents | 3.2.4.1 Metabolitos Secundarios de la Familia Loliginidae ......................................30 | spa |
dc.description.tableofcontents | 3.2.5 Genero Lolliguncula ..............................................................................................31 | spa |
dc.description.tableofcontents | 3.2.5.1 Taxonomía y Descripción General de la Especie Lolliguncula brevis. ...............32 | spa |
dc.description.tableofcontents | 3.2.6 Actividad Antioxidante ......................................................................................34 | spa |
dc.description.tableofcontents | 3.2.6.1 Radical Libre .............................................................................................................34 | spa |
dc.description.tableofcontents | 3.2.6.2 Estrés Oxidativo ......................................................................................................35 | spa |
dc.description.tableofcontents | 3.2.6.3 Antioxidantes ......................................................................................................35 | spa |
dc.description.tableofcontents | 3.2.6.4 Ensayos de Actividad Antioxidante .......................................................................36 | spa |
dc.description.tableofcontents | 3.2.7 Actividad Bactericida ...............................................................................................38 | spa |
dc.description.tableofcontents | 3.2.7.1 Resistencia a los Antimicrobianos .......................................................................38 | spa |
dc.description.tableofcontents | 3.2.7.2 Ensayos de Actividad Bactericida .......................................................................39 | spa |
dc.description.tableofcontents | 4. METODOLOGÍA ...............................................................................................................40 | spa |
dc.description.tableofcontents | 4.1 Materiales y Equipos .......................................................................................................40 | spa |
dc.description.tableofcontents | 4.1.1 Materiales y Reactivos .......................................................................................40 | spa |
dc.description.tableofcontents | 4.1.2 Equipos .......................................................................................................................41 | spa |
dc.description.tableofcontents | 4.2 Procedimiento ...............................................................................................................41 | spa |
dc.description.tableofcontents | 4.2.1 Recolección del Material Biológico .......................................................................41 | spa |
dc.description.tableofcontents | 4.2.2 Obtención del Extracto Etanólico del Calamar Lolliguncula brevis ................42 | spa |
dc.description.tableofcontents | 4.2.3 Evaluación Química Preliminar ...............................................................................42 | spa |
dc.description.tableofcontents | 4.2.4 Fraccionamiento del Extracto Primario ...............................................................43 | spa |
dc.description.tableofcontents | 4.2.5 Fraccionamiento Cromatográfico .......................................................................43 | spa |
dc.description.tableofcontents | 4.2.6 Obtención de Ésteres Metílicos de Ácidos Grasos................................................44 | spa |
dc.description.tableofcontents | 4.2.7 Identificación de los Compuestos Aislados ......................................................44 | spa |
dc.description.tableofcontents | 4.2.8 Evaluación de la Actividad Antioxidante. ..............................................................45 | spa |
dc.description.tableofcontents | 4.2.8.1 Ensayo DPPH•.............................................................................................................45 | spa |
dc.description.tableofcontents | 4.2.8.2 Ensayo ABTS+• ......................................................................................................46 | spa |
dc.description.tableofcontents | 4.2.9 Evaluación de la Actividad Bactericida. ..............................................................47 | spa |
dc.description.tableofcontents | 4.3 Análisis Estadístico .....................................................................................................49 | spa |
dc.description.tableofcontents | 5. ANÁLISIS Y DISCUSIÓN DE RESULTADOS 50 | spa |
dc.description.tableofcontents | 5.1 Obtención del Extracto Etanólico y Subextractos del Calamar L. brevis. ...............50 | spa |
dc.description.tableofcontents | 5.2 Ensayos Químicos Preliminares ...............................................................................50 | spa |
dc.description.tableofcontents | 5.3 Fraccionamiento Cromatográfico del Extracto Etanólico .......................................52 | spa |
dc.description.tableofcontents | 5.4 Determinación de los Compuestos Aislados ...............................................................55 | spa |
dc.description.tableofcontents | 5.4.1 Compuestos Aislados del Subextracto de Hexano .......................................55 | spa |
dc.description.tableofcontents | 5.4.2 Compuestos Aislados de las Subfracciones Esterólicas.......................................64 | spa |
dc.description.tableofcontents | 5.5 Ensayos de Actividad Antioxidante.................................................................................69 | spa |
dc.description.tableofcontents | 5.5.1 Actividad Antioxidante del Extracto Etanólico de Lolliguncula brevis Frente al Radical DPPH• 69 | spa |
dc.description.tableofcontents | 5.5.2 Actividad Antioxidante del Extracto Etanólico de Lolliguncula brevis Frente al Radical ABTS+• 71 | spa |
dc.description.tableofcontents | 5.5.3 Actividad Antioxidante del Extracto Etanólico de Lolliguncula brevis ..........73 | spa |
dc.description.tableofcontents | 5.6 Ensayo de Actividad Bactericida ..................................................................................76 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES .................................................................................................................83 | spa |
dc.description.tableofcontents | 7. RECOMENDACIONES .........................................................................................................85 | spa |
dc.description.tableofcontents | 8. BIBLIOGRAFÍA .................................................................................................................86 | spa |
dc.description.tableofcontents | 9. ANEXOS.................................................................................................................................98 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8561 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Química | |
dc.relation.references | Abril, B. (2015). Desarrollo de sistemas microestructurados de sílice como soporte con función antimicrobiana sobre Staphylococcus aureus [Trabajo fin de grado en ciencia y tecnología de los alimentos]. Universitat Politècnica de València. | |
dc.relation.references | Alam, Md. N., Bristi, N. J., & Rafiquzzaman, Md. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002 | |
dc.relation.references | Anh, N. P., Ky, P. X., Ha, D. V., Hy, L. H. K., Thiet, D. T., & Vy, P. B. (2020). Antioxidant activity of extract from some squid species in Khanh Hoa. Vietnam Journal of Marine Science and Technology, 20(4A), 187–198. https://doi.org/10.15625/1859-3097/15660 | |
dc.relation.references | Apituley, D. A. N., Loppies, C. R. M., & Tentua, E. (2020). Fatty acid profiles of Paper Squid (Loligo edulis, Hoyle). IOP Conference Series: Earth and Environmental Science, 564(1). https://doi.org/10.1088/1755-1315/564/1/012044 | |
dc.relation.references | Ballantine, J. A., Roberts, J. C., & Morris, R. J. (1981). Sterols of the Cephalopod Spirula Spirula. Journal of the Marine Biological Association of the United Kingdom, 61(4), 843–850. https://doi.org/10.1017/S0025315400022992 | |
dc.relation.references | Bautista, C. A., Puentes, C. A., Vargas, C. M., Santos, M., Ramos, F. A., Gómez, J., & Castellanos, L. (2022). The state of the art of marine natural products in Colombia. Revista Colombiana de Química, 51(1), 24–39. https://doi.org/10.15446/rev.colomb.quim.v51n1.100644 | |
dc.relation.references | Benkendorff, K. (2010). Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs. Biological Reviews, 85(4). https://doi.org/10.1111/j.1469-185X.2010.00124.x | |
dc.relation.references | Benkendorff, K., Davis, A. R., Rogers, C. N., & Bremner, J. B. (2005). Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. Journal of Experimental Marine Biology and Ecology, 316(1), 29–44. https://doi.org/10.1016/j.jembe.2004.10.001 | |
dc.relation.references | Besednova, N. N., Zaporozhets, T. S., Kovalev, N. N., Makarenkova, I. D., & Yakovlev, Yu. M. (2017). Cephalopods: The potential for their use in medicine. Russian Journal of Marine Biology, 43(2), 101–110. https://doi.org/10.1134/S1063074017020031 | |
dc.relation.references | Beserra, M. M., Machado, P. H., Campos, Â. M., do Prado, G. M., de Carvalho, C. E., Arraes, G., & Gomes, T. L. (2011). Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, 44(7), 2155–2159. https://doi.org/10.1016/j.foodres.2011.03.051 | |
dc.relation.references | Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2022). Marine natural products. Natural Product Reports, 39(6), 1122–1171. https://doi.org/10.1039/D1NP00076D | |
dc.relation.references | Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2023). Marine natural products. Natural Product Reports, 40(2), 275–325. https://doi.org/10.1039/D2NP00083K | |
dc.relation.references | Carroll, A. R., Copp, B. R., Grkovic, T., Keyzers, R. A., & Prinsep, M. R. (2024). Marine natural products. Natural Product Reports, 41(2), 162–207. https://doi.org/10.1039/D3NP00061C | |
dc.relation.references | Casas, S., & Muriel, P. (2017). The Liver, Oxidative Stress, and Antioxidants. In Liver Pathophysiology (pp. 583–604). Elsevier. https://doi.org/10.1016/B978-0-12-804274-8.00043-6 | |
dc.relation.references | Chakraborty, K., & Joy, M. (2019). Characterization and bioactive potentials of secondary metabolites from mollusks Crassostrea madrasensis and Amphioctopus marginatus. Natural Product Research, 33(22), 3190–3202. https://doi.org/10.1080/14786419.2018.1466131 | |
dc.relation.references | Chakraborty, K., & Joy, M. (2020). High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview. Food Research International, 137, 109637. https://doi.org/10.1016/j.foodres.2020.109637 | |
dc.relation.references | Chakraborty, K., Joy, M., Krishna Raola, V., & Makkar, F. (2017). Angiotensin-I Converting Enzyme Inhibitory Activities of Common Edible Cephalopods and their Antioxidative Effects using different in vitro Models. Journal of Food Biochemistry, 41(1). | |
dc.relation.references | Chakraborty, K., Joy, M., & Vijayagopal, P. (2016). Nutritional qualities of common edible cephalopods at the Arabian Sea. https://api.semanticscholar.org/CorpusID:62860119 | |
dc.relation.references | Chakraborty, K., Krishnan, S., & Joy, M. (2021). Antioxidative oxygenated terpenoids with bioactivities against pro-inflammatory inducible enzymes from Indian squid, Uroteuthis (Photololigo) duvaucelii. Natural Product Research, 35(6), 909–920. https://doi.org/10.1080/14786419.2019.1610957 | |
dc.relation.references | Chakraborty, K., & Paulraj, R. (2010). Sesquiterpenoids with free-radical-scavenging properties from marine macroalga Ulva fasciata Delile. Food Chemistry, 122(1), 31–41. https://doi.org/10.1016/j.foodchem.2010.02.012 | |
dc.relation.references | Chan, J. E., Carbonell, Á. A., Cárdenas, J. L., Kačániová, M., Burgos, A., & Ezquerra, J. M. (2019). Jumbo squid (Dosidicus gigas) skin pigments: Chemical analysis and evaluation of antimicrobial and antimutagenic potential. Journal of Microbiology, Biotechnology and Food Sciences, 9(2), 349–353. https://doi.org/10.15414/jmbfs.2019.9.2.349-353 | |
dc.relation.references | Chan, J. E., Santacruz, H. del C., Carbonell, Á. A., Burgos, A., Robles, R. M., Cruz, S. G., & Ezquerra, J. M. (2019). Xanthommatin is Behind the Antioxidant Activity of the Skin of Dosidicus gigas. Molecules, 24(19). https://doi.org/10.3390/molecules24193420 | |
dc.relation.references | Contreras, O. I., Angulo, A. A., & Santafé, G. G. (2022). Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels. Molecules, 27(22). https://doi.org/10.3390/molecules27228004 | |
dc.relation.references | D’Armas, H., Yáñez, D., Reyes, D., & Salazar, G. (2010). Composición de ácidos grasos de los caracoles marinos Phyllonotus pomum y Chicoreus brevifrons (Gastropoda: Muricidae). Revista de Biología Tropical, 58, 645–654. https://www.redalyc.org/articulo.oa?id=44918838009 | |
dc.relation.references | De la Ossa, J. (2022). Estudio químico y evaluación de las actividades antioxidantes, antibacteriana y antifúngica de los invertebrados marinos Saturnospongilla Carvalhoi y Atrina Seminuda recolectados en la Bahía de Cispatá-Córdoba [Tesis de Maestría]. Universidad de Córdoba. | |
dc.relation.references | Derby, C. (2014). Cephalopod Ink: Production, Chemistry, Functions and Applications. Marine Drugs, 12(5), 2700–2730. https://doi.org/10.3390/md12052700 | |
dc.relation.references | Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6), 1629–1642. https://doi.org/10.1007/s00253-009-2355-3 | |
dc.relation.references | Esparza, D. M. (2020). Pigmentos de la piel de Dosidicus gigas y Octopus vulgaris: Caracterización químico-estructural, actividad antioxidante, antimicrobiana y su aplicación en hamburguesas de pollo [Tesis de Maestría en Ciencias y Tecnología de Alimentos]. Universidad de Sonora. | |
dc.relation.references | Esparza, D. M., Santacruz Ortega, H. del C., Chan Higuera, J. E., Cárdenas López, J. L., Burgos Hernández, A., Carbonell Barrachina, Á. A., & Ezquerra Brauer, J. M. (2022). Chemical structure and antioxidant activity of cephalopod skin ommochrome pigment extracts. Food Science and Technology, 42. https://doi.org/10.1590/fst.56520 | |
dc.relation.references | Fernández, M., Hernández, I., & Regueira, S. (2015). Bioactivos marinos en el tratamiento del cáncer. Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta, 40(7). | |
dc.relation.references | Gomathi, Nair, P. K. C., & Sherief. (2010). Antibacterial activity in the accessory nidamental gland extracts of the Indian squid, Loligo duvauceli Orbigny. https://api.semanticscholar.org/CorpusID:46993904 | |
dc.relation.references | Guerrero, J. (2021). Cephalopoda (Mollusca) of the Colombian Caribbean Sea. Boletín de Investigaciones Marinas y Costeras, 50(1), 191–196. https://doi.org/10.25268/bimc.invemar.2021.50.1.1025 | |
dc.relation.references | Guzmán, M. (2011). Contribución al estudio químico y bioprospección de organismos marinos del caribe cordobés [Tesis de Maestría]. Universidad de Córdoba. | |
dc.relation.references | Hernández, D. R., Barrera, V., Briz, O., González, E. A., Laguna, K. D., Jardinez, A. S., Sánchez, M., & Matuz, D. (2019). El papel de las especies reactivas de oxígeno y nitrógeno en algunas enfermedades neurodegenerativas. Revista de La Facultad de Medicina, 62(3), 6–19. https://doi.org/10.22201/fm.24484865e.2019.62.3.03 | |
dc.relation.references | Hossain, M. P., M.S., R., & T., H. A. (2018). Medicinal and therapeutic properties of cephalopod ink: a short review. Food Research, 3(3), 188–198. https://doi.org/10.26656/fr.2017.3(3).201 | |
dc.relation.references | Iniesta, R., & Blanco, J. (2005). Bioacumulación de hidrocarburos y metales asociados a vertidos accidentales en especies de interés comercial de Galicia. | |
dc.relation.references | Jereb, J., & Roper, C. F. E. (Eds.). (2010). Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 2. Myopsid and Oegopsid Squids. Food and Agriculture Organisation (FAO). | |
dc.relation.references | Jeyasanta, I., & Patterson, J. (2020). Bioactive Properties of Ink Gland Extract from Squid Loligo duvauceli. Ecologia, 10(1), 9–19. https://doi.org/10.3923/ecologia.2020.9.19 | |
dc.relation.references | Krishnan, S., Chakraborty, K., & Joy, M. (2020). First report of anti-inflammatory chromenyl derivatives from the spineless cuttlefish Sepiella inermis. Natural Product Research, 34(17), 2437–2447. https://doi.org/10.1080/14786419.2018.1539981 | |
dc.relation.references | Lauritano, C., Montuori, E., De Falco, G., & Carrella, S. (2023). In Silico Methodologies to Improve Antioxidants’ Characterization from Marine Organisms. Antioxidants, 12(3), 710. https://doi.org/10.3390/antiox12030710 | |
dc.relation.references | Lin, D., Zhu, K., Qian, W., Punt, A. E., & Chen, X. (2020). Fatty acid comparison of four sympatric loliginid squids in the northern South China Sea: Indication for their similar feeding strategy. PLOS ONE, 15(6). https://doi.org/10.1371/journal.pone.0234250 | |
dc.relation.references | Louis, M., Tahrioui, A., Verdon, J., David, A., Rodrigues, S., Barreau, M., Manac’h, M., Thiroux, A., Luton, B., Dupont, C., Calvé, M. Le, Bazire, A., Crépin, A., Clabaut, M., Portier, E., Taupin, L., Defontaine, F., Clamens, T., Bouffartigues, E., … Chevalier, S. (2022). Effect of Phthalates and Their Substitutes on the Physiology of Pseudomonas aeruginosa. Microorganisms, 10(9). https://doi.org/10.3390/microorganisms10091788 | |
dc.relation.references | Maqbool, H., Balkrishna, S., Azhar, M., Mahalappa, K., & Trymbak, M. (2021). Seasonal variations in cholesterol content of the Indian squid Uroteuthis (Photololigo) duvaucelii (d’Orbigny [in Ferussac and d’Orbigny], 1835. Indian Journal of Fisheries, 68(3). https://doi.org/10.21077/ijf.2021.68.3.88354-13 | |
dc.relation.references | M.I., S., Neyra, M., D’Armas, H., & Barrios, J. (2011). Evaluación toxicológica del alga Kappaphycus alvarezii en la región Oriental de Venezuela. Foro Iberoam. Rec. Mar. Acui. III, 341–350. | |
dc.relation.references | Montaño, M. C., & Santafé, G. G. (2011). Evaluación de la actividad antioxidante de esponjas marinas del caribe colombiano. Actualidades Biológicas, 33, 173–181. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-35842011000200003&nrm=iso | |
dc.relation.references | Monteiro, R. R. C., da Silva, S. S. O., Cavalcante, C. L., de Luna, F. M. T., Bolivar, J. M., Vieira, R. S., & Fernandez-Lafuente, R. (2022). Biosynthesis of alkanes/alkenes from fatty acids or derivatives (triacylglycerols or fatty aldehydes). Biotechnology Advances, 61. https://doi.org/10.1016/j.biotechadv.2022.108045 | |
dc.relation.references | Moraes, M. C. M., & Lavrado, H. P. (2017). Distribution of loliginid squids in a eutrophicated tropical coastal bay. Marine Biology Research, 13(3), 330–341. https://doi.org/10.1080/17451000.2016.1262041 | |
dc.relation.references | Munteanu, I. G., & Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, 22(7). https://doi.org/10.3390/ijms22073380 | |
dc.relation.references | Oehlenschläger, J. (2012). Seafood: Nutritional Benefits and Risk Aspects. International Journal for Vitamin and Nutrition Research, 82(3), 168–176. https://doi.org/10.1024/0300-9831/a000108 | |
dc.relation.references | Ordaz, G., D’Armas, H., Yáñez, D., Hernández, J., & Camacho, A. (2009). Metabolitos secundarios, letalidad y actividad antimicrobiana de los extractos de tres corales y tres moluscos marinos de Sucre, Venezuela. Revista de Biología Tropical, 58(2). https://doi.org/10.15517/rbt.v58i2.5238 | |
dc.relation.references | Ortiz, N., & Ré, M. E. (2014). Cephalopoda. In J. A. Calcagno (Ed.), Los invertebrados marinos (1st ed., Vol. 1, pp. 173–192). Fundación de Historia Natural Félix de Azara. | |
dc.relation.references | Pastrana, O., Santafé, G., & Angulo, A. (2015). Actividad antibacteriana y antifúngica de la estrella de mar Oreaster reticulatus (Valvatida: Oreasteridae) y de los erizos de mar Mellita quinquiesperforata (Clypeasteroida: Mellitidae) y Diadema antillarum (Diadematoida: Diadematidae) del Caribe Colombiano. Revista De Biologia Tropical, 63, 329–337. https://doi.org/10.15517/rbt.v63i2.23167 | |
dc.relation.references | Pastrana, O., Santafé, G., & Sánchez, E. (2019). Perfil lipídico y ensayos de las actividades antioxidante, insecticida y antialimentaria de la esponja marina Iotrochota birotulata (Iotrochotidae: Demospongiae). Revista de Biología Tropical, 67(1), 213–223. https://doi.org/10.15517/rbt.v67i1.32357 | |
dc.relation.references | Pérez, E., & Rivas, A. (2021). Determinación de la sensibilidad de los microorganismos frente a antimicrobianos de origen natural y la concentración mínima inhibitoria por métodos fenotípicos. | |
dc.relation.references | Pineda, A. (2023). Obtención in situ de la tinta de octopus maya para evaluación biológica y aislamiento de moléculas bioactivas [Tesis de pregrado]. Universidad Nacional Autónoma de México (UNAM). | |
dc.relation.references | Quirós, J. A. (2014). Echinoderms in Shallow-Bottom from Ahumadera Sector, Cispatá Bay, Cordoba, Colombian Caribbean. Acta Biológica Colombiana, 20(1), 101–108. https://doi.org/10.15446/abc.v20n1.42529 | |
dc.relation.references | Quirós, L. (2022). Estudio paleoclimático del afloramiento ecuatorial del Océano Pacífico durante los últimos 160.000 años a partir de biomarcadores moleculares. [Tesis doctoral]. Universitat Politècnica de Catalunya. | |
dc.relation.references | Quiroz, Y., Santafé, G., & Quirós, J. A. (2020). Caracterización de los ácidos grasos y actividad antimicrobiana del extracto en metanol de Holothuria princeps (Holothuriida: Holothuriidae). Revista de Biología Tropical, 69(1), 36–44. https://doi.org/10.15517/rbt.v69i1.41518 | |
dc.relation.references | Quiroz, Y., Santafé, G., & Quirós, J. A. (2022). Bioactividad e identificación de los ácidos grasos de la esponja marina Tetilla rodriguesi (Tetractinellida: Tetillidae) en el Caribe colombiano. Revista de Biología Tropical, 70(1), 20–29. https://doi.org/10.15517/rev.biol.trop.v70i1.47376 | |
dc.relation.references | Rajasekharan, J., Pillai, D., Joseph, S. M., Gomathi, P., Senan, P. V., & Sherief, P., M. (2011). Cephalopod research and bioactive substances. Indian Journal of Geo-Marine Sciences, 40(1), 13–27. | |
dc.relation.references | Ramasamy, P., Subhapradha, N., Thinesh, T., Selvin, J., Selvan, K. M., Shanmugam, V., & Shanmugam, A. (2017). Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891). International Journal of Biological Macromolecules, 99, 682–691. https://doi.org/10.1016/j.ijbiomac.2017.03.041 | |
dc.relation.references | Rivera, C., & Hernández, N. Y. (2021). Compuestos bioactivos derivados de moluscos marinos. RECURSOS NATURALES Y SOCIEDAD, 7(2), 61–84. https://doi.org/10.18846/renaysoc.2021.07.07.02.0005 | |
dc.relation.references | Rizzo, C., & Lo Giudice, A. (2018). Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. Diversity, 10(3). https://doi.org/10.3390/d10030052 | |
dc.relation.references | Rocha, M. C., Zenick, B., Englander, H. E., & Mok, W. W. K. (2020). The social network: Impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cellular Signalling, 75. https://doi.org/10.1016/j.cellsig.2020.109750 | |
dc.relation.references | Rodríguez, N., Acha de la Cruz, O., & Collantes, I. E. (2022). Estudio del contenido de los ácidos grasos y alcanos en la especie vegetal Sanqui (Corryocactus brevistylus subsp. puquiensis). Revista de La Sociedad Química Del Perú, 88(4). https://doi.org/10.37761/rsqp.v88i4.408 | |
dc.relation.references | Salgado, M. C. (2020). Revisión bibliográfica sobre los componentes químicos y actividades biológicas de especies marinas pertenecientes a la familia pinnidae (mollusca). [Tesis de pregrado]. Universidad de Córdoba. | |
dc.relation.references | Santafé, G. G., Guzmán, M. S., & Torres, O. L. (2014). Triterpenos holostáticos con actividad antifúngica obtenidos del pepino de mar Holothuria floridana: recolectado en la Bahía de Cispatá, Córdoba-Colombia. Información Tecnológica, 25(2), 87–92. https://doi.org/10.4067/S0718-07642014000200010 | |
dc.relation.references | Sari, R. C., Wijayanti, I., & Agustini, T. W. (2019). The Effectiveness of Melanin from Squid Ink (Loligo sp.) as Antibacterial Agent Against Escherichia coli and Listeria monocytogenes. IOP Conference Series: Earth and Environmental Science, 246. https://doi.org/10.1088/1755-1315/246/1/012022 | |
dc.relation.references | Schirmer, A., Rude, M. A., Li, X., Popova, E., & del Cardayre, S. B. (2010). Microbial Biosynthesis of Alkanes. Science, 329(5991), 559–562. https://doi.org/10.1126/science.1187936 | |
dc.relation.references | Schlessinger, R. A. (2016). Ménage à Trois in the Atlantic Brief Squid (Lolliguncula brevis): Prior Presence Affects Mate Choice [Thesis]. CUNY Hunter College. | |
dc.relation.references | Shantharam, A. K., & Baco, A. R. (2020). Biogeographic and bathymetric patterns of benthic molluscs in the Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers, 155(8). https://doi.org/10.1016/j.dsr.2019.103167 | |
dc.relation.references | Stowasser, G., Pierce, G. J., Moffat, C. F., Collins, M. A., & Forsythe, J. W. (2006). Experimental study on the effect of diet on fatty acid and stable isotope profiles of the squid Lolliguncula brevis. Journal of Experimental Marine Biology and Ecology, 333(1), 97–114. https://doi.org/10.1016/j.jembe.2005.12.008 | |
dc.relation.references | Sukmiwati, M., Edison, & Nuzul, V. (2023). Antioxidant potential of squid ink ( Loligo duvauceli ). BIO Web of Conferences, 74. https://doi.org/10.1051/bioconf/20237402001 | |
dc.relation.references | Sumi, M. S., Thazeem, B., & Sunish, K. S. (2023). Bioprospective studies of pigmented ink from Sepioteuthis lessoniana and its molecular identification using CO1 gene. The Journal of Basic and Applied Zoology, 84(5). https://doi.org/10.1186/s41936-023-00325-x | |
dc.relation.references | Suria, A. M., Tan, K. C., Kerwin, A. H., Gitzel, L., Abini-Agbomson, L., Bertenshaw, J. M., Sewell, J., Nyholm, S. V., & Balunas, M. J. (2020). Hawaiian Bobtail Squid Symbionts Inhibit Marine Bacteria via Production of Specialized Metabolites, Including New Bromoalterochromides BAC-D/D′. MSphere, 5(4). https://doi.org/10.1128/mSphere.00166-20 | |
dc.relation.references | Torrinha, A., Gomes, F., Oliveira, M., Cruz, R., Mendes, E., Delerue-Matos, C., Casal, S., & Morais, S. (2014). Commercial squids: Characterization, assessment of potential health benefits/risks and discrimination based on mineral, lipid and vitamin E concentrations. Food and Chemical Toxicology, 67, 44–56. https://doi.org/10.1016/j.fct.2014.02.014 | |
dc.relation.references | Utami, D. R., Irwan, I., Agustina, S., Karina, S., & Afriani, S. (2021). Antibacterial activity of Escherichia coli from squid ink (Loligo sp.) n-Hexane extracts. IOP Conference Series: Earth and Environmental Science, 869(1). https://doi.org/10.1088/1755-1315/869/1/012033 | |
dc.relation.references | Venkatesan, V., Saravanan, R., Selvaraju, M., Umayaparvathi, S., & Umakalaiselvi, T. (2014). Antibacterial activity in the extracts of accessory nidamental gland of the Palk Bay squid Sepioteuthis lessoniana (Lesson, 1830) (Cephalopoda: Decapoda). Indian Journal of Fisheries, 61, 145–147. | |
dc.relation.references | Wang, F., Cao, Y., Guo, Y., Zhu, Z., & Zhang, C. (2021). Evaluation of antioxidant and antibacterial activities of lipid extracts from Eustigmatos cf. polyphem (Eustigmatophyceae) and preliminary identification of bioactive compound. Algal Research, 59. https://doi.org/10.1016/j.algal.2021.102446 | |
dc.relation.references | WHO. (2022). Report signals increasing resistance to antibiotics in bacterial infections in humans and need for better data. https://www.who.int/news/item/09-12-2022-report-signals-increasing-resistance-to-antibiotics-in-bacterial-infections-in-humans-and-need-for-better-data | |
dc.relation.references | WHO. (2023). New WHO report highlights progress, but also remaining gaps, in ensuring a robust pipeline of antibiotic treatments to combat antimicrobial resistance (AMR). https://www.who.int/news/item/15-05-2023-new-who-report-highlights-progress-but-also-remaining-gaps-in-ensuring-a-robust-pipeline-of-antibiotic-treatments-to-combat-antimicrobial-resistance-(amr) | |
dc.relation.references | Zaharah, F., & Mohd, Rabeta. (2017). Antioxidant and antimicrobial activities of squid ink powder. Food Research, 2(1), 82–88. https://doi.org/10.26656/fr.2017.2(1).225 | |
dc.relation.references | Zaleski, T. (2010). Ciclo de vida e ecologia da lula Lolliguncula Brevis na armação de Itapocoroy, Santa Catarina, Brasil. | |
dc.relation.references | Zhukova, N. V. (2019). Fatty Acids of Marine Mollusks: Impact of Diet, Bacterial Symbiosis and Biosynthetic Potential. Biomolecules, 9(12). https://doi.org/10.3390/biom9120857 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://repositorio.unicordoba.edu.co | |
dc.subject.keywords | Lolliguncula brevis | |
dc.subject.keywords | Fatty acids | |
dc.subject.keywords | Bactericidal activity | |
dc.subject.keywords | Antioxidant activity | |
dc.subject.keywords | Cispatá Bay | |
dc.subject.proposal | Lolliguncula brevis | |
dc.subject.proposal | Ácidos grasos | |
dc.subject.proposal | Actividad bactericida | |
dc.subject.proposal | Actividad antioxidante | |
dc.subject.proposal | Bahía de Cispatá | |
dc.title | Estudio químico y evaluación de las actividades antioxidante y bactericida del calamar Lolliguncula brevis (Blainville, 1823) recolectado en la Bahía de Cispatá | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- Estudio químico y evaluación de las actividades antioxidante y bactericida del calamar lolliguncula brevis (blainville, 1823) recolectado en la bahía de cispatá.pdf
- Tamaño:
- 3.62 MB
- Formato:
- Adobe Portable Document Format
No hay miniatura disponible
- Nombre:
- AutorizaciónPublicación..pdf
- Tamaño:
- 351.39 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: