Show simple item record

dc.contributor.advisorDoria Oviedo, Miguel
dc.contributor.authorConeo Luna, Luis Felipe
dc.contributor.authorLeón Aguilar, Luis Alfredo
dc.date.accessioned2021-10-08T13:36:15Z
dc.date.available2021-10-08T13:36:15Z
dc.date.issued2021-10-07
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4628
dc.description.abstractThe development of the following document presents an analysis of a thermodynamic model for a Stirling engine with a gamma configuration, which uses biomass as a source for energy generation. Therefore, the potential for the generation of thermal energy from biomass was obtained, from the properties in the characterization and combustion. Matlab is used for the simulation, which shows this type of motor as a model to estimate the motor's output power, with each of its parts and parameters. The model developed has an 9 output power of 4 W, rotating at a speed higher than 1000 rpm and from an average hot spot temperature of 800 K, the working fluid for the cooling system is by means of air. The heat source is obtained from the combustion of biomass for this case coconut fiber, which presented a calorific value of 24.29 MJ / kg. The purpose of this project is to know how the integration of coconut is an alternative source to obtain energy, determining a power delivered by the system and knowing the expenses generated for the start-up, that the implementation of this type of technology is environmentally friendly and economical.eng
dc.description.tableofcontents1 Resumen ...................................................................................................................... 8spa
dc.description.tableofcontents2 Introducción ............................................................................................................... 10spa
dc.description.tableofcontents3 Objetivos .................................................................................................................... 12spa
dc.description.tableofcontents3.1 Objetivo General......................................................................................................... 12spa
dc.description.tableofcontents3.2 Objetivos Específicos ................................................................................................. 12spa
dc.description.tableofcontents4 Desarrollo del tema .................................................................................................... 13spa
dc.description.tableofcontents4.1 Biomasa ...................................................................................................................... 13spa
dc.description.tableofcontents4.1.1 Tipos De Biomasa. .................................................................................................. 14spa
dc.description.tableofcontents4.1.2 Características Térmicas De La Biomasa. .............................................................. 14spa
dc.description.tableofcontents4.2 Motor Stirling ........................................................................................................ 15spa
dc.description.tableofcontentsImportancia del uso del motor Stirling: ............................................................................ 15spa
dc.description.tableofcontentsPrincipios de funcionamiento del motor Stirling .............................................................. 16spa
dc.description.tableofcontentsTipos de motores Stirling ................................................................................................. 16spa
dc.description.tableofcontents4.3.3.1 Configuración Alfa .............................................................................................. 16spa
dc.description.tableofcontents4.3.3.2 Configuración Beta .............................................................................................. 17spa
dc.description.tableofcontents4.3.3.3 Configuración Gamma ......................................................................................... 18spa
dc.description.tableofcontents5 Estado Del Arte ......................................................................................................... 18spa
dc.description.tableofcontents6 Metodología ............................................................................................................... 24spa
dc.description.tableofcontents6.2 Caracterización de la biomasa ............................................................................... 25spa
dc.description.tableofcontents6.3 Parametrización y Simulación del modelo termodinámico ................................... 25spa
dc.description.tableofcontents6.4 Viabilidad Ambiental y Económica ....................................................................... 28spa
dc.description.tableofcontents7 Resultados .................................................................................................................. 29spa
dc.description.tableofcontents7.1 Caracterización de la biomasa ............................................................................... 29spa
dc.description.tableofcontents7.2 Combustión ............................................................................................................ 30spa
dc.description.tableofcontents8.1 Simulación del modelo termodinámico. ..................................................................... 31spa
dc.description.tableofcontents8.2 Eficiencia .................................................................................................................... 35spa
dc.description.tableofcontents8.3 Viabilidad Ambiental y Costos Económicos .............................................................. 36spa
dc.description.tableofcontents9. Conclusiones .................................................................................................................... 37spa
dc.description.tableofcontents10 Referencias Bibliográficas ......................................................................................... 39spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleEvaluación de la generación de energía por medio de un motor stirling accionado por fibra del coco en el departamento de Córdobaspa
dc.typeTrabajo de grado - Pregradospa
dcterms.referencesAbuelyamen, A., Ben-Mansour, R., Abualhamayel, H., & Mokheimer, E. M. A. (2017). Parametric study on beta-type Stirling engine. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2017.04.098spa
dcterms.referencesAhmadi, M. H., Ahmadi, M. A., & Pourfayaz, F. (2017). Thermal models for analysis of performance of Stirling engine: A review. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2016.09.033spa
dcterms.referencesAngel, M., Cifuentes, A., Viviana, E., Rodríguez, M., & Hernández, M. C. (2019). Prototipo de sistema termosolar para la generación de energía eléctrica a través del motor Stirling Thermosolar system prototype for electricity energy generation through the Stirling engine. Revistas.Utp.Ac.Pa.spa
dcterms.referencesAnzures, C., Posada, J., Osorio, K., Medina, J. R. V., Sanchez, V. M., & Lopez, Y. U. (2018). Operación de Sistemas de Generación y Suministro de Energía Eléctrica en Zonas no Interconectadas de Colombia. 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings. https://doi.org/10.1109/ANDESCON.2018.8564585spa
dcterms.referencesAzeta, O., Ayeni, A. O., Agboola, O., & Elehinafe, F. B. (2021). A review on 40 the sustainable energy generation from the pyrolysis of coconut biomass. In Scientific African. https://doi.org/10.1016/j.sciaf.2021.e00909spa
dcterms.referencesBégot, S., Layes, G., Lanzetta, F., & Nika, P. (2013). Stability analysis of free piston Stirling engines. EPJ Applied Physics. https://doi.org/10.1051/epjap/2013120217spa
dcterms.referencesBerastegui Barranco, C., Ortega Rodríguez, J. P., Mendoza Fandiño, J. M., González Doria, Y. E., & Gómez Vasquez, R. D. (2017). Elaboración de biocombustibles sólidos densificados a partir de tusa de maíz, bioaglomerante de yuca y carbón mineral del departamento de Córdoba. Ingeniare, 25(4), 643–653. https://doi.org/10.4067/S0718-33052017000400643spa
dcterms.referencesBiedermann, F., Carlsen, H., Schöch, M., & Obernberger, I. (2004). Operating experiences with a small-scale chp pilot plant based on a 35 kw el hermetic four cylinder stirling engine for biomass fuels. BIOS BIOENERGIESYSTEME GmbH Company Website.spa
dcterms.referencesBilgili, F., Koçak, E., Bulut, Ü., & Kuşkaya, S. (2017). Can biomass energy be an efficient policy tool for sustainable development? In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2016.12.109spa
dcterms.referencesCabeza, D. R. (2016). Diseño de un sistema con motor Stirling para transformar energía libre en electricidad. Tecno Campus Mataro 41 Maresme.spa
dcterms.referencesCardona, A. (2018). Nariño es el departamento que lidera la siembra, cosecha y producción de coco en Colombia. AGRONEGOCIOS.spa
dcterms.referencesCruz-Rojas, A., Alvarado-Martínez, V. M., & López-López, M. G. (2015). Modelado, Simulación y Control de un Motor Stirling Tipo Alfa. In Congreso Nacional de Control Automático.spa
dcterms.referencesDe Gregorio, M. (2019). Biomasa en España. Generación de valor añadido y análisis prospectivo. Presupuesto y Gasto Publico.spa
dcterms.referencesDíaz, L., Hernández, M., Silva, F., & Vasquez, R. (2017). Generación y caracterización del poder calorífico del biogás a partir de biomasa agrícola. Centro de Investigacion Para El Desarrollo y La Innovacion, 149–154. https://repository.upb.edu.co/handle/20.500.11912/3211spa
dcterms.referencesDing, H., Li, J., & Heydarian, D. (2021). Energy, exergy, exergoeconomic, and environmental analysis of a new biomass-driven cogeneration system. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2021.101044spa
dcterms.referencesEntezari, A., Manizadeh, A., & Ahmadi, R. (2018). Energetical, exergetical and economical optimization analysis of combined power generation system of gas turbine and Stirling engine. Energy Conversion and 42 Management. https://doi.org/10.1016/j.enconman.2018.01.012spa
dcterms.referencesEpec. (2018). Energía renovable : la biomasa. Divición de Gestión Ambiental.spa
dcterms.referencesFerreira, A. C., Silva, J., Teixeira, S., Teixeira, J. C., & Nebra, S. A. (2020). Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass. Renewable Energy. https://doi.org/10.1016/j.renene.2020.03.020spa
dcterms.referencesGüven, M., Bedir, H., & Anlaş, G. (2019). Optimization and application of Stirling engine for waste heat recovery from a heavy-duty truck engine. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2018.10.096spa
dcterms.referencesHejazi, B., Grace, J. R., Bi, X., & Mahecha-Botero, A. (2017). Kinetic Model of Steam Gasification of Biomass in a Bubbling Fluidized Bed Reactor. Energy and Fuels. https://doi.org/10.1021/acs.energyfuels.6b03161spa
dcterms.referencesHerguedas, A., Taranco, C., Rodrígez, E., & Paniagua, prado. (2012). Biomasa, Biocombustibles Y Sostenibilidad. In Transbioma.spa
dcterms.referencesHoyos Álvarez, C. A., González Doria, Y. E., & Mendoza Fandiño, J. M. (2019). Elaboración de biocombustibles sólidos densificados a partir de la mezcla de dos biomasas residuales, un aglomerante a base de yuca y carbón mineral, propios del departamento de Córdoba. Ingeniare. Revista 43 Chilena de Ingeniería, 27(3), 454–464. https://doi.org/10.4067/s0718-33052019000300454spa
dcterms.referencesHussain, C. M. I., Norton, B., & Duffy, A. (2017). Technological assessment of different solar-biomass systems for hybrid power generation in Europe. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2016.08.016spa
dcterms.referencesIshaq, H., Islam, S., Dincer, I., & Yilbas, B. S. (2020). Development and performance investigation of a biomass gasification based integrated system with thermoelectric generators. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.120625spa
dcterms.referencesKusch-Brandt. (2019). Renewables 2019 Global Status Report. In Resources.spa
dcterms.referencesKwasi-Effah, C. C., Obanor, A. I., Aisien, F. A., & Ogbeide, O. (2016). Review of Existing Models for Stirling Engine Performance Prediction and the Paradox Phenomenon of the Classical Schmidt Isothermal Model. International Journal of Energy and Sustainable Development.spa
dcterms.referencesMagacho, I. T., Borges E Silva, G., & Castro, G. G. P. (2019). Desenvolvimento de um motor stirling movido a energia solar. Brazilian Journal of Development. https://doi.org/10.34117/bjdv5n11-337spa
dcterms.referencesMAPA. (2021). Ministerio de Agricultura, Pesca y Alimentacion. 44 Identificacion Oficial Ovino-Caprino.spa
dcterms.referencesMedina, J. R. V. (2019). Motor Stirling. In Motor Stirling. https://doi.org/10.2307/j.ctvckq8ghspa
dcterms.referencesMiguel, V. (2016). Diseño de un motor Stirling. In Diseño de un motor Stirling.spa
dcterms.referencesMohammadi, M. A., & Jafarian, A. (2018). CFD simulation to investigate hydrodynamics of oscillating flow in a beta-type Stirling engine. Energy. https://doi.org/10.1016/j.energy.2018.04.017spa
dcterms.referencesMorais, P. H. da S., Lodi, A., Aoki, A. C., & Modesto, M. (2020). Energy, exergetic and economic analyses of a combined solar-biomass-ORC cooling cogeneration systems for a Brazilian small plant. Renewable Energy. https://doi.org/10.1016/j.renene.2020.04.147spa
dcterms.referencesMouaky, A., & Rachek, A. (2020). Energetic, exergetic and exergeoeconomic assessment of a hybrid solar/biomass poylgeneration system: A case study of a rural community in a semi-arid climate. Renewable Energy. https://doi.org/10.1016/j.renene.2020.05.135spa
dcterms.referencesNagarajan, J., & Prakash, L. (2021). Preparation and characterization of biomass briquettes using sugarcane bagasse, corncob and rice husk. Materials Today: Proceedings, xxxx. 45 https://doi.org/10.1016/j.matpr.2021.04.457spa
dcterms.referencesNúñez Camargo, D. W. (2012). Uso de residuos agrícolas para la producción de biocombustibles en el departamento del Meta. Revista Tecnura. https://doi.org/10.14483/udistrital.jour.tecnura.2012.4.a10spa
dcterms.referencesOchoa, G. V., Forero, J. D., & Meri, L. (2021). Energy and exergy assessment of a combined supercritical Brayton cycle-orc hybrid system using solar radiation and coconut shell biomass as energy source. 175. https://doi.org/10.1016/j.renene.2021.04.118spa
dcterms.referencesPantaleo, A. M., Camporeale, S. M., Sorrentino, A., Miliozzi, A., Shah, N., & Markides, C. N. (2020). Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas. Renewable Energy. https://doi.org/10.1016/j.renene.2018.08.022spa
dcterms.referencesPatel, V., Savsani, V., & Mudgal, A. (2017). Many-objective thermodynamic optimization of Stirling heat engine. Energy. https://doi.org/10.1016/j.energy.2017.02.151spa
dcterms.referencesPlanas;, M., & Cárdenas, J. (2019). La matriz energética de Colombia se renueva. Bid.spa
dcterms.referencesPupo-Roncallo, O., Campillo, J., Ingham, D., Hughes, K., & Pourkashanian, 46 M. (2020). Renewable energy production and demand dataset for the energy system of Colombia. Data in Brief. https://doi.org/10.1016/j.dib.2019.105084spa
dcterms.referencesRoy, D., Samanta, S., & Ghosh, S. (2019). Techno-economic and environmental analyses of a biomass based system employing solid oxide fuel cell, externally fired gas turbine and organic Rankine cycle. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.03.261spa
dcterms.referencesTAKEUCHI, M., SUZUKI, S., & ABE, Y. (2018). Design method and the development of the low-temperature-difference indirect heating Stirling engine. Transactions of the JSME (in Japanese). https://doi.org/10.1299/transjsme.17-00269spa
dcterms.referencesToro, C., & Lior, N. (2017). Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation. Energy. https://doi.org/10.1016/j.energy.2016.11.104spa
dcterms.referencesUrien, A. (2013). Obtención de biocarbones y biocombustibles mediante pirólisis de biomasa residual. In Tesis De Máster.spa
dcterms.referencesYousefzadeh, H., & Tavakolpour-Saleh, A. R. (2021). A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines. Energy. https://doi.org/10.1016/j.energy.2021.120222spa
dcterms.referencesZare, S., & Tavakolpour-Saleh, A. R. (2020). Free piston Stirling engines: A review. In International Journal of Energy Research. https://doi.org/10.1002/er.4533spa
dcterms.referencesZayyinun, A., & Widyartono, M. (2020). Prototipe Mesin Stirling Menggunakan Panas Sinar Matahari Sebagai Energi Alternatif. Teknik Elektro.spa
dcterms.referencesZhu, S., Yu, G., Liang, K., Dai, W., & Luo, E. (2021). A review of Stirling-engine-based combined heat and power technology. Applied Energy. https://doi.org/10.1016/j.apenergy.2021.116965spa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalFuentes de energíaspa
dc.subject.proposalMotor stirlingspa
dc.subject.proposalMatlabspa
dc.subject.proposalBiomasaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dc.description.resumenEl desarrollo del siguiente documento presenta un análisis de un modelo termodinámico para un motor Stirling de configuración tipo gamma, el cual utiliza una biomasa como fuente para la generación de energía. Por lo tanto, el potencial de la generación de energía térmica de la biomasa se obtuvo, a partir de las propiedades en la caracterización y la combustión. Para la simulación se utiliza Matlab, que muestra como modelar este tipo de motor para estimar la potencia de salida del motor, con cada una de sus partes y parámetros. El modelo desarrollado tiene una potencia de salida de 4 W, girando a una velocidad superior a 1000 rpm y a partir de una temperatura en el foco caliente promedio de 800 K, el fluido de trabajo para el sistema de refrigeración, es mediante aire. La fuente de calor se obtiene de la combustión de biomasa para este caso fibra de coco, la cual presento un poder calorífico de 24.29 MJ/kg., el fin de este proyecto es conocer como la integración de la fibra de coco, es una fuente alternativa para la obtención de energía, determinando una potencia entregada por el sistema y conocer los gastos generados para la puesta en funcionamiento, que la implementación de este tipo de tecnología sea amigable con el medio ambiente y económica.spa
dc.subject.keywordsEnergy sourceseng
dc.subject.keywordsStirling engineeng
dc.subject.keywordsMatlabeng
dc.subject.keywordsBiomasseng
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Mecánico(a)spa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programIngeniería Mecánicaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.description.modalityMonografíaspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2021
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2021