Publicación: Evaluación de la generación de energía por medio de un motor stirling accionado por fibra del coco en el departamento de Córdoba
dc.contributor.advisor | Doria Oviedo, Miguel | |
dc.contributor.author | Coneo Luna, Luis Felipe | |
dc.contributor.author | León Aguilar, Luis Alfredo | |
dc.date.accessioned | 2021-10-08T13:36:15Z | |
dc.date.available | 2021-10-08T13:36:15Z | |
dc.date.issued | 2021-10-07 | |
dc.description.abstract | The development of the following document presents an analysis of a thermodynamic model for a Stirling engine with a gamma configuration, which uses biomass as a source for energy generation. Therefore, the potential for the generation of thermal energy from biomass was obtained, from the properties in the characterization and combustion. Matlab is used for the simulation, which shows this type of motor as a model to estimate the motor's output power, with each of its parts and parameters. The model developed has an 9 output power of 4 W, rotating at a speed higher than 1000 rpm and from an average hot spot temperature of 800 K, the working fluid for the cooling system is by means of air. The heat source is obtained from the combustion of biomass for this case coconut fiber, which presented a calorific value of 24.29 MJ / kg. The purpose of this project is to know how the integration of coconut is an alternative source to obtain energy, determining a power delivered by the system and knowing the expenses generated for the start-up, that the implementation of this type of technology is environmentally friendly and economical. | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Mecánico(a) | spa |
dc.description.modality | Monografía | spa |
dc.description.resumen | El desarrollo del siguiente documento presenta un análisis de un modelo termodinámico para un motor Stirling de configuración tipo gamma, el cual utiliza una biomasa como fuente para la generación de energía. Por lo tanto, el potencial de la generación de energía térmica de la biomasa se obtuvo, a partir de las propiedades en la caracterización y la combustión. Para la simulación se utiliza Matlab, que muestra como modelar este tipo de motor para estimar la potencia de salida del motor, con cada una de sus partes y parámetros. El modelo desarrollado tiene una potencia de salida de 4 W, girando a una velocidad superior a 1000 rpm y a partir de una temperatura en el foco caliente promedio de 800 K, el fluido de trabajo para el sistema de refrigeración, es mediante aire. La fuente de calor se obtiene de la combustión de biomasa para este caso fibra de coco, la cual presento un poder calorífico de 24.29 MJ/kg., el fin de este proyecto es conocer como la integración de la fibra de coco, es una fuente alternativa para la obtención de energía, determinando una potencia entregada por el sistema y conocer los gastos generados para la puesta en funcionamiento, que la implementación de este tipo de tecnología sea amigable con el medio ambiente y económica. | spa |
dc.description.tableofcontents | 1 Resumen ...................................................................................................................... 8 | spa |
dc.description.tableofcontents | 2 Introducción ............................................................................................................... 10 | spa |
dc.description.tableofcontents | 3 Objetivos .................................................................................................................... 12 | spa |
dc.description.tableofcontents | 3.1 Objetivo General......................................................................................................... 12 | spa |
dc.description.tableofcontents | 3.2 Objetivos Específicos ................................................................................................. 12 | spa |
dc.description.tableofcontents | 4 Desarrollo del tema .................................................................................................... 13 | spa |
dc.description.tableofcontents | 4.1 Biomasa ...................................................................................................................... 13 | spa |
dc.description.tableofcontents | 4.1.1 Tipos De Biomasa. .................................................................................................. 14 | spa |
dc.description.tableofcontents | 4.1.2 Características Térmicas De La Biomasa. .............................................................. 14 | spa |
dc.description.tableofcontents | 4.2 Motor Stirling ........................................................................................................ 15 | spa |
dc.description.tableofcontents | Importancia del uso del motor Stirling: ............................................................................ 15 | spa |
dc.description.tableofcontents | Principios de funcionamiento del motor Stirling .............................................................. 16 | spa |
dc.description.tableofcontents | Tipos de motores Stirling ................................................................................................. 16 | spa |
dc.description.tableofcontents | 4.3.3.1 Configuración Alfa .............................................................................................. 16 | spa |
dc.description.tableofcontents | 4.3.3.2 Configuración Beta .............................................................................................. 17 | spa |
dc.description.tableofcontents | 4.3.3.3 Configuración Gamma ......................................................................................... 18 | spa |
dc.description.tableofcontents | 5 Estado Del Arte ......................................................................................................... 18 | spa |
dc.description.tableofcontents | 6 Metodología ............................................................................................................... 24 | spa |
dc.description.tableofcontents | 6.2 Caracterización de la biomasa ............................................................................... 25 | spa |
dc.description.tableofcontents | 6.3 Parametrización y Simulación del modelo termodinámico ................................... 25 | spa |
dc.description.tableofcontents | 6.4 Viabilidad Ambiental y Económica ....................................................................... 28 | spa |
dc.description.tableofcontents | 7 Resultados .................................................................................................................. 29 | spa |
dc.description.tableofcontents | 7.1 Caracterización de la biomasa ............................................................................... 29 | spa |
dc.description.tableofcontents | 7.2 Combustión ............................................................................................................ 30 | spa |
dc.description.tableofcontents | 8.1 Simulación del modelo termodinámico. ..................................................................... 31 | spa |
dc.description.tableofcontents | 8.2 Eficiencia .................................................................................................................... 35 | spa |
dc.description.tableofcontents | 8.3 Viabilidad Ambiental y Costos Económicos .............................................................. 36 | spa |
dc.description.tableofcontents | 9. Conclusiones .................................................................................................................... 37 | spa |
dc.description.tableofcontents | 10 Referencias Bibliográficas ......................................................................................... 39 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4628 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Energy sources | eng |
dc.subject.keywords | Stirling engine | eng |
dc.subject.keywords | Matlab | eng |
dc.subject.keywords | Biomass | eng |
dc.subject.proposal | Fuentes de energía | spa |
dc.subject.proposal | Motor stirling | spa |
dc.subject.proposal | Matlab | spa |
dc.subject.proposal | Biomasa | spa |
dc.title | Evaluación de la generación de energía por medio de un motor stirling accionado por fibra del coco en el departamento de Córdoba | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abuelyamen, A., Ben-Mansour, R., Abualhamayel, H., & Mokheimer, E. M. A. (2017). Parametric study on beta-type Stirling engine. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2017.04.098 | spa |
dcterms.references | Ahmadi, M. H., Ahmadi, M. A., & Pourfayaz, F. (2017). Thermal models for analysis of performance of Stirling engine: A review. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2016.09.033 | spa |
dcterms.references | Angel, M., Cifuentes, A., Viviana, E., Rodríguez, M., & Hernández, M. C. (2019). Prototipo de sistema termosolar para la generación de energía eléctrica a través del motor Stirling Thermosolar system prototype for electricity energy generation through the Stirling engine. Revistas.Utp.Ac.Pa. | spa |
dcterms.references | Anzures, C., Posada, J., Osorio, K., Medina, J. R. V., Sanchez, V. M., & Lopez, Y. U. (2018). Operación de Sistemas de Generación y Suministro de Energía Eléctrica en Zonas no Interconectadas de Colombia. 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings. https://doi.org/10.1109/ANDESCON.2018.8564585 | spa |
dcterms.references | Azeta, O., Ayeni, A. O., Agboola, O., & Elehinafe, F. B. (2021). A review on 40 the sustainable energy generation from the pyrolysis of coconut biomass. In Scientific African. https://doi.org/10.1016/j.sciaf.2021.e00909 | spa |
dcterms.references | Bégot, S., Layes, G., Lanzetta, F., & Nika, P. (2013). Stability analysis of free piston Stirling engines. EPJ Applied Physics. https://doi.org/10.1051/epjap/2013120217 | spa |
dcterms.references | Berastegui Barranco, C., Ortega Rodríguez, J. P., Mendoza Fandiño, J. M., González Doria, Y. E., & Gómez Vasquez, R. D. (2017). Elaboración de biocombustibles sólidos densificados a partir de tusa de maíz, bioaglomerante de yuca y carbón mineral del departamento de Córdoba. Ingeniare, 25(4), 643–653. https://doi.org/10.4067/S0718-33052017000400643 | spa |
dcterms.references | Biedermann, F., Carlsen, H., Schöch, M., & Obernberger, I. (2004). Operating experiences with a small-scale chp pilot plant based on a 35 kw el hermetic four cylinder stirling engine for biomass fuels. BIOS BIOENERGIESYSTEME GmbH Company Website. | spa |
dcterms.references | Bilgili, F., Koçak, E., Bulut, Ü., & Kuşkaya, S. (2017). Can biomass energy be an efficient policy tool for sustainable development? In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2016.12.109 | spa |
dcterms.references | Cabeza, D. R. (2016). Diseño de un sistema con motor Stirling para transformar energía libre en electricidad. Tecno Campus Mataro 41 Maresme. | spa |
dcterms.references | Cardona, A. (2018). Nariño es el departamento que lidera la siembra, cosecha y producción de coco en Colombia. AGRONEGOCIOS. | spa |
dcterms.references | Cruz-Rojas, A., Alvarado-Martínez, V. M., & López-López, M. G. (2015). Modelado, Simulación y Control de un Motor Stirling Tipo Alfa. In Congreso Nacional de Control Automático. | spa |
dcterms.references | De Gregorio, M. (2019). Biomasa en España. Generación de valor añadido y análisis prospectivo. Presupuesto y Gasto Publico. | spa |
dcterms.references | Díaz, L., Hernández, M., Silva, F., & Vasquez, R. (2017). Generación y caracterización del poder calorífico del biogás a partir de biomasa agrícola. Centro de Investigacion Para El Desarrollo y La Innovacion, 149–154. https://repository.upb.edu.co/handle/20.500.11912/3211 | spa |
dcterms.references | Ding, H., Li, J., & Heydarian, D. (2021). Energy, exergy, exergoeconomic, and environmental analysis of a new biomass-driven cogeneration system. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2021.101044 | spa |
dcterms.references | Entezari, A., Manizadeh, A., & Ahmadi, R. (2018). Energetical, exergetical and economical optimization analysis of combined power generation system of gas turbine and Stirling engine. Energy Conversion and 42 Management. https://doi.org/10.1016/j.enconman.2018.01.012 | spa |
dcterms.references | Epec. (2018). Energía renovable : la biomasa. Divición de Gestión Ambiental. | spa |
dcterms.references | Ferreira, A. C., Silva, J., Teixeira, S., Teixeira, J. C., & Nebra, S. A. (2020). Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass. Renewable Energy. https://doi.org/10.1016/j.renene.2020.03.020 | spa |
dcterms.references | Güven, M., Bedir, H., & Anlaş, G. (2019). Optimization and application of Stirling engine for waste heat recovery from a heavy-duty truck engine. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2018.10.096 | spa |
dcterms.references | Hejazi, B., Grace, J. R., Bi, X., & Mahecha-Botero, A. (2017). Kinetic Model of Steam Gasification of Biomass in a Bubbling Fluidized Bed Reactor. Energy and Fuels. https://doi.org/10.1021/acs.energyfuels.6b03161 | spa |
dcterms.references | Herguedas, A., Taranco, C., Rodrígez, E., & Paniagua, prado. (2012). Biomasa, Biocombustibles Y Sostenibilidad. In Transbioma. | spa |
dcterms.references | Hoyos Álvarez, C. A., González Doria, Y. E., & Mendoza Fandiño, J. M. (2019). Elaboración de biocombustibles sólidos densificados a partir de la mezcla de dos biomasas residuales, un aglomerante a base de yuca y carbón mineral, propios del departamento de Córdoba. Ingeniare. Revista 43 Chilena de Ingeniería, 27(3), 454–464. https://doi.org/10.4067/s0718-33052019000300454 | spa |
dcterms.references | Hussain, C. M. I., Norton, B., & Duffy, A. (2017). Technological assessment of different solar-biomass systems for hybrid power generation in Europe. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2016.08.016 | spa |
dcterms.references | Ishaq, H., Islam, S., Dincer, I., & Yilbas, B. S. (2020). Development and performance investigation of a biomass gasification based integrated system with thermoelectric generators. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.120625 | spa |
dcterms.references | Kusch-Brandt. (2019). Renewables 2019 Global Status Report. In Resources. | spa |
dcterms.references | Kwasi-Effah, C. C., Obanor, A. I., Aisien, F. A., & Ogbeide, O. (2016). Review of Existing Models for Stirling Engine Performance Prediction and the Paradox Phenomenon of the Classical Schmidt Isothermal Model. International Journal of Energy and Sustainable Development. | spa |
dcterms.references | Magacho, I. T., Borges E Silva, G., & Castro, G. G. P. (2019). Desenvolvimento de um motor stirling movido a energia solar. Brazilian Journal of Development. https://doi.org/10.34117/bjdv5n11-337 | spa |
dcterms.references | MAPA. (2021). Ministerio de Agricultura, Pesca y Alimentacion. 44 Identificacion Oficial Ovino-Caprino. | spa |
dcterms.references | Medina, J. R. V. (2019). Motor Stirling. In Motor Stirling. https://doi.org/10.2307/j.ctvckq8gh | spa |
dcterms.references | Miguel, V. (2016). Diseño de un motor Stirling. In Diseño de un motor Stirling. | spa |
dcterms.references | Mohammadi, M. A., & Jafarian, A. (2018). CFD simulation to investigate hydrodynamics of oscillating flow in a beta-type Stirling engine. Energy. https://doi.org/10.1016/j.energy.2018.04.017 | spa |
dcterms.references | Morais, P. H. da S., Lodi, A., Aoki, A. C., & Modesto, M. (2020). Energy, exergetic and economic analyses of a combined solar-biomass-ORC cooling cogeneration systems for a Brazilian small plant. Renewable Energy. https://doi.org/10.1016/j.renene.2020.04.147 | spa |
dcterms.references | Mouaky, A., & Rachek, A. (2020). Energetic, exergetic and exergeoeconomic assessment of a hybrid solar/biomass poylgeneration system: A case study of a rural community in a semi-arid climate. Renewable Energy. https://doi.org/10.1016/j.renene.2020.05.135 | spa |
dcterms.references | Nagarajan, J., & Prakash, L. (2021). Preparation and characterization of biomass briquettes using sugarcane bagasse, corncob and rice husk. Materials Today: Proceedings, xxxx. 45 https://doi.org/10.1016/j.matpr.2021.04.457 | spa |
dcterms.references | Núñez Camargo, D. W. (2012). Uso de residuos agrícolas para la producción de biocombustibles en el departamento del Meta. Revista Tecnura. https://doi.org/10.14483/udistrital.jour.tecnura.2012.4.a10 | spa |
dcterms.references | Ochoa, G. V., Forero, J. D., & Meri, L. (2021). Energy and exergy assessment of a combined supercritical Brayton cycle-orc hybrid system using solar radiation and coconut shell biomass as energy source. 175. https://doi.org/10.1016/j.renene.2021.04.118 | spa |
dcterms.references | Pantaleo, A. M., Camporeale, S. M., Sorrentino, A., Miliozzi, A., Shah, N., & Markides, C. N. (2020). Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas. Renewable Energy. https://doi.org/10.1016/j.renene.2018.08.022 | spa |
dcterms.references | Patel, V., Savsani, V., & Mudgal, A. (2017). Many-objective thermodynamic optimization of Stirling heat engine. Energy. https://doi.org/10.1016/j.energy.2017.02.151 | spa |
dcterms.references | Planas;, M., & Cárdenas, J. (2019). La matriz energética de Colombia se renueva. Bid. | spa |
dcterms.references | Pupo-Roncallo, O., Campillo, J., Ingham, D., Hughes, K., & Pourkashanian, 46 M. (2020). Renewable energy production and demand dataset for the energy system of Colombia. Data in Brief. https://doi.org/10.1016/j.dib.2019.105084 | spa |
dcterms.references | Roy, D., Samanta, S., & Ghosh, S. (2019). Techno-economic and environmental analyses of a biomass based system employing solid oxide fuel cell, externally fired gas turbine and organic Rankine cycle. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.03.261 | spa |
dcterms.references | TAKEUCHI, M., SUZUKI, S., & ABE, Y. (2018). Design method and the development of the low-temperature-difference indirect heating Stirling engine. Transactions of the JSME (in Japanese). https://doi.org/10.1299/transjsme.17-00269 | spa |
dcterms.references | Toro, C., & Lior, N. (2017). Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation. Energy. https://doi.org/10.1016/j.energy.2016.11.104 | spa |
dcterms.references | Urien, A. (2013). Obtención de biocarbones y biocombustibles mediante pirólisis de biomasa residual. In Tesis De Máster. | spa |
dcterms.references | Yousefzadeh, H., & Tavakolpour-Saleh, A. R. (2021). A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines. Energy. https://doi.org/10.1016/j.energy.2021.120222 | spa |
dcterms.references | Zare, S., & Tavakolpour-Saleh, A. R. (2020). Free piston Stirling engines: A review. In International Journal of Energy Research. https://doi.org/10.1002/er.4533 | spa |
dcterms.references | Zayyinun, A., & Widyartono, M. (2020). Prototipe Mesin Stirling Menggunakan Panas Sinar Matahari Sebagai Energi Alternatif. Teknik Elektro. | spa |
dcterms.references | Zhu, S., Yu, G., Liang, K., Dai, W., & Luo, E. (2021). A review of Stirling-engine-based combined heat and power technology. Applied Energy. https://doi.org/10.1016/j.apenergy.2021.116965 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: