Show simple item record

dc.contributor.advisorNicolás Antonio De La Espriella Vélezspa
dc.contributor.authorPadilla Doria, Luis Davidspa
dc.date.accessioned2020-11-13T23:05:21Zspa
dc.date.available2020-11-13T23:05:21Zspa
dc.date.issued2020-11-13spa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3620spa
dc.description.abstractEn este trabajo investigamos el comportamiento termomagnético de un sistema ferromagnético tipo Ising de espines 𝑆 = 3 y 𝑄 = 1 configurados en una red cuadrada bipartita de subredes A y B. Se espera medir el efecto del campo externo h sobre propiedades del sistema a temperatura finita de la energía, las magnetizaciones, el calor específico y la susceptibilidad magnética total por sitio de red, usando simulaciones Monte Carlo. El Hamiltoniano que define al sistema tiene interacciones de intercambio a primeros vecinos (𝐽1), de campos cristalinos 𝐷𝑆 y 𝐷𝑄 y un campo magnético externo h. Se halló que la temperatura crítica es proporcional al incremento del campo magnético externo. A bajas temperaturas el sistema presenta picos no críticos debido al reordenamiento de los espines en las subredes por efectos de los campos cristalinos dados en el Hamiltoniano de interacción. Con los efectos del campo magnético externo sobre la susceptibilidad magnética, el sistema aumento gradualmente con el incremento de la temperatura, por otra parte, se encontró que la energía de estado base del modelo decrece con el incremento del campo magnético externo. Por otra parte, la aplicabilidad de esta investigación aún no ha sido encontrada posiblemente por que no exista en la naturaleza la presencia de un compuesto que represente la configuración de momentos magnéticos escogidos.spa
dc.description.tableofcontents1. Introducción...................................................................................................................... 1spa
dc.description.tableofcontents2. Magnetismo y estructura de modelos magnéticos ......................................................... 3spa
dc.description.tableofcontents2.1. Origen del Magnetismo................................................................................................ 4spa
dc.description.tableofcontents2.2. Estructuras Magnéticas ............................................................................................... 5spa
dc.description.tableofcontents2.2.1 Ferromagnetismo ...........................................................................................................5spa
dc.description.tableofcontents2.2.1.1. Fundamentos físicos del ferromagnetismo .......................................................6spa
dc.description.tableofcontents2.2.2. Antiferromagnetismo................................................................................................ 8spa
dc.description.tableofcontents2.2.3. Ferrimagnetismo .................................................................................................... 8spa
dc.description.tableofcontents2.3 Mecánica estadística en el estudio de los materiales magnéticos ................................. 8spa
dc.description.tableofcontents2.4 El Modelo Ising............................................................................................................. 9spa
dc.description.tableofcontents2.4.1. El modelo Ising en dos dimensiones..........................................................................11spa
dc.description.tableofcontents2.5 Transiciones de fase ................................................................................................... 12spa
dc.description.tableofcontents2.5.1. Ejemplo de transiciones de fase................................................................................. 12spa
dc.description.tableofcontents2.5.2 Transiciones de fase del modelo Ising ferromagnético ............................................ 13spa
dc.description.tableofcontents2.6 Simulaciones computacionales en equilibrio térmico................................................. 14spa
dc.description.tableofcontents2.6.1 Simulación Monte Carlo...............................................................................................15spa
dc.description.tableofcontents2.6.2 Aspectos importantes de la Simulación Monte Carlo............................................ 15spa
dc.description.tableofcontents2.6.2.1 Muestreo de importancia............................................................................... 15spa
dc.description.tableofcontents2.6.2.2 Proceso de Markov ....................................................................................... 16spa
dc.description.tableofcontents2.6.2.2.1 Ergodicidad................................................................................................ 16spa
dc.description.tableofcontents2.6.2.2.2 Balance detallado ....................................................................................... 16spa
dc.description.tableofcontents2.7 Algoritmo Metropolis.................................................................................................. 17spa
dc.description.tableofcontents2.8 Cálculo de errores........................................................................................................ 18spa
dc.description.tableofcontents2.9 Algoritmo para sistemas mixtos de Ising .................................................................... 18spa
dc.description.tableofcontents3. Resultados y análisis....................................................................................................... 20spa
dc.description.tableofcontents3.1. Hamiltoniano de interacción ...................................................................................... 20spa
dc.description.tableofcontents3.2. Variables termomagnéticas del modelo ..................................................................... 20spa
dc.description.tableofcontents3.3. Efecto del campo magnético h sobre las variables termodinámicas.......................... 21spa
dc.description.tableofcontents3.3.1. Efecto de h sobre la energía E.............................................................................. 21spa
dc.description.tableofcontents3.3.2. Efecto de h sobre el calor específico C................................................................ 23spa
dc.description.tableofcontents3.3.3. Efecto de h sobre las magnetizaciones Ms, MQ y MT..........................................26spa
dc.description.tableofcontents3.3.4 efecto de h sobre la susceptibilidad magnética ................................................ 31spa
dc.description.tableofcontents4. Conclusiones.................................................................................................................... 34spa
dc.description.tableofcontentsReferencias Bibliográficas ................................................................................................. 35spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleDiagramas de Fase a Temperatura Finita de un Ferromagneto de Momentos Magnéticos S = 3 y Q = 1spa
dc.typeTrabajo de grado - Pregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.relation.references[1] The Discovery of Giant Magnetoresistance, compiled by the Class of Physics of The Royal Swedish Academy of Sciences. Scientific Background on the Nobel Prize in Physics 2007.spa
dc.relation.references[2] N. Sounderya, Y. Zhang, Use of Core/Shell Structured Nanoparticles for Biomedical Applications, Recent Pat. Biomed. Eng. 1 (2008) 34.spa
dc.relation.references[3] J. B. Parkinson, D. J. Farnell, An Introduction to Quantum Spin Systems. Springer Verlag, Berlin-Heidelberg, 2010.spa
dc.relation.references[4] F. Schwabl. Statistical Mechanics. 3rd Edition, Physik-Department Technische Universität München, Springer-Verlag, Berlin-Heidelberg, 2006spa
dc.relation.references[5] M. Kuz’min, Shape of Temperature Dependence of SpontaneousM Magnetization of Ferromagnets: Quantitative Analysis. Physical review letters. 94 (2005) 107-204.spa
dc.relation.references[6] A. Jabar, R. Masrour, A. Benyoussef, M. Hamedoun, Monte Carlo study of alternate mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice, J. Magn. Magn. Mater. 397 (2016) 287–294spa
dc.relation.references[7] B.Boughazi, M. Boughrara, M. Kerouad , J. Magn. Magn. Mater. 354 (2014) 173spa
dc.relation.references[8] Q. Zhang, G. Wei, Y. Gu, Phys. Status Solidi B.242 (2005) 4–924.spa
dc.relation.references[9] J. Strecka, J. Cisárová, Order-from-disorder effect in the exactly solved mixed spin-(1/2, 1) Ising model on fully frustrated triangles-in-triangles lattices Physica A. 392 (2013) 5633-5643.spa
dc.relation.references[10] D.Suess, L.Breth, J.Lee, M, Fuger, ch. Vogler, F. Bruckner, B. Bergmair, T. Huber, J. Fidler, T. Schrefl, Calculation of coercivity of magnetic nanostructures at finite temperatures. Physical Review B. 84 (2011) 224-421.spa
dc.relation.references[11] R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Magnetic properties of cluster dendrimers of core/shell with mixed spins σ = 3/2 and s=2: A Monte Carlo study, Chem. Phys. Lett. 691 (2018) 199–205.spa
dc.relation.references[12] A. Jabar, R. Masrour, Magnetic properties of mixed spin-5/2 and spin-2 Ising model on a decorated square lattice: A Monte Carlo simulation, Physica A. 515 (2019) 270–278.spa
dc.relation.references[13] Ş.Numan, A Salih, P. Yasin, E. Recai, Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence. Physica A. Statistical Mechanics and its Applications. 434 (2015) 194-200.spa
dc.relation.references[15] Y. Unjong, Critical temperature of the Ising ferromagnet on the fcc, hcp, and dhcp lattices. Physica A: Statistical Mechanics and its Applications.419 (2015) 75-79spa
dc.relation.references[16] V. A. L'vov, A. Kosogor, Inverse magnetocaloric effect in the solids undergoing ferromagnetic - antiferromagnetic phase transition: Landau theory applied to Fe-Rh alloys, Journal of Magnetism and Magnetic Materials. (2020) 167-269spa
dc.relation.references[17] B. Touria, S. Mohammed, The transverse spin-1 Ising model with random interactions. Journal of Magnetism and Magnetic Materials. 321 (2009) 17-24.spa
dc.relation.references[18] Ü, Temizer, K. Mustafa, O. Canko, Dynamic compensation temperature in the kinetic spin-1 Ising model in an oscillating external magnetic field on alternate layers of a hexagonal lattice. Journal of Magnetism and Magnetic Materials.321. (2009) 2999-3006spa
dc.relation.references[19] M. Keskin, O. Canko, E. Kantar, The Glauber dynamics for a spin-1 metamagnetic Ising system with bilinear and biquadratic intections. Physics Letters A. 373. (2009) 2201-2209spa
dc.relation.references[20] M. Keskin, M. Ertaş, O. Canko , Dinamic phase transitions and dinamic phase diagrams in the kinetic mixed spin-1 and spin-2 Ising sistema in an osillating Magnetic Field, Phys. Scr. 79 (2009) 025-501.spa
dc.relation.references[21] G. Wei, Y. Gu, J Liu, Mean-field and Monte Carlo studies of a mixed spin-1 and spin- 2 Ising system with different anisotropies, Phys. Rev. B 74 (2006) 024-422.spa
dc.relation.references[22] J. Mazo Zuluaga Propiedades magnéticas y efectos de tamaño en nanoestructuras de magnetita: simulación Monte Carlo. Tesis Doctoral, Universidad de Antioquia (2008).spa
dc.relation.references[23] J.F. Scott. Science, Applications of Modern Ferroelectrics, 315 (2007) 954-959spa
dc.relation.references[24] M. Grafoute, Etude des proprietes structurales et modelisations de poudres nanostructures de fe obtenues par broyage mecanique. Tesis Doctoral, Universidad de Maine-Francia (2004).spa
dc.relation.references[25] E. P. Wohlfarth, Ferromagnetic materials a handbook on the properties of magnetically ordered substances, North-Holland (1999).spa
dc.relation.references[26] D. J. Griffiths. Introduction to Electrodynamics, 2nd ed. Prentice Hall (1999).spa
dc.relation.references[27] J. H. Van Vleck, A Survey of the Theory of Ferromagnetism, Rev. Mod. Phys., 17 (1945) 27.spa
dc.relation.references[28] D. R. Askeland, W. J. Wright “Ciencia e Ingeniería de Materiales”, Ed. Cengage Learning Editores S.A. de C.V, (2017), Pp.733.spa
dc.relation.references[29] S. Chikazumi, Physics of Ferromagnetism, Clarendom Press, Oxforf (1997).spa
dc.relation.references[30] D. R. Askeland, “La Ciencia e Ingeniería de los Materiales”, Ed. Iberoamericana, año 1985, Pp.437-439.spa
dc.relation.references[31] B. Witold, “Introducción a la ciencia de los materiales”, Ed. Limusa, año1981, Pp 425.spa
dc.relation.references[32] GT. Barkema, MEJ Newman. Monte Carlo methods in statistical physics. Oxford University Press, 2001.spa
dc.relation.references[33] K. Huang. Statistical mechanics. 1963spa
dc.relation.references[34] Ch. Kittel, D.F. Holcomb, «Introduction to solid state physics», American Journal of Physics 35.6 (1967) 547-548.spa
dc.relation.references[35] E. Ising. «Beitrag zur theorie des ferromagnetismus». En: Zeitschrift für Physik 31.1 (1925), págs. 253-258.spa
dc.relation.references[36] J. M. Yeomans, Statistical mechanics of phase transitions. Clarendon Press, 1992.spa
dc.relation.references[37] L. Onsager. Crystal statistics. i. a two-dimensional model with an orderdisorder transition. Phys. Rev., Vol 65. (1944) págs. 117–149.spa
dc.relation.references[38] M.S. Bhattaacharjee, A. Khare, Fifty years of the exact solution of the two- dimensional Ising model by Onsager (Institute of Physics, Sachivalaya Marg, India; 2008).spa
dc.relation.references[39] C. N. Yang, The spontaneous magnetization of a two-dimensional ising model. Physical Review, Vol 85. (1952) pág. 808.spa
dc.relation.references[40] L. Angélica and Gelover-Santiago. Simulación del modelo de Ising con el método de Monte Carlo. UNAM, (2005).spa
dc.relation.references[41] F. Schwabl. Statistical Mechanics. 3rd Edition, Physik-Department Technische Universität München, Springer-Verlag, Berlin-Heidelberg, 2006spa
dc.relation.references[42] A.D. Bruce, R.A. Cowley. «Structural phase transitions III. Critical dynamics and quasielastic scattering». En: Advances in Physics 29.1 (1980) 219-321.spa
dc.relation.references[43] G.T. Barkema, M.E.J. Newman. Monte Carlo methods in statistical physics. Oxford University Press, 2001.spa
dc.relation.references[44] E. Restrepo Parra. Simulación Monte Carlo de propiedades magnéticas y de transporte en sistemas de super-redes del tipo (FM/AFM)n. Tesis doctoral. Universidad Nacional de Colombia (2010).spa
dc.relation.references[45] M.E.J. Newman, G.T. Barkema, Monte-Carlo Methods in Statistical Physics. Claredon Press-Oxford (1999).spa
dc.relation.references[46] K. Binder, D.W. Heermann, Monte-Carlo Simulation in Statistical Physics. SpringerVerlag, Alemania (1988).spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dc.subject.keywordsPhase diagramsspa
dc.subject.keywordsMonte Carlo methodspa
dc.subject.keywordsMagnetismspa
dc.description.degreelevelPregradospa
dc.description.degreenameFísico(a)spa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.programFísicaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2020
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2020