In this work, generalized eigenvalues are used to study the Jordan normal form and some applications of this are shown. We prove that C n can be decomposed as a direct sum of generalized proper subspaces by using annihilating polynomials and the minimal polynomial. We also prove that each generalized eigensubspace can be decomposed as a direct sum of Jordan cyclic subspaces. Finally, the Jordan Theorem is proved by using the above decompositions.