Publicación: Influencia de la inoculación de hongos formadores de micorrizas arbusculares en la absorcion de Cadmio en plantas de cacao durante la etapa de vivero
dc.audience | ||
dc.contributor.advisor | Barrera Violeth, José Luis | |
dc.contributor.author | Lafont Quiñones, Orlando | |
dc.contributor.jury | Cadena Torres , Jorge | |
dc.contributor.jury | Jaraba Navas, Juan de Dios | |
dc.date.accessioned | 2025-02-05T22:11:30Z | |
dc.date.available | 2025-02-05T22:11:30Z | |
dc.date.issued | 2025-02-03 | |
dc.description.abstract | El cultivo de cacao (Theobroma cacao L.) es una fuente vital de ingresos para miles de familias campesinas en Colombia, especialmente en regiones como el departamento de Córdoba, donde se destaca la producción de cacao fino de aroma y sabor. Sin embargo, la industria cacaotera enfrenta un grave desafío: la acumulación de cadmio (Cd) en los frutos, lo que plantea preocupaciones económicas, ambientales y de salud pública. Para mitigar este problema, se están explorando estrategias de fitorremediación, entre ellas, el uso de hongos formadores de micorrizas arbusculares (HFMA). En este contexto, el presente estudio se enfoca en evaluar el efecto de los HFMA sobre la absorción de Cd en plántulas de cacao cultivadas en suelos contaminados con diferentes concentraciones de Cd durante la etapa de vivero. Se utilizó un diseño experimental en bloques completamente al azar con un arreglo factorial que incluyó tres niveles de micorrizas (0, 10, 20 g) y cuatro niveles de Cd (0, 3, 12, 24 mg·kg⁻¹). Se midieron diversas variables de respuesta: porcentaje de colonización (%), longitud del tallo (cm), número de hojas, grosor del tallo (cm), área foliar (cm²), peso fresco y peso seco de raíz, tallo y hojas (g), índices de crecimiento, variables de intercambio gaseoso, concentración de Cd en raíz, tallo y hojas, así como la eficiencia en la translocación y bioacumulación del cadmio. Los resultados revelaron una interacción significativa entre las micorrizas y el cadmio en las variables de crecimiento vegetativo e intercambio gaseoso. Se observó que el efecto de las micorrizas fue más pronunciado en las variables fisiológicas que en las de crecimiento y acumulación de Cd en los tejidos. La acumulación de cadmio en las plantas fue evidente, especialmente en la parte aérea, y se observó que la capacidad de colonización del hongo disminuyó en condiciones de alta concentración de cadmio en el suelo. No obstante, se destacaron efectos positivos de la simbiosis en condiciones moderadas, subrayando la importancia de realizar estudios adicionales para comprender mejor las tecnologías que involucran a las micorrizas en sistemas afectados por la contaminación con cadmio. Este trabajo contribuye al conocimiento sobre la interacción entre las micorrizas y el cadmio en el cacao, resaltando su potencial mitigador de los efectos negativos del metal pesado y sugiriendo la necesidad de investigaciones más amplias en sistemas productivos reales para validar estos hallazgos. | spa |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias Agronómicas | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | RESUMEN | |
dc.description.tableofcontents | INTRODUCCIÓN | |
dc.description.tableofcontents | MARCO TEORICO Y ESTADO DEL ARTE | |
dc.description.tableofcontents | OBJETIVO | |
dc.description.tableofcontents | Objetivo General | |
dc.description.tableofcontents | Objetivos Específicos | |
dc.description.tableofcontents | MATERIALES Y METODOS | |
dc.description.tableofcontents | Localización | |
dc.description.tableofcontents | Poblacón y muestra | |
dc.description.tableofcontents | VARIABLES | |
dc.description.tableofcontents | Variables independientes | |
dc.description.tableofcontents | Variables dependientes | |
dc.description.tableofcontents | DISEÑO EXPERIMENTAL Y MUESTREO | |
dc.description.tableofcontents | RESULTADO Y DISCUSIÓN | |
dc.description.tableofcontents | CONCLUSIONES | |
dc.description.tableofcontents | RECOMENDACIONES | |
dc.description.tableofcontents | BIBLIOGRAFIA | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9019 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Agrícolas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ciencias Agronómicas | |
dc.relation.references | Abdelhameed, R. E., & Metwally, R. A. (2019). Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. International journal of phytoremediation, 21(7), 663-671. https://doi.org/10.1080/15226514.2018.1556584 | |
dc.relation.references | Abdelhameed, R. E., & Metwally, R. A. (2019). Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. International journal of phytoremediation, 21(7), 663-671. https://doi.org/10.1080/15226514.2018.1556584 | |
dc.relation.references | Abt, E., & Robin, L. P. (2020). Perspective on cadmium and lead in cocoa and chocolate. Journal of agricultural and food chemistry, 68(46), 13008-13015. DOI: 10.1021/acs.jafc.9b08295 | |
dc.relation.references | Agronet (Red de Información y Comunicación Estratégica del Sector Agropecuario –Colombia). (2022). Disponible en: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 | |
dc.relation.references | Akib, M. A., Kuswinanti, T., Antonius, S., Mustari, K., Syaiful, S. A., Nuddin, A., & Prayudyaningsih, R. (2020). Acaulospora sp: Can it help the growth of Canavalia ensiformis in heavy metal contaminated environment?. In IOP Conference Series: Earth and Environmental Science (Vol. 575, No. 1, p. 012085). IOP Publishing. DOI 10.1088/1755-1315/575/1/012085 | |
dc.relation.references | Alaya, B., Toro, M., Calsina, R., Ogata-Gutiérrez, K., Gil-Polo, A., Ormeño-Orrillo, E., & Zúñiga-Dávila, D. (2023). Evaluation of the Presence of Arbuscular Mycorrhizae and Cadmium Content in the Plants and Soils of Cocoa Plantations in San Martin, Peru. Diversity, 15(2), 246. https://doi.org/10.3390/d15020246 | |
dc.relation.references | Ali, E., Hussain, A., Ullah, I., Khan, F. S., Kausar, S., Rashid, S. A., & Sun, P. (2020). Cadmium phytotoxicity: issues, progress, environmental concerns and future perspectives. Revista de la Facultad de Ciencias Agrarias UNCuyo, 52(1), 391-405. Recuperado en 23 de octubre de 2023, de http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853-86652020000100030&lng=es&tlng=en. | |
dc.relation.references | Anwar, S., Shafiq, F., Nisa, Z. U., Usman, U., Ashraf, M. Y., & Ali, N. (2021). Effect of cadmium stress on seed germination, plant growth and hydrolyzing enzymes activities in mungbean seedlings. Journal of Seed Science, 43, e202143042. https://doi.org/10.1590/2317-1545v43256006 | |
dc.relation.references | Argüello, D., Chavez, E., Gutierrez, E., Pittomvils, M., Dekeyrel, J., Blommaert, H., & Smolders, E. (2023). Soil amendments to reduce cadmium in cacao (Theobroma cacao L.): A comprehensive field study in Ecuador. Chemosphere, 324, 138318. https://doi.org/10.1016/j.chemosphere.2023.138318 | |
dc.relation.references | Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the total environment, 649, 120-127. https://doi.org/10.1016/j.scitotenv.2018.08.292 | |
dc.relation.references | Balestrini, R., Chitarra, W., Antoniou, C., Ruocco, M., & Fotopoulos, V. (2018). Improvement of plant performance under water deficit with the employment of biological and chemical priming agents. The Journal of Agricultural Science, 156(5), 680-688. https://doi.org/10.1017/S0021859618000126 | |
dc.relation.references | Bennett, A. E., & Groten, K. (2022). The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annual Review of Plant Biology, 73, 649-672. https://doi.org/10.1146/annurev-arplant-102820-124504 | |
dc.relation.references | Bisht, A., Bhalla, S., Kumar, A., Kaur, J., & Garg, N. (2021). Gene expression analysis for selection and validation of suitable housekeeping gene (s) in cadmium exposed pigeonpea plants inoculated with arbuscular mycorrhizae. Plant Physiology and Biochemistry, 162, 592-602. https://doi.org/10.1016/j.plaphy.2021.03.024 | |
dc.relation.references | Blommaert, H., Aucour, A. M., Wiggenhauser, M., Moens, C., Telouk, P., Campillo, S., ... & Sarret, G. (2022). From soil to cacao bean: unravelling the pathways of cadmium translocation in a high Cd accumulating cultivar of Theobroma cacao L. Frontiers in Plant Science, 13, 1055912. https://doi.org/10.3389/fpls.2022.1055912 | |
dc.relation.references | Blommaert, H., Aucour, A. M., Wiggenhauser, M., Moens, C., Telouk, P., Campillo, S., ... & Sarret, G. (2022). From soil to cacao bean: unravelling the pathways of cadmium translocation in a high Cd accumulating cultivar of Theobroma cacao L. Frontiers in Plant Science, 13, 1055912. | |
dc.relation.references | Cadby, J., & Araki, T. (2021). Towards ethical chocolate: multicriterial identifiers, pricing structures, and the role of the specialty cacao industry in sustainable development. SN Business & Economics, 1, 1-36. https://doi.org/10.1007/s43546-021-00051-y | |
dc.relation.references | Cakmak, I., Lambers, H., Grant, C. A., & Zhao, F. J. (2023). Arbuscular mycorrhizal fungi: key players in avoiding cadmium accumulation in food crops. Plant and Soil, 484(1-2), 13-32. https://doi.org/10.1007/s11104-022-05802-w | |
dc.relation.references | Ceccarelli, V., Fremout, T., Zavaleta, D., Lastra, S., Imán Correa, S., Arévalo‐Gardini, E., ... & Thomas, E. (2021). Climate change impact on cultivated and wild cacao in Peru and the search of climate change‐tolerant genotypes. Diversity and Distributions, 27(8), 1462-1476. https://doi.org/10.1111/ddi.13294 | |
dc.relation.references | Cheng, M., Wang, A., Liu, Z., Gendall, A. R., Rochfort, S., & Tang, C. (2018). Sodium chloride decreases cadmium accumulation and changes the response of metabolites to cadmium stress in the halophyte Carpobrotus rossii. Annals of Botany, 122(3), 373-385. https://doi.org/10.1093/aob/mcy077 | |
dc.relation.references | Chu, D. (2018). Effects of heavy metals on soil microbial community. In IOP Conference Series: Earth and environmental science (Vol. 113, p. 012009). IOP Publishing. DOI 10.1088/1755-1315/113/1/012009 | |
dc.relation.references | Chu, Z., Munir, S., Zhao, G., Hou, J., Du, W., Li, N., ... & Ouyang, B. (2020). Linking phytohormones with growth, transport activity and metabolic responses to cadmium in tomato. Plant Growth Regulation, 90, 557-569. https://doi.org/10.1007/s10725-020-00580-w | |
dc.relation.references | Correa, J. E., Ramírez, R., Ruíz, O., & Leiva, E. I. (2021). Effect of soil characteristics on cadmium absorption and plant growth of Theobroma cacao L. seedlings. Journal of the Science of Food and Agriculture, 101(13), 5437-5445. https://doi.org/10.1002/jsfa.11192 | |
dc.relation.references | Correa, J. E., Ramírez, R., Ruíz, O., & Leiva, E. I. (2021). Effect of soil characteristics on cadmium absorption and plant growth of Theobroma cacao L. seedlings. Journal of the Science of Food and Agriculture, 101(13), 5437-5445. https://doi.org/10.1002/jsfa.11192 | |
dc.relation.references | Correa, J. E., Ramírez, R., Ruíz, O., & Leiva, E. I. (2021). Effect of soil characteristics on cadmium absorption and plant growth of Theobroma cacao L. seedlings. Journal of the Science of Food and Agriculture, 101(13), 5437-5445. https://doi.org/10.1002/jsfa.11192 | |
dc.relation.references | da Silva Cunha, L. F., de Oliveira, V. P., do Nascimento, A. W. S., da Silva, B. R. S., Batista, B. L., Alsahli, A. A., & Lobato, A. K. D. S. (2021). Leaf application of 24‐epibrassinolide mitigates cadmium toxicity in young Eucalyptus urophylla plants by modulating leaf anatomy and gas exchange. Physiologia Plantarum, 173(1), 67-87. https://doi.org/10.1111/ppl.13182 | |
dc.relation.references | Dhalaria, R., Kumar, D., Kumar, H., Nepovimova, E., Kuča, K., Torequl Islam, M., & Verma, R. (2020). Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants. Agronomy, 10(6), 815. https://doi.org/10.3390/agronomy10060815 | |
dc.relation.references | Dhaliwal, S. S., Sharma, V., Taneja, P. K., Shukla, A. K., Kaur, L., Verma, G., ... & Singh, J. (2021). Effect of cadmium and ethylenediamine tetraacetic acid supplementation on cadmium accumulation by roots of Brassica species in Cd spiked soil. Environmental Science and Pollution Research, 1-10. https://doi.org/10.1007/s11356-021-16084-7 | |
dc.relation.references | Díaz-Valderrama, J. R., Leiva-Espinoza, S. T., & Aime, M. C. (2020). The history of cacao and its diseases in the Americas. Phytopathology®, 110(10), 1604-1619. https://doi.org/10.1094/PHYTO-05-20-0178-RVW | |
dc.relation.references | Duffy, E. M., & Cassells, A. C. (2003). Root development | Mycorrhizae. Encyclopedia of Applied Plant Sciences, 1107–1115. doi:10.1016/b0-12-227050-9/00043-0 | |
dc.relation.references | El Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E. E., Bolan, N., ... & Rinklebe, J. (2022). Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 52(5), 675-726. https://doi.org/10.1080/10643389.2020.1835435 | |
dc.relation.references | El-Esawi, M. A., Elkelish, A., Soliman, M., Elansary, H. O., Zaid, A., & Wani, S. H. (2020). Serratia marcescens BM1 enhances cadmium stress tolerance and phytoremediation potential of soybean through modulation of osmolytes, leaf gas exchange, antioxidant machinery, and stress-responsive genes expression. Antioxidants, 9(1), 43. https://doi.org/10.3390/antiox9010043 | |
dc.relation.references | Engbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., & Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Science of the Total Environment, 678, 660-670. https://doi.org/10.1016/j.scitotenv.2019.05.001 | |
dc.relation.references | European Union-EU (2014). Regulation no. 488/2014. they modify ec regulation no 1881/2006 regarding the maximum content of cadmium in food products. Technical report, Official Journal of the European Union. Online: https://bit.ly/3uvfOxT. | |
dc.relation.references | Evelin, H., Devi, T. S., Gupta, S., & Kapoor, R. (2019). Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Frontiers in Plant Science, 470. https://doi.org/10.3389/fpls.2019.00470 | |
dc.relation.references | FAOSTATS. (2021). Datos sobre alimentación y agricultura. Recuperado el 1 de septiembre de 2022, de http://www.fao.org/faostat/es/#data | |
dc.relation.references | Fernández-Paz, J., Cortés, A. J., Hernández-Varela, C. A., Mejía-de-Tafur, M. S., Rodriguez-Medina, C., & Baligar, V. C. (2021). Rootstock-mediated genetic variance in cadmium uptake by juvenile cacao (Theobroma cacao L.) genotypes, and its effect on growth and physiology. Frontiers in Plant Science, 12, 777842. https://doi.org/10.3389/fpls.2021.777842 | |
dc.relation.references | Florida, N. (2021). Review on maximum limits of cadmium in cocoa (Theobroma cacao L.). La granja. Revista de Ciencias de la Vida, 34(2), 117-130. https://doi.org/10.17163/lgr.n34.2021.08 | |
dc.relation.references | Florida-Rofner, N. (2021). Review on maximum limits of cadmium in cocoa (Theobroma cacao L.). La granja. Revista de Ciencias de la Vida, 34(2), 117-130. http://doi.org/10.17163/lgr.n34.2021.08 | |
dc.relation.references | Furcal, P., y Torres, J. L. (2020). Determinación de concentraciones de cadmio en plantaciones de Theobroma cacao L. en Costa Rica. Revista Tecnología en Marcha, 33(1), 122-137. http://dx.doi.org/10.18845/tm.v33i1.5027 | |
dc.relation.references | Gai, J. P., Fan, J. Q., Zhang, S. B., Mi, N. N., Christie, P., Li, X. L., & Feng, G. (2018). Direct effects of soil cadmium on the growth and activity of arbuscular mycorrhizal fungi. Rhizosphere, 7, 43-48. https://doi.org/10.1016/j.rhisph.2018.07.002 | |
dc.relation.references | Galvis, D. A., Jaimes-Suárez, Y. Y., Rojas Molina, J., Ruiz, R., & Carvalho, F. E. L. (2023). Cadmium up Taking and Allocation in Wood Species Associated to Cacao Agroforestry Systems and Its Potential Role for Phytoextraction. Plants, 12(16), 2930. https://doi.org/10.3390/plants12162930 | |
dc.relation.references | Gannini-Kurina, F., Balzarini, M., Koritschoner, J., Rampoldi, A., & Hang, S. (2021). Modelos para la conversión de las concentraciones de FE, MN, CU Y ZN entre los métodos MEHLICH-3 y DTPA-TEA en suelos de Córdoba. Ciencia del suelo, 39(2), 1-15. | |
dc.relation.references | Gao, Y., An, T., Kuang, Q., Wu, Y., Liu, S., Liang, L., ... & Chen, Y. (2023). The role of arbuscular mycorrhizal fungi in the alleviation of cadmium stress in cereals: A multilevel meta-analysis. Science of the Total Environment, 166091. https://doi.org/10.1016/j.scitotenv.2023.166091 | |
dc.relation.references | Gao, Y., An, T., Kuang, Q., Wu, Y., Liu, S., Liang, L., ... & Chen, Y. (2023). The role of arbuscular mycorrhizal fungi in the alleviation of cadmium stress in cereals: A multilevel meta-analysis. Science of the Total Environment, 166091. https://doi.org/10.1016/j.scitotenv.2023.166091 | |
dc.relation.references | García Galvis, J., & Ballesteros, M. I. (2006). Evaluación de los parametros de calidad para la determinación de fosforo disponible en suelos. Revista Colombiana de Química, 35(1), 81-89. | |
dc.relation.references | Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782 | |
dc.relation.references | Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782 | |
dc.relation.references | Genre, A., Lanfranco, L., Perotto, S., & Bonfante, P. (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18(11), 649-660. https://doi.org/10.1038/s41579-020-0402-3 | |
dc.relation.references | Genre, A., Lanfranco, L., Perotto, S., & Bonfante, P. (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18(11), 649-660. https://doi.org/10.1038/s41579-020-0402-3 | |
dc.relation.references | González-Orozco, C. E., Galán, A. A. S., Ramos, P. E., & Yockteng, R. (2020). Exploring the diversity and distribution of crop wild relatives of cacao (Theobroma cacao L.) in Colombia. Genetic Resources and Crop Evolution, 67(8), 2071-2085. https://doi.org/10.1007/s10722-020-00960-1 | |
dc.relation.references | González-Orozco, C. E., Galán, A. A. S., Ramos, P. E., & Yockteng, R. (2020). Exploring the diversity and distribution of crop wild relatives of cacao (Theobroma cacao L.) in Colombia. Genetic Resources and Crop Evolution, 67(8), 2071-2085. https://doi.org/10.1007/s10722-020-00960-1 | |
dc.relation.references | Haider, F. U., Farooq, M., Naveed, M., Cheema, S. A., Salim, M. A., Liqun, C., & Mustafa, A. (2022). Influence of biochar and microorganism co-application on stabilization of cadmium (Cd) and improved maize growth in Cd-contaminated soil. Frontiers in Plant Science, 13, 983830. https://doi.org/10.3389/fpls.2022.983830 | |
dc.relation.references | Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., ... & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887 | |
dc.relation.references | Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., ... & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887 | |
dc.relation.references | Haider, F. U., Virk, A. L., Rehmani, M. I. A., Skalicky, M., Ata-ul-Karim, S. T., Ahmad, N., ... & Liqun, C. (2022). Integrated application of thiourea and biochar improves maize growth, antioxidant activity and reduces cadmium bioavailability in cadmium-contaminated soil. Frontiers in Plant Science, 12, 809322. https://doi.org/10.3389/fpls.2021.809322 | |
dc.relation.references | Han, Z., Wei, X., Wan, D., He, W., Wang, X., & Xiong, Y. (2020). Effect of molybdenum on plant physiology and cadmium uptake and translocation in rape (Brassica napus L.) under different levels of cadmium stress. International Journal of Environmental Research and Public Health, 17(7), 2355. https://doi.org/10.3390/ijerph17072355 | |
dc.relation.references | Hu, W., & Pan, L. (2023). Applications of mycorrhizal fungi in agriculture and forestry. In Microbial Bioprocesses (pp. 1-20). Academic Press. https://doi.org/10.1016/B978-0-323-95332-0.00012-0 | |
dc.relation.references | Hunt, R. (1990). Basic Growth Analysis. Unwing Hyman. London, U. K. 112 p. | |
dc.relation.references | Hussain, B., Ashraf, M. N., Abbas, A., Li, J., & Farooq, M. (2021). Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Science of The Total Environment, 754, 142188. | |
dc.relation.references | Hussain, M. K., Aziz, A., Ditta, H. M. A., Azhar, M. F., El-Shehawi, A. M., Hussain, S., ... & Farooq, S. (2021). Foliar application of seed water extract of Nigella sativa improved maize growth in cadmium-contaminated soil. Plos one, 16(7), e0254602. https://doi.org/10.1371/journal.pone.0254602 | |
dc.relation.references | Huybrechts, M., Cuypers, A., Deckers, J., Iven, V., Vandionant, S., Jozefczak, M., & Hendrix, S. (2019). Cadmium and Plant Development: An Agony from Seed to Seed. International Journal of Molecular Sciences, 20(16), 3971. https://doi.org/10.3390/ijms20163971 | |
dc.relation.references | Huybrechts, M., Cuypers, A., Deckers, J., Iven, V., Vandionant, S., Jozefczak, M., & Hendrix, S. (2019). Cadmium and plant development: An agony from seed to seed. International journal of molecular sciences, 20(16), 3971. https://doi.org/10.1039/c8mt00247a | |
dc.relation.references | Ismael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11(2), 255-277. https://doi.org/10.1039/c8mt00247a | |
dc.relation.references | Jaimez, R. E., Barragan, L., Fernández-Niño, M., Wessjohann, L. A., Cedeño-Garcia, G., Cantos, I. S., & Arteaga, F. (2022). Theobroma cacao L. cultivar CCN 51: a comprehensive review on origin, genetics, sensory properties, production dynamics, and physiological aspects. PeerJ, 10, e12676. https://doi.org/10.7717/peerj.12676 | |
dc.relation.references | Jaimez, R. E., Barragan, L., Fernández-Niño, M., Wessjohann, L. A., Cedeño-Garcia, G., Cantos, I. S., & Arteaga, F. (2022). Theobroma cacao L. cultivar CCN 51: a comprehensive review on origin, genetics, sensory properties, production dynamics, and physiological aspects. PeerJ, 10, e12676. https://doi.org/10.7717/peerj.12676 | |
dc.relation.references | Jawad Hassan, M., Ali Raza, M., Ur Rehman, S., Ansar, M., Gitari, H., Khan, I., ... & Li, Z. (2020). Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants, 9(11), 1575. https://doi.org/10.3390/plants9111575 | |
dc.relation.references | Kakouridis, A., Hagen, J. A., Kan, M. P., Mambelli, S., Feldman, L. J., Herman, D. J., ... & Firestone, M. K. (2022). Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytologist, 236(1), 210-221. https://doi.org/10.1111/nph.18281 | |
dc.relation.references | Karimpour, M., Ashrafi, S. D., Taghavi, K., Mojtahedi, A., Roohbakhsh, E., & Naghipour, D. (2018). Adsorption of cadmium and lead onto live and dead cell mass of Pseudomonas aeruginosa: A dataset. Data in brief, 18, 1185-1192. https://doi.org/10.1016/j.dib.2018.04.014 | |
dc.relation.references | Kaur, H., & Garg, N. (2021). Interactive effects of zinc-arbuscular mycorrhizal (AM) fungi on cadmium uptake, rubisco, osmolyte synthesis and yield in Cajanus cajan (L.) Millsp. International Journal of Sustainable Agricultural Research, 8(1), 17-42. https://doi.org/10.18488/journal.70.2021.81.17.42 | |
dc.relation.references | Kaur, H., Singh, S., & Kumar, P. (2023). Reconditioning of plant metabolism by arbuscular mycorrhizal networks in cadmium contaminated soils: Recent perspectives. Microbiological Research, 268, 127293. https://doi.org/10.1016/j.micres.2022.127293 | |
dc.relation.references | Kobae, Y. (2019). Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Frontiers in environmental Science, 6, 159. https://doi.org/10.3389/fenvs.2018.00159 | |
dc.relation.references | Koleva, L., Shah, A. A., Siddiqui, M. H., Riaz, L., Raza, A., Javed, T., & Shabbir, Z. (2022). Iron oxide and silicon nanoparticles modulate mineral nutrient homeostasis and metabolism in cadmium-stressed Phaseolus vulgaris. Frontiers in Plant Science, 13, 806781. https://doi.org/10.3389/fpls.2022.806781 | |
dc.relation.references | Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: a review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388 | |
dc.relation.references | Lahive, F., Hadley, P., & Daymond, A. J. (2019). The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agronomy for Sustainable Development, 39, 1-22. https://doi.org/10.1007/s13593-018-0552-0 | |
dc.relation.references | Lewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of The Total Environment, 640-641, 696–703. doi:10.1016/j.scitotenv.2018.05.365 | |
dc.relation.references | Lewis, J. D. (2016). Mycorrhizal Fungi, Evolution and Diversification of. Encyclopedia of Evolutionary Biology, 94–99. doi:10.1016/b978-0-12-800049-6.00251-1 | |
dc.relation.references | Li, H., Gao, M. Y., Mo, C. H., Wong, M. H., Chen, X. W., & Wang, J. J. (2022). Potential use of arbuscular mycorrhizal fungi for simultaneous mitigation of arsenic and cadmium accumulation in rice. Journal of Experimental Botany, 73(1), 50-67. https://doi.org/10.1093/jxb/erab444 | |
dc.relation.references | Lira, M. P., de Castro, E. M., Pereira, F. J., de Oliveira, C., Lira, J. S., & Ramos, S. J. (2018). Anatomic and physiological responses of Panicum aquaticum related to cadmium tolerance. Journal of Soil and Water Conservation, 73(2), 207-212. https://doi.org/10.2489/jswc.73.2.207 | |
dc.relation.references | Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S., & Wang, Y. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 194, 495–503. doi:10.1016/j.chemosphere.2017.12.025 | |
dc.relation.references | Maddela, N. R., Kakarla, D., García, L. C., Chakraborty, S., Venkateswarlu, K., & Megharaj, M. (2020). Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Science of the Total Environment, 720, 137645. https://doi.org/10.1016/j.scitotenv.2020.137645 | |
dc.relation.references | Malhi, G. S., Kaur, M., Kaushik, P., Alyemeni, M. N., Alsahli, A. A., & Ahmad, P. (2021). Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi Journal of Biological Sciences, 28(2), 1465-1476. https://doi.org/10.1016/j.sjbs.2020.12.001 | |
dc.relation.references | Maney, C., Sassen, M., & Hill, S. L. (2022). Modelling biodiversity responses to land use in areas of cocoa cultivation. Agriculture, Ecosystems & Environment, 324, 107712. https://doi.org/10.1016/j.agee.2021.107712 | |
dc.relation.references | Martínez Reina, A. M. (2023). Tipificación de productores de cacao (Theobroma cacao L.) en la subregión del Sur de Córdoba en Colombia. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 10(2), 88-95. https://doi.org/10.53287/dccx6428sm50v | |
dc.relation.references | Melgarejo, L. M., Romero, M., Hernández, S., Barrera, J., Solarte, M. E., Suárez, D., & Pérez, W. (2010). Experimentos en fisiología vegetal. Departamento de Biología. | |
dc.relation.references | Molina, A. S., Lugo, M. A., Pérez Chaca, M. V., Vargas-Gil, S., Zirulnik, F., Leporati, J., Ferrol, N., & Azcón-Aguilar, C. (2020). Effect of Arbuscular Mycorrhizal Colonization on Cadmium-Mediated Oxidative Stress in Glycine max (L.) Merr. Plants, 9(1), 108. https://doi.org/10.3390/plants9010108 | |
dc.relation.references | Niether, W., Jacobi, J., Blaser, W. J., Andres, C., & Armengot, L. (2020). Cocoa agroforestry systems versus monocultures: a multi-dimensional meta-analysis. Environmental Research Letters, 15(10), 104085. | |
dc.relation.references | Pérez Moncada, U. A., Ramírez Gómez, M., Serralde Ordoñez, D. P., Peñaranda Rolón, A. M., Wilches Ortiz, W. A., Ramírez, L., & Rengifo Estrada, G. A. (2019). Hongos formadores de micorrizas arbusculares (HFMA) como estrategia para reducir la absorción de cadmio en plantas de cacao (Theobroma cacao). Terra Latinoamericana, 37(2), 121-130. | |
dc.relation.references | Pérez, E., Guzmán, R., Álvarez, C., Lares, M., Martínez, K., Suniaga, G., & Pavani, A. (2021). Cacao, cultura y patrimonio: un hábitat de aroma fino en Venezuela. RIVAR (Santiago), 8(22), 146-162. http://dx.doi.org/10.35588/rivar.v8i22.4781 | |
dc.relation.references | Pérez-Moncada, U. A., Ramírez-Gómez, M., Serralde-Ordoñez, D. P., Peñaranda-Rolón, A. M., Wilches-Ortiz, W. A., Ramírez, L., & Rengifo-Estrada, G. A. (2019). Hongos formadores de micorrizas arbusculares (HFMA) como estrategia para reducir la absorción de cadmio en plantas de cacao (Theobroma cacao). Terra Latinoamericana, 37(2), 121-130. https://doi.org/10.28940/terra.v37i2.479 | |
dc.relation.references | Pérez-Moncada, U. A., Ramírez-Gómez, M., Serralde-Ordoñez, D. P., Peñaranda-Rolón, A. M., Wilches-Ortiz, W. A., Ramírez, L., & Rengifo-Estrada, G. A. (2019). Hongos formadores de micorrizas arbusculares (HFMA) como estrategia para reducir la absorción de cadmio en plantas de cacao (Theobroma cacao). Terra Latinoamericana, 37(2), 121-130. https://doi.org/10.28940/terra.v37i2.479 | |
dc.relation.references | Püschel, D., Bitterlich, M., Rydlová, J., & Jansa, J. (2020). Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. Mycorrhiza, 30, 299-313. https://doi.org/10.1007/s00572-020-00949-9 | |
dc.relation.references | Rafique, M., Ortas, I., Rizwan, M., Sultan, T., Chaudhary, H. J., Işik, M., & Aydin, O. (2019). Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Environmental Science and Pollution Research, 26, 20689-20700. | |
dc.relation.references | Ramtahal, G., Umaharan, P., Hanuman, A., Davis, C., & Ali, L. (2019). The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Science of The Total Environment. doi:10.1016/j.scitotenv.2019.07.369 | |
dc.relation.references | Rask, K. A., Johansen, J. L., Kjøller, R., & Ekelund, F. (2019). Differences in arbuscular mycorrhizal colonisation influence cadmium uptake in plants. Environmental and Experimental Botany, 162, 223–229. doi:10.1016/j.envexpbot.2019.02.022 | |
dc.relation.references | Reddy, C. A., & Saravanan, R. S. (2013). Polymicrobial multi-functional approach for enhancement of crop productivity. In Advances in applied microbiology (Vol. 82, pp. 53-113). Academic Press. https://doi.org/10.1016/B978-0-12-407679-2.00003-X | |
dc.relation.references | Reyes-Pérez, J. J., Pincay-Ganchozo, R. A., Carrillo-Zenteno, M. D., Reynel, V., Peña-Salazar, K., & Tezara, W. (2023). Macronutrient Fertilization and Cadmium Absorption in Two Cocoa Clones. Horticulturae, 9(11), 1223. https://doi.org/10.3390/horticulturae9111223 | |
dc.relation.references | Riaz, M., Kamran, M., Fang, Y., Wang, Q., Cao, H., Yang, G., ... & Wang, X. (2021). Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Journal of Hazardous Materials, 402, 123919. https://doi.org/10.1016/j.jhazmat.2020.123919 | |
dc.relation.references | Saboor, A., Ali, M. A., Hussain, S., El Enshasy, H. A., Hussain, S., Ahmed, N., ... & Datta, R. (2021). Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi Journal of Biological Sciences, 28(11), 6339-6351. https://doi.org/10.1016/j.sjbs.2021.06.096 | |
dc.relation.references | Saleem, M. H., Parveen, A., Khan, S. U., Hussain, I., Wang, X., Alshaya, H., ... & Ali, S. (2022). Silicon fertigation regimes attenuates cadmium toxicity and phytoremediation potential in two maize (Zea mays L.) cultivars by minimizing its uptake and oxidative stress. Sustainability, 14(3), 1462. https://doi.org/10.3390/su14031462 | |
dc.relation.references | Santander-Ruiz, W., Garay-Montes, R., Verde-Girbau, C., & Mendieta-Taboada, O. (2021). Determinación del contenido de cadmio en suelos, frutos, granos fermentados y secos, licor de cacao y chocolate en zonas productoras de la Región San Martín. Revista de la Sociedad Química del Perú, 87(1), 39-49. https://dx.doi.org/10.37761/rsqp.v87i1.321 | |
dc.relation.references | Saputra, D. D., Sari, R. R., Hairiah, K., Roshetko, J. M., Suprayogo, D., & van Noordwijk, M. (2020). Can cocoa agroforestry restore degraded soil structure following conversion from forest to agricultural use?. Agroforestry Systems, 94, 2261-2276. https://doi.org/10.1007/s10457-020-00548-9 | |
dc.relation.references | Scaccabarozzi, D., Castillo, L., Aromatisi, A., Milne, L., Búllon Castillo, A., & Muñoz-Rojas, M. (2020). Soil, site, and management factors affecting cadmium concentrations in cacao-growing soils. Agronomy, 10(6), 806. https://doi.org/10.3390/agronomy10060806 | |
dc.relation.references | Shah, A. A., Khan, W. U., Yasin, N. A., Akram, W., Ahmad, A., Abbas, M., ... & Safdar, M. N. (2020). Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of Brassica oleracea. Chemosphere, 261, 127728. https://doi.org/10.1016/j.chemosphere.2020.127728 | |
dc.relation.references | Shi, W., Zhang, Y., Chen, S., Polle, A., Rennenberg, H., & Luo, Z. B. (2019). Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant, Cell & Environment, 42(4), 1087-1103. https://doi.org/10.1111/pce.13471 | |
dc.relation.references | Smith, S. E., & Read, D. J. (2008). Nitrogen mobilization and nutrition in ectomycorrhizal plants. Mycorrhizal Symbiosis, 3, 321-348. https://doi.org/10.1016/B978-012370526-6.50011-8 | |
dc.relation.references | Su, Y., Qin, C., Begum, N., Ashraf, M., & Zhang, L. (2020). Acetylcholine ameliorates the adverse effects of cadmium stress through mediating growth, photosynthetic activity and subcellular distribution of cadmium in tobacco (Nicotiana benthamiana). Ecotoxicology and Environmental Safety, 198, 110671. https://doi.org/10.1016/j.ecoenv.2020.110671 | |
dc.relation.references | Suárez, Y. Y. J., Castañeda, G. A. A., Daza, E. Y. B., Bustos, F. M., Estrada, G. A. R., & Molina, J. R. (2022). Modelo productivo para el cultivo de cacao (Theobroma cacao L.) en el departamento de Santander (2a edición). https://doi.org/10.21930/agrosavia.model.7405538 | |
dc.relation.references | Sun, S., Feng, Y., Huang, G., Zhao, X., & Song, F. (2022). Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties. Environmental Pollution, 314, 120309. https://doi.org/10.1016/j.envpol.2022.120309 | |
dc.relation.references | Symanczik, Sarah, et al. "Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought." Mycorrhiza 28 (2018): 779-785. https://doi.org/10.1007/s00572-018-0853-9 | |
dc.relation.references | Tananonchai, A., & Sampanpanish, P. (2020). The influence of EDTA on the accumulation, movement, and distribution of cadmium in dwarf elephant grass. Environmental Technology & Innovation, 17, 100555. https://doi.org/10.1016/j.eti.2019.100555 | |
dc.relation.references | Teste, F. P., Jones, M. D., & Dickie, I. A. (2020). Dual‐mycorrhizal plants: their ecology and relevance. New Phytologist, 225(5), 1835-1851. https://doi.org/10.1111/nph.16190 | |
dc.relation.references | Torres, N., Antolín, M. C., & Goicoechea, N. (2018). Arbuscular mycorrhizal symbiosis as a promising resource for improving berry quality in grapevines under changing environments. Frontiers in plant science, 9, 897. https://doi.org/10.3389/fpls.2018.00897 | |
dc.relation.references | Ullah, S., Khan, J., Hayat, K., Abdelfattah Elateeq, A., Salam, U., Yu, B., ... & Tang, Z. H. (2020). Comparative study of growth, cadmium accumulation and tolerance of three chickpea (Cicer arietinum L.) cultivars. Plants, 9(3), 310. https://doi.org/10.3390/plants9030310 | |
dc.relation.references | Ur Rahman, S., Xuebin, Q., Riaz, L., Yasin, G., Noor Shah, A., Shahzad, U., ... & Du, Z. (2021). The interactive effect of pH variation and cadmium stress on wheat (Triticum aestivum L.) growth, physiological and biochemical parameters. Plos one, 16(7), e0253798. https://doi.org/10.1371/journal.pone.0253798 | |
dc.relation.references | Vallejos-Torres, G., Gaona-Jimenez, N., Arevalo, A. A., Paredes, C., Lozano, A., Saavedra-Ramírez, J., ... & Marín, C. (2023). Cadmium uptake and mycorrhization by cacao clones in agroforestry and monoculture systems of Peruvian Amazon. Bioagro, 35(3), 237-246. http://www.doi.org/10.51372/bioagro353.7 | |
dc.relation.references | Vallejos-Torres, G., Gaona-Jimenez, N., Arevalo, A. A., Paredes, C., Lozano, A., Saavedra-Ramírez, J., ... & Marín, C. (2023). Cadmium uptake and mycorrhization by cacao clones in agroforestry and monoculture systems of Peruvian Amazon. Bioagro, 35(3), 237-246. http://www.doi.org/10.51372/bioagro353.7 | |
dc.relation.references | Vallejos-Torres, G., Ruíz-Valles, R., Chappa-Santa María, C. E., Gaona-Jiménez, N., & Marín, C. (2021). High genetic diversity in arbuscular mycorrhizal fungi influence cadmium uptake and growth of cocoa plants. Bioagro, 34(1), 75-84. https://doi.org/10.51372/bioagro341.7 | |
dc.relation.references | Vallejos-Torres, G., Torres, S. C., Gaona-Jimenez, N., Saavedra, J., Tuesta, J. C., Tuesta, O. A., ... & del Mar Alguacil, M. (2022). The Combined Effect of Arbuscular Mycorrhizal Fungi and Compost Improves Growth and Soil Parameters and Decreases Cadmium Absorption in Cacao (Theobroma cacao L.) Plants. Journal of Soil Science and Plant Nutrition, 22(4), 5174-5182. https://doi.org/10.1007/s42729-022-00992-9 | |
dc.relation.references | Vanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., … Smolders, E. (2021). Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of The Total Environment, 781, 146779. doi:10.1016/j.scitotenv.2021.146779 | |
dc.relation.references | Vanderschueren, R., Wantiez, L., Blommaert, H., Flores, J., Chavez, E., & Smolders, E. (2023). Revealing the pathways of cadmium uptake and translocation in cacao trees (Theobroma cacao L.): A 108Cd pulse-chase experiment. Science of The Total Environment, 869, 161816. https://doi.org/10.1016/j.scitotenv.2023.161816 | |
dc.relation.references | Vargas-Vázquez, V. A., Sanchez-Rangel, N. I., Hernández-Cuevas, L. V., & Guevara-Guerrero, G. (2021). Riqueza de especies de hongos micorrízicos asociados a plantas de la familia Euphorbiaceae en el Área Natural Protegida Altas Cumbres, Tamaulipas, México. CienciaUAT, 16(1), 6-19. | |
dc.relation.references | Wade, J., Ac-Pangan, M., Favoretto, V. R., Taylor, A. J., Engeseth, N., & Margenot, A. J. (2022). Drivers of cadmium accumulation in Theobroma cacao L. beans: A quantitative synthesis of soil-plant relationships across the Cacao Belt. Plos one, 17(2), e0261989. https://doi.org/10.1371/journal.pone.0261989 | |
dc.relation.references | Wahid, A., Ghani, A., Ali, I., & Ashraf, M. Y. (2007). Effects of cadmium on carbon and nitrogen assimilation in shoots of mungbean [Vigna radiata (L.) Wilczek] seedlings. Journal of agronomy and crop science, 193(5), 357-365. https://doi.org/10.1111/j.1439-037X.2007.00270.x | |
dc.relation.references | Wang, F., Zhang, X., Zhang, S., Zhang, S., Adams, C. A., & Sun, Y. (2020). Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation. Toxics, 8(2), 36. https://doi.org/10.3390/toxics8020036 | |
dc.relation.references | Wang, H. R., Du, X. R., Zhang, Z. Y., Feng, F. J., & Zhang, J. M. (2023). Rhizosphere interface microbiome reassembly by arbuscular mycorrhizal fungi weakens cadmium migration dynamics. iMeta, e133. https://doi.org/10.1002/imt2.133 | |
dc.relation.references | Wang, H. R., Zhao, X. Y., Zhang, J. M., Lu, C., & Feng, F. J. (2022). Arbuscular mycorrhizal fungus regulates cadmium accumulation, migration, transport, and tolerance in Medicago sativa. Journal of Hazardous Materials, 435, 129077. https://doi.org/10.1016/j.jhazmat.2022.129077 | |
dc.relation.references | Wipf, D., Krajinski, F., van Tuinen, D., Recorbet, G., & Courty, P. E. (2019). Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist, 223(3), 1127-1142. https://doi.org/10.1111/nph.15775 | |
dc.relation.references | Xie, K., Ren, Y., Chen, A., Yang, C., Zheng, Q., Chen, J., ... & Xu, G. (2022). Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. Journal of Plant Physiology, 269, 153591. https://doi.org/10.1016/j.jplph.2021.153591 | |
dc.relation.references | Yang, S., Zhang, J., & Chen, L. (2021). Growth and physiological responses of Pennisetum sp. to cadmium stress under three different soils. Environmental Science and Pollution Research, 28, 14867-14881. https://doi.org/10.1007/s11356-020-11701-3 | |
dc.relation.references | You, Y., Ju, C., Wang, L., Wang, X., Ma, F., Wang, G., & Wang, Y. (2022). The mechanism of arbuscular mycorrhizal enhancing cadmium uptake in Phragmites australis depends on the phosphorus concentration. Journal of Hazardous Materials, 440, 129800. https://doi.org/10.1016/j.jhazmat.2022.129800 | |
dc.relation.references | Zakariyya, F., Santoso, T. I., & Abdoellah, S. (2022). Absorption of Cadmium and its Effect on the Growth of Halfsib Family of Three Cocoa Clones Seedling. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 38(3), 171-178. DOI: 10.22302/iccri.jur.pelitaperkebunan.v38i3.534 | |
dc.relation.references | Zhang, H., Xu, N., Li, X., & Sun, G. Y. (2018). Arbuscular mycorrhizal fungi (Glomus mosseae) improves growth, photosynthesis and protects photosystem II in leaves of Lolium perenne L. in cadmium contaminated soil. Frontiers in plant science, 9, 361979. | |
dc.relation.references | Zhao, H., Guan, J., Liang, Q., Zhang, X., Hu, H., & Zhang, J. (2021). Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific reports, 11(1), 9913. https://doi.org/10.1038/s41598-021-89322-0 | |
dc.relation.references | Zhou, J., Zhang, C., Du, B., Cui, H., Fan, X., Zhou, D., & Zhou, J. (2020). Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low-and high-Cd wheat cultivars. Environmental Pollution, 265, 115045. https://doi.org/10.1016/j.envpol.2020.115045 | |
dc.relation.references | Zug, K. L. M., Huamaní Yupanqui, H. A., Meyberg, F., Cierjacks, J. S., & Cierjacks, A. (2019). Cadmium accumulation in Peruvian cacao (Theobroma cacao L.) and opportunities for mitigation. Water, Air, & Soil Pollution, 230, 1-18. https://doi.org/10.1007/s11270-019-4109-x | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Bioaccumulation | |
dc.subject.keywords | Phytoremediation | |
dc.subject.keywords | Arbuscular mycorrhizal fungi (AMF) | |
dc.subject.keywords | Heavy metals | |
dc.subject.keywords | Theobroma cacao | |
dc.subject.proposal | Bioacumulación | |
dc.subject.proposal | Fitorremediación, | |
dc.subject.proposal | Hongos micorrízicos arbusculares (HMA), | |
dc.subject.proposal | Metales pesados, | |
dc.subject.proposal | Theobroma cacao. | |
dc.title | Influencia de la inoculación de hongos formadores de micorrizas arbusculares en la absorcion de Cadmio en plantas de cacao durante la etapa de vivero | |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: