Publicación:
Influencia de la inoculación de hongos formadores de micorrizas arbusculares en la absorcion de Cadmio en plantas de cacao durante la etapa de vivero

dc.audience
dc.contributor.advisorBarrera Violeth, José Luis
dc.contributor.authorLafont Quiñones, Orlando
dc.contributor.juryCadena Torres , Jorge
dc.contributor.juryJaraba Navas, Juan de Dios
dc.date.accessioned2025-02-05T22:11:30Z
dc.date.available2025-02-05T22:11:30Z
dc.date.issued2025-02-03
dc.description.abstractEl cultivo de cacao (Theobroma cacao L.) es una fuente vital de ingresos para miles de familias campesinas en Colombia, especialmente en regiones como el departamento de Córdoba, donde se destaca la producción de cacao fino de aroma y sabor. Sin embargo, la industria cacaotera enfrenta un grave desafío: la acumulación de cadmio (Cd) en los frutos, lo que plantea preocupaciones económicas, ambientales y de salud pública. Para mitigar este problema, se están explorando estrategias de fitorremediación, entre ellas, el uso de hongos formadores de micorrizas arbusculares (HFMA). En este contexto, el presente estudio se enfoca en evaluar el efecto de los HFMA sobre la absorción de Cd en plántulas de cacao cultivadas en suelos contaminados con diferentes concentraciones de Cd durante la etapa de vivero. Se utilizó un diseño experimental en bloques completamente al azar con un arreglo factorial que incluyó tres niveles de micorrizas (0, 10, 20 g) y cuatro niveles de Cd (0, 3, 12, 24 mg·kg⁻¹). Se midieron diversas variables de respuesta: porcentaje de colonización (%), longitud del tallo (cm), número de hojas, grosor del tallo (cm), área foliar (cm²), peso fresco y peso seco de raíz, tallo y hojas (g), índices de crecimiento, variables de intercambio gaseoso, concentración de Cd en raíz, tallo y hojas, así como la eficiencia en la translocación y bioacumulación del cadmio. Los resultados revelaron una interacción significativa entre las micorrizas y el cadmio en las variables de crecimiento vegetativo e intercambio gaseoso. Se observó que el efecto de las micorrizas fue más pronunciado en las variables fisiológicas que en las de crecimiento y acumulación de Cd en los tejidos. La acumulación de cadmio en las plantas fue evidente, especialmente en la parte aérea, y se observó que la capacidad de colonización del hongo disminuyó en condiciones de alta concentración de cadmio en el suelo. No obstante, se destacaron efectos positivos de la simbiosis en condiciones moderadas, subrayando la importancia de realizar estudios adicionales para comprender mejor las tecnologías que involucran a las micorrizas en sistemas afectados por la contaminación con cadmio. Este trabajo contribuye al conocimiento sobre la interacción entre las micorrizas y el cadmio en el cacao, resaltando su potencial mitigador de los efectos negativos del metal pesado y sugiriendo la necesidad de investigaciones más amplias en sistemas productivos reales para validar estos hallazgos.spa
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agronómicas
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsRESUMEN
dc.description.tableofcontentsINTRODUCCIÓN
dc.description.tableofcontentsMARCO TEORICO Y ESTADO DEL ARTE
dc.description.tableofcontentsOBJETIVO
dc.description.tableofcontentsObjetivo General
dc.description.tableofcontentsObjetivos Específicos
dc.description.tableofcontentsMATERIALES Y METODOS
dc.description.tableofcontentsLocalización
dc.description.tableofcontentsPoblacón y muestra
dc.description.tableofcontentsVARIABLES
dc.description.tableofcontentsVariables independientes
dc.description.tableofcontentsVariables dependientes
dc.description.tableofcontentsDISEÑO EXPERIMENTAL Y MUESTREO
dc.description.tableofcontentsRESULTADO Y DISCUSIÓN
dc.description.tableofcontentsCONCLUSIONES
dc.description.tableofcontentsRECOMENDACIONES
dc.description.tableofcontentsBIBLIOGRAFIA
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Institucional Unicórdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9019
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Agrícolas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Ciencias Agronómicas
dc.relation.referencesAbdelhameed, R. E., & Metwally, R. A. (2019). Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. International journal of phytoremediation, 21(7), 663-671. https://doi.org/10.1080/15226514.2018.1556584
dc.relation.referencesAbdelhameed, R. E., & Metwally, R. A. (2019). Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. International journal of phytoremediation, 21(7), 663-671. https://doi.org/10.1080/15226514.2018.1556584
dc.relation.referencesAbt, E., & Robin, L. P. (2020). Perspective on cadmium and lead in cocoa and chocolate. Journal of agricultural and food chemistry, 68(46), 13008-13015. DOI: 10.1021/acs.jafc.9b08295
dc.relation.referencesAgronet (Red de Información y Comunicación Estratégica del Sector Agropecuario –Colombia). (2022). Disponible en: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
dc.relation.referencesAkib, M. A., Kuswinanti, T., Antonius, S., Mustari, K., Syaiful, S. A., Nuddin, A., & Prayudyaningsih, R. (2020). Acaulospora sp: Can it help the growth of Canavalia ensiformis in heavy metal contaminated environment?. In IOP Conference Series: Earth and Environmental Science (Vol. 575, No. 1, p. 012085). IOP Publishing. DOI 10.1088/1755-1315/575/1/012085
dc.relation.referencesAlaya, B., Toro, M., Calsina, R., Ogata-Gutiérrez, K., Gil-Polo, A., Ormeño-Orrillo, E., & Zúñiga-Dávila, D. (2023). Evaluation of the Presence of Arbuscular Mycorrhizae and Cadmium Content in the Plants and Soils of Cocoa Plantations in San Martin, Peru. Diversity, 15(2), 246. https://doi.org/10.3390/d15020246
dc.relation.referencesAli, E., Hussain, A., Ullah, I., Khan, F. S., Kausar, S., Rashid, S. A., & Sun, P. (2020). Cadmium phytotoxicity: issues, progress, environmental concerns and future perspectives. Revista de la Facultad de Ciencias Agrarias UNCuyo, 52(1), 391-405. Recuperado en 23 de octubre de 2023, de http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853-86652020000100030&lng=es&tlng=en.
dc.relation.referencesAnwar, S., Shafiq, F., Nisa, Z. U., Usman, U., Ashraf, M. Y., & Ali, N. (2021). Effect of cadmium stress on seed germination, plant growth and hydrolyzing enzymes activities in mungbean seedlings. Journal of Seed Science, 43, e202143042. https://doi.org/10.1590/2317-1545v43256006
dc.relation.referencesArgüello, D., Chavez, E., Gutierrez, E., Pittomvils, M., Dekeyrel, J., Blommaert, H., & Smolders, E. (2023). Soil amendments to reduce cadmium in cacao (Theobroma cacao L.): A comprehensive field study in Ecuador. Chemosphere, 324, 138318. https://doi.org/10.1016/j.chemosphere.2023.138318
dc.relation.referencesArgüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the total environment, 649, 120-127. https://doi.org/10.1016/j.scitotenv.2018.08.292
dc.relation.referencesBalestrini, R., Chitarra, W., Antoniou, C., Ruocco, M., & Fotopoulos, V. (2018). Improvement of plant performance under water deficit with the employment of biological and chemical priming agents. The Journal of Agricultural Science, 156(5), 680-688. https://doi.org/10.1017/S0021859618000126
dc.relation.referencesBennett, A. E., & Groten, K. (2022). The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annual Review of Plant Biology, 73, 649-672. https://doi.org/10.1146/annurev-arplant-102820-124504
dc.relation.referencesBisht, A., Bhalla, S., Kumar, A., Kaur, J., & Garg, N. (2021). Gene expression analysis for selection and validation of suitable housekeeping gene (s) in cadmium exposed pigeonpea plants inoculated with arbuscular mycorrhizae. Plant Physiology and Biochemistry, 162, 592-602. https://doi.org/10.1016/j.plaphy.2021.03.024
dc.relation.referencesBlommaert, H., Aucour, A. M., Wiggenhauser, M., Moens, C., Telouk, P., Campillo, S., ... & Sarret, G. (2022). From soil to cacao bean: unravelling the pathways of cadmium translocation in a high Cd accumulating cultivar of Theobroma cacao L. Frontiers in Plant Science, 13, 1055912. https://doi.org/10.3389/fpls.2022.1055912
dc.relation.referencesBlommaert, H., Aucour, A. M., Wiggenhauser, M., Moens, C., Telouk, P., Campillo, S., ... & Sarret, G. (2022). From soil to cacao bean: unravelling the pathways of cadmium translocation in a high Cd accumulating cultivar of Theobroma cacao L. Frontiers in Plant Science, 13, 1055912.
dc.relation.referencesCadby, J., & Araki, T. (2021). Towards ethical chocolate: multicriterial identifiers, pricing structures, and the role of the specialty cacao industry in sustainable development. SN Business & Economics, 1, 1-36. https://doi.org/10.1007/s43546-021-00051-y
dc.relation.referencesCakmak, I., Lambers, H., Grant, C. A., & Zhao, F. J. (2023). Arbuscular mycorrhizal fungi: key players in avoiding cadmium accumulation in food crops. Plant and Soil, 484(1-2), 13-32. https://doi.org/10.1007/s11104-022-05802-w
dc.relation.referencesCeccarelli, V., Fremout, T., Zavaleta, D., Lastra, S., Imán Correa, S., Arévalo‐Gardini, E., ... & Thomas, E. (2021). Climate change impact on cultivated and wild cacao in Peru and the search of climate change‐tolerant genotypes. Diversity and Distributions, 27(8), 1462-1476. https://doi.org/10.1111/ddi.13294
dc.relation.referencesCheng, M., Wang, A., Liu, Z., Gendall, A. R., Rochfort, S., & Tang, C. (2018). Sodium chloride decreases cadmium accumulation and changes the response of metabolites to cadmium stress in the halophyte Carpobrotus rossii. Annals of Botany, 122(3), 373-385. https://doi.org/10.1093/aob/mcy077
dc.relation.referencesChu, D. (2018). Effects of heavy metals on soil microbial community. In IOP Conference Series: Earth and environmental science (Vol. 113, p. 012009). IOP Publishing. DOI 10.1088/1755-1315/113/1/012009
dc.relation.referencesChu, Z., Munir, S., Zhao, G., Hou, J., Du, W., Li, N., ... & Ouyang, B. (2020). Linking phytohormones with growth, transport activity and metabolic responses to cadmium in tomato. Plant Growth Regulation, 90, 557-569. https://doi.org/10.1007/s10725-020-00580-w
dc.relation.referencesCorrea, J. E., Ramírez, R., Ruíz, O., & Leiva, E. I. (2021). Effect of soil characteristics on cadmium absorption and plant growth of Theobroma cacao L. seedlings. Journal of the Science of Food and Agriculture, 101(13), 5437-5445. https://doi.org/10.1002/jsfa.11192
dc.relation.referencesCorrea, J. E., Ramírez, R., Ruíz, O., & Leiva, E. I. (2021). Effect of soil characteristics on cadmium absorption and plant growth of Theobroma cacao L. seedlings. Journal of the Science of Food and Agriculture, 101(13), 5437-5445. https://doi.org/10.1002/jsfa.11192
dc.relation.referencesCorrea, J. E., Ramírez, R., Ruíz, O., & Leiva, E. I. (2021). Effect of soil characteristics on cadmium absorption and plant growth of Theobroma cacao L. seedlings. Journal of the Science of Food and Agriculture, 101(13), 5437-5445. https://doi.org/10.1002/jsfa.11192
dc.relation.referencesda Silva Cunha, L. F., de Oliveira, V. P., do Nascimento, A. W. S., da Silva, B. R. S., Batista, B. L., Alsahli, A. A., & Lobato, A. K. D. S. (2021). Leaf application of 24‐epibrassinolide mitigates cadmium toxicity in young Eucalyptus urophylla plants by modulating leaf anatomy and gas exchange. Physiologia Plantarum, 173(1), 67-87. https://doi.org/10.1111/ppl.13182
dc.relation.referencesDhalaria, R., Kumar, D., Kumar, H., Nepovimova, E., Kuča, K., Torequl Islam, M., & Verma, R. (2020). Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants. Agronomy, 10(6), 815. https://doi.org/10.3390/agronomy10060815
dc.relation.referencesDhaliwal, S. S., Sharma, V., Taneja, P. K., Shukla, A. K., Kaur, L., Verma, G., ... & Singh, J. (2021). Effect of cadmium and ethylenediamine tetraacetic acid supplementation on cadmium accumulation by roots of Brassica species in Cd spiked soil. Environmental Science and Pollution Research, 1-10. https://doi.org/10.1007/s11356-021-16084-7
dc.relation.referencesDíaz-Valderrama, J. R., Leiva-Espinoza, S. T., & Aime, M. C. (2020). The history of cacao and its diseases in the Americas. Phytopathology®, 110(10), 1604-1619. https://doi.org/10.1094/PHYTO-05-20-0178-RVW
dc.relation.referencesDuffy, E. M., & Cassells, A. C. (2003). Root development | Mycorrhizae. Encyclopedia of Applied Plant Sciences, 1107–1115. doi:10.1016/b0-12-227050-9/00043-0
dc.relation.referencesEl Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E. E., Bolan, N., ... & Rinklebe, J. (2022). Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 52(5), 675-726. https://doi.org/10.1080/10643389.2020.1835435
dc.relation.referencesEl-Esawi, M. A., Elkelish, A., Soliman, M., Elansary, H. O., Zaid, A., & Wani, S. H. (2020). Serratia marcescens BM1 enhances cadmium stress tolerance and phytoremediation potential of soybean through modulation of osmolytes, leaf gas exchange, antioxidant machinery, and stress-responsive genes expression. Antioxidants, 9(1), 43. https://doi.org/10.3390/antiox9010043
dc.relation.referencesEngbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., & Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Science of the Total Environment, 678, 660-670. https://doi.org/10.1016/j.scitotenv.2019.05.001
dc.relation.referencesEuropean Union-EU (2014). Regulation no. 488/2014. they modify ec regulation no 1881/2006 regarding the maximum content of cadmium in food products. Technical report, Official Journal of the European Union. Online: https://bit.ly/3uvfOxT.
dc.relation.referencesEvelin, H., Devi, T. S., Gupta, S., & Kapoor, R. (2019). Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Frontiers in Plant Science, 470. https://doi.org/10.3389/fpls.2019.00470
dc.relation.referencesFAOSTATS. (2021). Datos sobre alimentación y agricultura. Recuperado el 1 de septiembre de 2022, de http://www.fao.org/faostat/es/#data
dc.relation.referencesFernández-Paz, J., Cortés, A. J., Hernández-Varela, C. A., Mejía-de-Tafur, M. S., Rodriguez-Medina, C., & Baligar, V. C. (2021). Rootstock-mediated genetic variance in cadmium uptake by juvenile cacao (Theobroma cacao L.) genotypes, and its effect on growth and physiology. Frontiers in Plant Science, 12, 777842. https://doi.org/10.3389/fpls.2021.777842
dc.relation.referencesFlorida, N. (2021). Review on maximum limits of cadmium in cocoa (Theobroma cacao L.). La granja. Revista de Ciencias de la Vida, 34(2), 117-130. https://doi.org/10.17163/lgr.n34.2021.08
dc.relation.referencesFlorida-Rofner, N. (2021). Review on maximum limits of cadmium in cocoa (Theobroma cacao L.). La granja. Revista de Ciencias de la Vida, 34(2), 117-130. http://doi.org/10.17163/lgr.n34.2021.08
dc.relation.referencesFurcal, P., y Torres, J. L. (2020). Determinación de concentraciones de cadmio en plantaciones de Theobroma cacao L. en Costa Rica. Revista Tecnología en Marcha, 33(1), 122-137. http://dx.doi.org/10.18845/tm.v33i1.5027
dc.relation.referencesGai, J. P., Fan, J. Q., Zhang, S. B., Mi, N. N., Christie, P., Li, X. L., & Feng, G. (2018). Direct effects of soil cadmium on the growth and activity of arbuscular mycorrhizal fungi. Rhizosphere, 7, 43-48. https://doi.org/10.1016/j.rhisph.2018.07.002
dc.relation.referencesGalvis, D. A., Jaimes-Suárez, Y. Y., Rojas Molina, J., Ruiz, R., & Carvalho, F. E. L. (2023). Cadmium up Taking and Allocation in Wood Species Associated to Cacao Agroforestry Systems and Its Potential Role for Phytoextraction. Plants, 12(16), 2930. https://doi.org/10.3390/plants12162930
dc.relation.referencesGannini-Kurina, F., Balzarini, M., Koritschoner, J., Rampoldi, A., & Hang, S. (2021). Modelos para la conversión de las concentraciones de FE, MN, CU Y ZN entre los métodos MEHLICH-3 y DTPA-TEA en suelos de Córdoba. Ciencia del suelo, 39(2), 1-15.
dc.relation.referencesGao, Y., An, T., Kuang, Q., Wu, Y., Liu, S., Liang, L., ... & Chen, Y. (2023). The role of arbuscular mycorrhizal fungi in the alleviation of cadmium stress in cereals: A multilevel meta-analysis. Science of the Total Environment, 166091. https://doi.org/10.1016/j.scitotenv.2023.166091
dc.relation.referencesGao, Y., An, T., Kuang, Q., Wu, Y., Liu, S., Liang, L., ... & Chen, Y. (2023). The role of arbuscular mycorrhizal fungi in the alleviation of cadmium stress in cereals: A multilevel meta-analysis. Science of the Total Environment, 166091. https://doi.org/10.1016/j.scitotenv.2023.166091
dc.relation.referencesGarcía Galvis, J., & Ballesteros, M. I. (2006). Evaluación de los parametros de calidad para la determinación de fosforo disponible en suelos. Revista Colombiana de Química, 35(1), 81-89.
dc.relation.referencesGenchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782
dc.relation.referencesGenchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782
dc.relation.referencesGenre, A., Lanfranco, L., Perotto, S., & Bonfante, P. (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18(11), 649-660. https://doi.org/10.1038/s41579-020-0402-3
dc.relation.referencesGenre, A., Lanfranco, L., Perotto, S., & Bonfante, P. (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18(11), 649-660. https://doi.org/10.1038/s41579-020-0402-3
dc.relation.referencesGonzález-Orozco, C. E., Galán, A. A. S., Ramos, P. E., & Yockteng, R. (2020). Exploring the diversity and distribution of crop wild relatives of cacao (Theobroma cacao L.) in Colombia. Genetic Resources and Crop Evolution, 67(8), 2071-2085. https://doi.org/10.1007/s10722-020-00960-1
dc.relation.referencesGonzález-Orozco, C. E., Galán, A. A. S., Ramos, P. E., & Yockteng, R. (2020). Exploring the diversity and distribution of crop wild relatives of cacao (Theobroma cacao L.) in Colombia. Genetic Resources and Crop Evolution, 67(8), 2071-2085. https://doi.org/10.1007/s10722-020-00960-1
dc.relation.referencesHaider, F. U., Farooq, M., Naveed, M., Cheema, S. A., Salim, M. A., Liqun, C., & Mustafa, A. (2022). Influence of biochar and microorganism co-application on stabilization of cadmium (Cd) and improved maize growth in Cd-contaminated soil. Frontiers in Plant Science, 13, 983830. https://doi.org/10.3389/fpls.2022.983830
dc.relation.referencesHaider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., ... & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887
dc.relation.referencesHaider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., ... & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887
dc.relation.referencesHaider, F. U., Virk, A. L., Rehmani, M. I. A., Skalicky, M., Ata-ul-Karim, S. T., Ahmad, N., ... & Liqun, C. (2022). Integrated application of thiourea and biochar improves maize growth, antioxidant activity and reduces cadmium bioavailability in cadmium-contaminated soil. Frontiers in Plant Science, 12, 809322. https://doi.org/10.3389/fpls.2021.809322
dc.relation.referencesHan, Z., Wei, X., Wan, D., He, W., Wang, X., & Xiong, Y. (2020). Effect of molybdenum on plant physiology and cadmium uptake and translocation in rape (Brassica napus L.) under different levels of cadmium stress. International Journal of Environmental Research and Public Health, 17(7), 2355. https://doi.org/10.3390/ijerph17072355
dc.relation.referencesHu, W., & Pan, L. (2023). Applications of mycorrhizal fungi in agriculture and forestry. In Microbial Bioprocesses (pp. 1-20). Academic Press. https://doi.org/10.1016/B978-0-323-95332-0.00012-0
dc.relation.referencesHunt, R. (1990). Basic Growth Analysis. Unwing Hyman. London, U. K. 112 p.
dc.relation.referencesHussain, B., Ashraf, M. N., Abbas, A., Li, J., & Farooq, M. (2021). Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Science of The Total Environment, 754, 142188.
dc.relation.referencesHussain, M. K., Aziz, A., Ditta, H. M. A., Azhar, M. F., El-Shehawi, A. M., Hussain, S., ... & Farooq, S. (2021). Foliar application of seed water extract of Nigella sativa improved maize growth in cadmium-contaminated soil. Plos one, 16(7), e0254602. https://doi.org/10.1371/journal.pone.0254602
dc.relation.referencesHuybrechts, M., Cuypers, A., Deckers, J., Iven, V., Vandionant, S., Jozefczak, M., & Hendrix, S. (2019). Cadmium and Plant Development: An Agony from Seed to Seed. International Journal of Molecular Sciences, 20(16), 3971. https://doi.org/10.3390/ijms20163971
dc.relation.referencesHuybrechts, M., Cuypers, A., Deckers, J., Iven, V., Vandionant, S., Jozefczak, M., & Hendrix, S. (2019). Cadmium and plant development: An agony from seed to seed. International journal of molecular sciences, 20(16), 3971. https://doi.org/10.1039/c8mt00247a
dc.relation.referencesIsmael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11(2), 255-277. https://doi.org/10.1039/c8mt00247a
dc.relation.referencesJaimez, R. E., Barragan, L., Fernández-Niño, M., Wessjohann, L. A., Cedeño-Garcia, G., Cantos, I. S., & Arteaga, F. (2022). Theobroma cacao L. cultivar CCN 51: a comprehensive review on origin, genetics, sensory properties, production dynamics, and physiological aspects. PeerJ, 10, e12676. https://doi.org/10.7717/peerj.12676
dc.relation.referencesJaimez, R. E., Barragan, L., Fernández-Niño, M., Wessjohann, L. A., Cedeño-Garcia, G., Cantos, I. S., & Arteaga, F. (2022). Theobroma cacao L. cultivar CCN 51: a comprehensive review on origin, genetics, sensory properties, production dynamics, and physiological aspects. PeerJ, 10, e12676. https://doi.org/10.7717/peerj.12676
dc.relation.referencesJawad Hassan, M., Ali Raza, M., Ur Rehman, S., Ansar, M., Gitari, H., Khan, I., ... & Li, Z. (2020). Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants, 9(11), 1575. https://doi.org/10.3390/plants9111575
dc.relation.referencesKakouridis, A., Hagen, J. A., Kan, M. P., Mambelli, S., Feldman, L. J., Herman, D. J., ... & Firestone, M. K. (2022). Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytologist, 236(1), 210-221. https://doi.org/10.1111/nph.18281
dc.relation.referencesKarimpour, M., Ashrafi, S. D., Taghavi, K., Mojtahedi, A., Roohbakhsh, E., & Naghipour, D. (2018). Adsorption of cadmium and lead onto live and dead cell mass of Pseudomonas aeruginosa: A dataset. Data in brief, 18, 1185-1192. https://doi.org/10.1016/j.dib.2018.04.014
dc.relation.referencesKaur, H., & Garg, N. (2021). Interactive effects of zinc-arbuscular mycorrhizal (AM) fungi on cadmium uptake, rubisco, osmolyte synthesis and yield in Cajanus cajan (L.) Millsp. International Journal of Sustainable Agricultural Research, 8(1), 17-42. https://doi.org/10.18488/journal.70.2021.81.17.42
dc.relation.referencesKaur, H., Singh, S., & Kumar, P. (2023). Reconditioning of plant metabolism by arbuscular mycorrhizal networks in cadmium contaminated soils: Recent perspectives. Microbiological Research, 268, 127293. https://doi.org/10.1016/j.micres.2022.127293
dc.relation.referencesKobae, Y. (2019). Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Frontiers in environmental Science, 6, 159. https://doi.org/10.3389/fenvs.2018.00159
dc.relation.referencesKoleva, L., Shah, A. A., Siddiqui, M. H., Riaz, L., Raza, A., Javed, T., & Shabbir, Z. (2022). Iron oxide and silicon nanoparticles modulate mineral nutrient homeostasis and metabolism in cadmium-stressed Phaseolus vulgaris. Frontiers in Plant Science, 13, 806781. https://doi.org/10.3389/fpls.2022.806781
dc.relation.referencesKubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: a review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388
dc.relation.referencesLahive, F., Hadley, P., & Daymond, A. J. (2019). The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agronomy for Sustainable Development, 39, 1-22. https://doi.org/10.1007/s13593-018-0552-0
dc.relation.referencesLewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of The Total Environment, 640-641, 696–703. doi:10.1016/j.scitotenv.2018.05.365
dc.relation.referencesLewis, J. D. (2016). Mycorrhizal Fungi, Evolution and Diversification of. Encyclopedia of Evolutionary Biology, 94–99. doi:10.1016/b978-0-12-800049-6.00251-1
dc.relation.referencesLi, H., Gao, M. Y., Mo, C. H., Wong, M. H., Chen, X. W., & Wang, J. J. (2022). Potential use of arbuscular mycorrhizal fungi for simultaneous mitigation of arsenic and cadmium accumulation in rice. Journal of Experimental Botany, 73(1), 50-67. https://doi.org/10.1093/jxb/erab444
dc.relation.referencesLira, M. P., de Castro, E. M., Pereira, F. J., de Oliveira, C., Lira, J. S., & Ramos, S. J. (2018). Anatomic and physiological responses of Panicum aquaticum related to cadmium tolerance. Journal of Soil and Water Conservation, 73(2), 207-212. https://doi.org/10.2489/jswc.73.2.207
dc.relation.referencesLiu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S., & Wang, Y. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 194, 495–503. doi:10.1016/j.chemosphere.2017.12.025
dc.relation.referencesMaddela, N. R., Kakarla, D., García, L. C., Chakraborty, S., Venkateswarlu, K., & Megharaj, M. (2020). Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Science of the Total Environment, 720, 137645. https://doi.org/10.1016/j.scitotenv.2020.137645
dc.relation.referencesMalhi, G. S., Kaur, M., Kaushik, P., Alyemeni, M. N., Alsahli, A. A., & Ahmad, P. (2021). Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi Journal of Biological Sciences, 28(2), 1465-1476. https://doi.org/10.1016/j.sjbs.2020.12.001
dc.relation.referencesManey, C., Sassen, M., & Hill, S. L. (2022). Modelling biodiversity responses to land use in areas of cocoa cultivation. Agriculture, Ecosystems & Environment, 324, 107712. https://doi.org/10.1016/j.agee.2021.107712
dc.relation.referencesMartínez Reina, A. M. (2023). Tipificación de productores de cacao (Theobroma cacao L.) en la subregión del Sur de Córdoba en Colombia. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 10(2), 88-95. https://doi.org/10.53287/dccx6428sm50v
dc.relation.referencesMelgarejo, L. M., Romero, M., Hernández, S., Barrera, J., Solarte, M. E., Suárez, D., & Pérez, W. (2010). Experimentos en fisiología vegetal. Departamento de Biología.
dc.relation.referencesMolina, A. S., Lugo, M. A., Pérez Chaca, M. V., Vargas-Gil, S., Zirulnik, F., Leporati, J., Ferrol, N., & Azcón-Aguilar, C. (2020). Effect of Arbuscular Mycorrhizal Colonization on Cadmium-Mediated Oxidative Stress in Glycine max (L.) Merr. Plants, 9(1), 108. https://doi.org/10.3390/plants9010108
dc.relation.referencesNiether, W., Jacobi, J., Blaser, W. J., Andres, C., & Armengot, L. (2020). Cocoa agroforestry systems versus monocultures: a multi-dimensional meta-analysis. Environmental Research Letters, 15(10), 104085.
dc.relation.referencesPérez Moncada, U. A., Ramírez Gómez, M., Serralde Ordoñez, D. P., Peñaranda Rolón, A. M., Wilches Ortiz, W. A., Ramírez, L., & Rengifo Estrada, G. A. (2019). Hongos formadores de micorrizas arbusculares (HFMA) como estrategia para reducir la absorción de cadmio en plantas de cacao (Theobroma cacao). Terra Latinoamericana, 37(2), 121-130.
dc.relation.referencesPérez, E., Guzmán, R., Álvarez, C., Lares, M., Martínez, K., Suniaga, G., & Pavani, A. (2021). Cacao, cultura y patrimonio: un hábitat de aroma fino en Venezuela. RIVAR (Santiago), 8(22), 146-162. http://dx.doi.org/10.35588/rivar.v8i22.4781
dc.relation.referencesPérez-Moncada, U. A., Ramírez-Gómez, M., Serralde-Ordoñez, D. P., Peñaranda-Rolón, A. M., Wilches-Ortiz, W. A., Ramírez, L., & Rengifo-Estrada, G. A. (2019). Hongos formadores de micorrizas arbusculares (HFMA) como estrategia para reducir la absorción de cadmio en plantas de cacao (Theobroma cacao). Terra Latinoamericana, 37(2), 121-130. https://doi.org/10.28940/terra.v37i2.479
dc.relation.referencesPérez-Moncada, U. A., Ramírez-Gómez, M., Serralde-Ordoñez, D. P., Peñaranda-Rolón, A. M., Wilches-Ortiz, W. A., Ramírez, L., & Rengifo-Estrada, G. A. (2019). Hongos formadores de micorrizas arbusculares (HFMA) como estrategia para reducir la absorción de cadmio en plantas de cacao (Theobroma cacao). Terra Latinoamericana, 37(2), 121-130. https://doi.org/10.28940/terra.v37i2.479
dc.relation.referencesPüschel, D., Bitterlich, M., Rydlová, J., & Jansa, J. (2020). Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. Mycorrhiza, 30, 299-313. https://doi.org/10.1007/s00572-020-00949-9
dc.relation.referencesRafique, M., Ortas, I., Rizwan, M., Sultan, T., Chaudhary, H. J., Işik, M., & Aydin, O. (2019). Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Environmental Science and Pollution Research, 26, 20689-20700.
dc.relation.referencesRamtahal, G., Umaharan, P., Hanuman, A., Davis, C., & Ali, L. (2019). The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Science of The Total Environment. doi:10.1016/j.scitotenv.2019.07.369
dc.relation.referencesRask, K. A., Johansen, J. L., Kjøller, R., & Ekelund, F. (2019). Differences in arbuscular mycorrhizal colonisation influence cadmium uptake in plants. Environmental and Experimental Botany, 162, 223–229. doi:10.1016/j.envexpbot.2019.02.022
dc.relation.referencesReddy, C. A., & Saravanan, R. S. (2013). Polymicrobial multi-functional approach for enhancement of crop productivity. In Advances in applied microbiology (Vol. 82, pp. 53-113). Academic Press. https://doi.org/10.1016/B978-0-12-407679-2.00003-X
dc.relation.referencesReyes-Pérez, J. J., Pincay-Ganchozo, R. A., Carrillo-Zenteno, M. D., Reynel, V., Peña-Salazar, K., & Tezara, W. (2023). Macronutrient Fertilization and Cadmium Absorption in Two Cocoa Clones. Horticulturae, 9(11), 1223. https://doi.org/10.3390/horticulturae9111223
dc.relation.referencesRiaz, M., Kamran, M., Fang, Y., Wang, Q., Cao, H., Yang, G., ... & Wang, X. (2021). Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Journal of Hazardous Materials, 402, 123919. https://doi.org/10.1016/j.jhazmat.2020.123919
dc.relation.referencesSaboor, A., Ali, M. A., Hussain, S., El Enshasy, H. A., Hussain, S., Ahmed, N., ... & Datta, R. (2021). Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi Journal of Biological Sciences, 28(11), 6339-6351. https://doi.org/10.1016/j.sjbs.2021.06.096
dc.relation.referencesSaleem, M. H., Parveen, A., Khan, S. U., Hussain, I., Wang, X., Alshaya, H., ... & Ali, S. (2022). Silicon fertigation regimes attenuates cadmium toxicity and phytoremediation potential in two maize (Zea mays L.) cultivars by minimizing its uptake and oxidative stress. Sustainability, 14(3), 1462. https://doi.org/10.3390/su14031462
dc.relation.referencesSantander-Ruiz, W., Garay-Montes, R., Verde-Girbau, C., & Mendieta-Taboada, O. (2021). Determinación del contenido de cadmio en suelos, frutos, granos fermentados y secos, licor de cacao y chocolate en zonas productoras de la Región San Martín. Revista de la Sociedad Química del Perú, 87(1), 39-49. https://dx.doi.org/10.37761/rsqp.v87i1.321
dc.relation.referencesSaputra, D. D., Sari, R. R., Hairiah, K., Roshetko, J. M., Suprayogo, D., & van Noordwijk, M. (2020). Can cocoa agroforestry restore degraded soil structure following conversion from forest to agricultural use?. Agroforestry Systems, 94, 2261-2276. https://doi.org/10.1007/s10457-020-00548-9
dc.relation.referencesScaccabarozzi, D., Castillo, L., Aromatisi, A., Milne, L., Búllon Castillo, A., & Muñoz-Rojas, M. (2020). Soil, site, and management factors affecting cadmium concentrations in cacao-growing soils. Agronomy, 10(6), 806. https://doi.org/10.3390/agronomy10060806
dc.relation.referencesShah, A. A., Khan, W. U., Yasin, N. A., Akram, W., Ahmad, A., Abbas, M., ... & Safdar, M. N. (2020). Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of Brassica oleracea. Chemosphere, 261, 127728. https://doi.org/10.1016/j.chemosphere.2020.127728
dc.relation.referencesShi, W., Zhang, Y., Chen, S., Polle, A., Rennenberg, H., & Luo, Z. B. (2019). Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant, Cell & Environment, 42(4), 1087-1103. https://doi.org/10.1111/pce.13471
dc.relation.referencesSmith, S. E., & Read, D. J. (2008). Nitrogen mobilization and nutrition in ectomycorrhizal plants. Mycorrhizal Symbiosis, 3, 321-348. https://doi.org/10.1016/B978-012370526-6.50011-8
dc.relation.referencesSu, Y., Qin, C., Begum, N., Ashraf, M., & Zhang, L. (2020). Acetylcholine ameliorates the adverse effects of cadmium stress through mediating growth, photosynthetic activity and subcellular distribution of cadmium in tobacco (Nicotiana benthamiana). Ecotoxicology and Environmental Safety, 198, 110671. https://doi.org/10.1016/j.ecoenv.2020.110671
dc.relation.referencesSuárez, Y. Y. J., Castañeda, G. A. A., Daza, E. Y. B., Bustos, F. M., Estrada, G. A. R., & Molina, J. R. (2022). Modelo productivo para el cultivo de cacao (Theobroma cacao L.) en el departamento de Santander (2a edición). https://doi.org/10.21930/agrosavia.model.7405538
dc.relation.referencesSun, S., Feng, Y., Huang, G., Zhao, X., & Song, F. (2022). Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties. Environmental Pollution, 314, 120309. https://doi.org/10.1016/j.envpol.2022.120309
dc.relation.referencesSymanczik, Sarah, et al. "Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought." Mycorrhiza 28 (2018): 779-785. https://doi.org/10.1007/s00572-018-0853-9
dc.relation.referencesTananonchai, A., & Sampanpanish, P. (2020). The influence of EDTA on the accumulation, movement, and distribution of cadmium in dwarf elephant grass. Environmental Technology & Innovation, 17, 100555. https://doi.org/10.1016/j.eti.2019.100555
dc.relation.referencesTeste, F. P., Jones, M. D., & Dickie, I. A. (2020). Dual‐mycorrhizal plants: their ecology and relevance. New Phytologist, 225(5), 1835-1851. https://doi.org/10.1111/nph.16190
dc.relation.referencesTorres, N., Antolín, M. C., & Goicoechea, N. (2018). Arbuscular mycorrhizal symbiosis as a promising resource for improving berry quality in grapevines under changing environments. Frontiers in plant science, 9, 897. https://doi.org/10.3389/fpls.2018.00897
dc.relation.referencesUllah, S., Khan, J., Hayat, K., Abdelfattah Elateeq, A., Salam, U., Yu, B., ... & Tang, Z. H. (2020). Comparative study of growth, cadmium accumulation and tolerance of three chickpea (Cicer arietinum L.) cultivars. Plants, 9(3), 310. https://doi.org/10.3390/plants9030310
dc.relation.referencesUr Rahman, S., Xuebin, Q., Riaz, L., Yasin, G., Noor Shah, A., Shahzad, U., ... & Du, Z. (2021). The interactive effect of pH variation and cadmium stress on wheat (Triticum aestivum L.) growth, physiological and biochemical parameters. Plos one, 16(7), e0253798. https://doi.org/10.1371/journal.pone.0253798
dc.relation.referencesVallejos-Torres, G., Gaona-Jimenez, N., Arevalo, A. A., Paredes, C., Lozano, A., Saavedra-Ramírez, J., ... & Marín, C. (2023). Cadmium uptake and mycorrhization by cacao clones in agroforestry and monoculture systems of Peruvian Amazon. Bioagro, 35(3), 237-246. http://www.doi.org/10.51372/bioagro353.7
dc.relation.referencesVallejos-Torres, G., Gaona-Jimenez, N., Arevalo, A. A., Paredes, C., Lozano, A., Saavedra-Ramírez, J., ... & Marín, C. (2023). Cadmium uptake and mycorrhization by cacao clones in agroforestry and monoculture systems of Peruvian Amazon. Bioagro, 35(3), 237-246. http://www.doi.org/10.51372/bioagro353.7
dc.relation.referencesVallejos-Torres, G., Ruíz-Valles, R., Chappa-Santa María, C. E., Gaona-Jiménez, N., & Marín, C. (2021). High genetic diversity in arbuscular mycorrhizal fungi influence cadmium uptake and growth of cocoa plants. Bioagro, 34(1), 75-84. https://doi.org/10.51372/bioagro341.7
dc.relation.referencesVallejos-Torres, G., Torres, S. C., Gaona-Jimenez, N., Saavedra, J., Tuesta, J. C., Tuesta, O. A., ... & del Mar Alguacil, M. (2022). The Combined Effect of Arbuscular Mycorrhizal Fungi and Compost Improves Growth and Soil Parameters and Decreases Cadmium Absorption in Cacao (Theobroma cacao L.) Plants. Journal of Soil Science and Plant Nutrition, 22(4), 5174-5182. https://doi.org/10.1007/s42729-022-00992-9
dc.relation.referencesVanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., … Smolders, E. (2021). Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of The Total Environment, 781, 146779. doi:10.1016/j.scitotenv.2021.146779
dc.relation.referencesVanderschueren, R., Wantiez, L., Blommaert, H., Flores, J., Chavez, E., & Smolders, E. (2023). Revealing the pathways of cadmium uptake and translocation in cacao trees (Theobroma cacao L.): A 108Cd pulse-chase experiment. Science of The Total Environment, 869, 161816. https://doi.org/10.1016/j.scitotenv.2023.161816
dc.relation.referencesVargas-Vázquez, V. A., Sanchez-Rangel, N. I., Hernández-Cuevas, L. V., & Guevara-Guerrero, G. (2021). Riqueza de especies de hongos micorrízicos asociados a plantas de la familia Euphorbiaceae en el Área Natural Protegida Altas Cumbres, Tamaulipas, México. CienciaUAT, 16(1), 6-19.
dc.relation.referencesWade, J., Ac-Pangan, M., Favoretto, V. R., Taylor, A. J., Engeseth, N., & Margenot, A. J. (2022). Drivers of cadmium accumulation in Theobroma cacao L. beans: A quantitative synthesis of soil-plant relationships across the Cacao Belt. Plos one, 17(2), e0261989. https://doi.org/10.1371/journal.pone.0261989
dc.relation.referencesWahid, A., Ghani, A., Ali, I., & Ashraf, M. Y. (2007). Effects of cadmium on carbon and nitrogen assimilation in shoots of mungbean [Vigna radiata (L.) Wilczek] seedlings. Journal of agronomy and crop science, 193(5), 357-365. https://doi.org/10.1111/j.1439-037X.2007.00270.x
dc.relation.referencesWang, F., Zhang, X., Zhang, S., Zhang, S., Adams, C. A., & Sun, Y. (2020). Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation. Toxics, 8(2), 36. https://doi.org/10.3390/toxics8020036
dc.relation.referencesWang, H. R., Du, X. R., Zhang, Z. Y., Feng, F. J., & Zhang, J. M. (2023). Rhizosphere interface microbiome reassembly by arbuscular mycorrhizal fungi weakens cadmium migration dynamics. iMeta, e133. https://doi.org/10.1002/imt2.133
dc.relation.referencesWang, H. R., Zhao, X. Y., Zhang, J. M., Lu, C., & Feng, F. J. (2022). Arbuscular mycorrhizal fungus regulates cadmium accumulation, migration, transport, and tolerance in Medicago sativa. Journal of Hazardous Materials, 435, 129077. https://doi.org/10.1016/j.jhazmat.2022.129077
dc.relation.referencesWipf, D., Krajinski, F., van Tuinen, D., Recorbet, G., & Courty, P. E. (2019). Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist, 223(3), 1127-1142. https://doi.org/10.1111/nph.15775
dc.relation.referencesXie, K., Ren, Y., Chen, A., Yang, C., Zheng, Q., Chen, J., ... & Xu, G. (2022). Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. Journal of Plant Physiology, 269, 153591. https://doi.org/10.1016/j.jplph.2021.153591
dc.relation.referencesYang, S., Zhang, J., & Chen, L. (2021). Growth and physiological responses of Pennisetum sp. to cadmium stress under three different soils. Environmental Science and Pollution Research, 28, 14867-14881. https://doi.org/10.1007/s11356-020-11701-3
dc.relation.referencesYou, Y., Ju, C., Wang, L., Wang, X., Ma, F., Wang, G., & Wang, Y. (2022). The mechanism of arbuscular mycorrhizal enhancing cadmium uptake in Phragmites australis depends on the phosphorus concentration. Journal of Hazardous Materials, 440, 129800. https://doi.org/10.1016/j.jhazmat.2022.129800
dc.relation.referencesZakariyya, F., Santoso, T. I., & Abdoellah, S. (2022). Absorption of Cadmium and its Effect on the Growth of Halfsib Family of Three Cocoa Clones Seedling. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 38(3), 171-178. DOI: 10.22302/iccri.jur.pelitaperkebunan.v38i3.534
dc.relation.referencesZhang, H., Xu, N., Li, X., & Sun, G. Y. (2018). Arbuscular mycorrhizal fungi (Glomus mosseae) improves growth, photosynthesis and protects photosystem II in leaves of Lolium perenne L. in cadmium contaminated soil. Frontiers in plant science, 9, 361979.
dc.relation.referencesZhao, H., Guan, J., Liang, Q., Zhang, X., Hu, H., & Zhang, J. (2021). Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific reports, 11(1), 9913. https://doi.org/10.1038/s41598-021-89322-0
dc.relation.referencesZhou, J., Zhang, C., Du, B., Cui, H., Fan, X., Zhou, D., & Zhou, J. (2020). Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low-and high-Cd wheat cultivars. Environmental Pollution, 265, 115045. https://doi.org/10.1016/j.envpol.2020.115045
dc.relation.referencesZug, K. L. M., Huamaní Yupanqui, H. A., Meyberg, F., Cierjacks, J. S., & Cierjacks, A. (2019). Cadmium accumulation in Peruvian cacao (Theobroma cacao L.) and opportunities for mitigation. Water, Air, & Soil Pollution, 230, 1-18. https://doi.org/10.1007/s11270-019-4109-x
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsBioaccumulation
dc.subject.keywordsPhytoremediation
dc.subject.keywordsArbuscular mycorrhizal fungi (AMF)
dc.subject.keywordsHeavy metals
dc.subject.keywordsTheobroma cacao
dc.subject.proposalBioacumulación
dc.subject.proposalFitorremediación,
dc.subject.proposalHongos micorrízicos arbusculares (HMA),
dc.subject.proposalMetales pesados,
dc.subject.proposalTheobroma cacao.
dc.titleInfluencia de la inoculación de hongos formadores de micorrizas arbusculares en la absorcion de Cadmio en plantas de cacao durante la etapa de vivero
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
TTESIS FINAL ORLANDO LAFONT.pdf
Tamaño:
4.9 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
autorización.pdf
Tamaño:
804.44 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones