Publicación:
Respuestas fisiológicas y bioquímicas de Limnospira maxima a la exposición a diferentes espectros de luz y fuentes de nitrógeno

dc.audience
dc.contributor.advisorHerazo Cárdenas, Diana Sofíaspa
dc.contributor.advisorVallejo Isaza, Adriana spa
dc.contributor.authorPineda Rodríguez, Yirlis Yadeth
dc.date.accessioned2023-08-15T16:58:54Z
dc.date.available2023-08-15T16:58:54Z
dc.date.issued2023-08-11
dc.description.abstractLimnospira maxima es una cianobacteria cultivada por su contenido de proteínas, vitaminas, y ficobiliproteínas. El objetivo de este estudio fue analizar el impacto del tipo de luz y fuente de nitrógeno en el crecimiento y contenido de pigmentos de L. maxima. Siendo necesario primeramente 1. Tipificar la cepa mediante el marcador molecular ARNr 16S; 2. Evaluar la tasa de crecimiento de L. maxima en función del tipo de luz y fuente de nitrógeno; y 3. Determinar el contenido de pigmentos bajo diferentes espectros de luz y fuentes de nitrógeno. La tipificación se realizó utilizando primers que amplifican la región ARNr 16S. Para obtener ADN de calidad, se evaluaron tres kits de extracción de ADN y dos tipos de muestra; encontrándose que el Kit de ADN genómico PureLink™ con biomasa pulverizada (Pbact-P) fue el mejor método. Para evaluar la tasa de crecimiento (peso seco y densidad óptica) se emplearon cuatro tipos de luz y dos fuentes de nitrógeno, incluyendo un control. Se observó que la luces blanca y amarilla generaron los mejores resultados. Tanto el KNO3 y NaNO3 mostraron resultados similares, sin embargo, se recomienda el KNO3 al ser más rentable; la deficiencia de nitrógeno estimuló la biomasa seca, pero afectó la concentración de pigmentos. Finalmente, para determinar el contenido de pigmentos, se midieron las concentraciones de clorofila, carotenoides y ficobiliproteínas; encontrándose que la luz blanca promovió los mayores contenidos de ficocianina (el pigmento más importante de las cianobacterias).spa
dc.description.abstractLimnospira maxima is a cyanobacterium cultivated for its protein, vitamin, and phycobiliprotein content. The aim of this study was to analyze the impact of light type and nitrogen source on the growth and pigment content of L. maxima. It was necessary to first 1. Characterize the strain using the 16S rRNA molecular marker; 2. Evaluate the growth rate of L. maxima based on light type and nitrogen source; and 3. Determine the pigment content under different light spectra and nitrogen sources. Typing was performed using primers that amplify the 16S rRNA region. To obtain high-quality DNA, three DNA extraction kits and two types of samples were evaluated, and the PureLink™ Genomic DNA Kit with pulverized biomass (Pbact-P) was found to be the best method. To evaluate the growth rate (dry weight and optical density), four types of light and two nitrogen sources, including a control, were used. It was observed that White and yellow lights produced the best results. Both KNO3 and NaNO3 showed similar results; however, KNO3 is recommended as it is more cost-effective. Nitrogen deficiency stimulated dry biomass but affected pigment concentration. Finally, to determine the pigment content in cyanobacteria, measurements of chlorophyll, carotenoid, and phycobiliprotein concentrations were conducted. The results revealed that exposure to white light had a significant effect in promoting higher levels of phycocyanin, the most relevant pigment present in cyanobacteriaeng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agronómicasspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontentsINTRODUCCIÓN .....................................................................................................................3spa
dc.description.tableofcontents1. REVISIÓN DE LITERATURA ............................................................................................5spa
dc.description.tableofcontents1.1. GENERALIDADES DE LAS CIANOBACTERIAS. .................................................... 5spa
dc.description.tableofcontents1.2. CARACTERÍSTICAS GENERALES DE Limnospira maxima. ................................... 6spa
dc.description.tableofcontents1.2.1. Morfología .......................................................................................................... 6spa
dc.description.tableofcontents1.2.2. Clasificación taxonómica ................................................................................... 7spa
dc.description.tableofcontents1.2.3. Hábitat ............................................................................................................... 8spa
dc.description.tableofcontents1.2.4. Reproducción y ciclo de vida ............................................................................. 9spa
dc.description.tableofcontents1.2.5. Fases de crecimiento ....................................................................................... 10spa
dc.description.tableofcontents1.3. COMPOSICIÓN NUTRICIONAL ............................................................................. 12spa
dc.description.tableofcontents1.3.1. Proteínas ......................................................................................................... 13spa
dc.description.tableofcontents1.3.2. Vitaminas ......................................................................................................... 13spa
dc.description.tableofcontents1.3.3. Minerales ......................................................................................................... 13spa
dc.description.tableofcontents1.3.4. Carbohidratos .................................................................................................. 14spa
dc.description.tableofcontents1.3.5. Lípidos y ácidos grasos ................................................................................... 14spa
dc.description.tableofcontents1.3.6. Ficobiliproteínas ............................................................................................... 14spa
dc.description.tableofcontents1.4. APLICACIONES FARMACÉUTICAS Y NUTRACÉUTICAS DE LA ESPIRULINA .. 15spa
dc.description.tableofcontents1.4.1. Control de peso ................................................................................................ 15spa
dc.description.tableofcontents1.4.2. Tratamiento de la presión arterial .................................................................... 16spa
dc.description.tableofcontents1.4.3. Importancia en el sistema inmunológico .......................................................... 16spa
dc.description.tableofcontents1.4.4. Importancia en el tratamiento de la diabetes ............................... 17spa
dc.description.tableofcontents1.5. PARÁMETROS DE CRECIMIENTO ....................................................................... 18spa
dc.description.tableofcontents1.5.1. Medio de crecimiento ....................................................................................... 18spa
dc.description.tableofcontents1.5.2. Agitación y aireación ........................................................................................ 19spa
dc.description.tableofcontents1.5.3. Iluminación ....................................................................................................... 20spa
dc.description.tableofcontents1.5.4. Temperatura .................................................................................................... 20spa
dc.description.tableofcontents1.5.5. pH .................................................................................................................... 20spa
dc.description.tableofcontents1.5.6. Salinidad .......................................................................................................... 21spa
dc.description.tableofcontents1.6. IMPORTANCIA DEL NITRÓGENO EN Limnospira maxima. .................................. 21spa
dc.description.tableofcontents1.7. IMPORTANCIA DEL ESPECTRO DE LUZ EN LA PRODUCCIÓN DE BIOMASA Y PIGMENTOS DE Limnospira maxima. .................................................... 22spa
dc.description.tableofcontents2. MATERIALES Y MÉTODOS ............................................................... 24spa
dc.description.tableofcontents2.1. OBJETIVO ESPECÍFICO 1. Tipificar la cepa L. maxima mediante el marcador molecular ARNr 16S ............................................................. 24spa
dc.description.tableofcontents2.1.1. Cepa de cianobacterias y medio de producción ............................... 24spa
dc.description.tableofcontents2.1.2. Toma de muestras ........................................................................................... 25spa
dc.description.tableofcontents2.1.3. Diseño experimental ........................................................................................ 25spa
dc.description.tableofcontents2.1.4. Extracción de ADN genómico .......................................................................... 25spa
dc.description.tableofcontents2.1.7. Análisis estadístico .......................................................................................... 27spa
dc.description.tableofcontents2.2. OBJETIVO ESPECÍFICO 2. Evaluar la tasa de crecimiento de L. maxima en función del tipo de luz y fuente de nitrógeno. .............................................. 28spa
dc.description.tableofcontents2.2.1. Cepa de cianobacterias y medio de producción ......................... 28spa
dc.description.tableofcontents2.2.2. Condiciones del experimento y diseño experimental. ..................... 28spa
dc.description.tableofcontents2.2.3. Densidad óptica y peso seco. .............................................. 29spa
dc.description.tableofcontents2.2.4. Análisis estadístico ............................................................ 30spa
dc.description.tableofcontents2.3. OBJETIVO ESPECÍFICO 3. Determinar el contenido de pigmentos en L. maxima en función del tipo de luz y fuente de nitrógeno. ..................................... 30spa
dc.description.tableofcontents2.3.1. Determinación de clorofila y carotenoides totales ..................... 30spa
dc.description.tableofcontents2.3.2. Determinación de ficobiliproteínas ............................................ 31spa
dc.description.tableofcontents2.3.3. Determinación de proteínas solubles ................................ 31spa
dc.description.tableofcontents2.3.2. Análisis estadístico .................................................................. 32spa
dc.description.tableofcontents3. RESULTADOS Y DISCUSIÓN ................................................................. 32spa
dc.description.tableofcontents3.1. OBJETIVO ESPECÍFICO 1. Tipificar la cepa L. maxima mediante el marcador molecular ARNr 16S ...................................................................... 32spa
dc.description.tableofcontents3.1.1. Concentración de ADN y relaciones de pureza A260/A280 y A260/A230. ........... 32spa
dc.description.tableofcontents3.2. OBJETIVO ESPECÍFICO 2. Evaluar la tasa de crecimiento de L. maxima en función del tipo de luz y fuente de nitrógeno. ............................................. 37spa
dc.description.tableofcontents3.2.1. Medición de la radiación fotosintéticamente activa (RFA) ................ 37spa
dc.description.tableofcontents3.2.2. Densidad óptica (DO) y peso seco (PS). ................................... 37spa
dc.description.tableofcontents3.3. OBJETIVO ESPECÍFICO 3. Determinar el contenido de pigmentos en L. maxima en función del tipo de luz y fuente de nitrógeno. ...................... 42spa
dc.description.tableofcontents3.3.1. Clorofila (Chla y Chlb) y carotenoides totales. ............................... 42spa
dc.description.tableofcontents3.3.2. Ficobiliproteínas (Ficocianina, aloficocianina, ficoeritrina) y proteínas solubles ... 45spa
dc.description.tableofcontents3.4. Análisis de Componentes Principales .............................................. 69spa
dc.description.tableofcontents4. CONCLUSIONES .................................................................... 73spa
dc.description.tableofcontents5. RECOMENDACIONES ................................................................. 74spa
dc.description.tableofcontents6. REFERENCIAS BIBLIOGRÁFICAS .................................................. 75spa
dc.description.tableofcontents7. ANEXOS ....................................................................................... 85spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7649
dc.language.isospaspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Agrícolasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programIngeniería Agronómicaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsPhycocyaninspa
dc.subject.keywordsFood safetyspa
dc.subject.keywordsPigmentsspa
dc.subject.keywordsCyanobacteriaspa
dc.subject.proposalFicocianinaspa
dc.subject.proposalSeguridad alimentariaspa
dc.subject.proposalPigmentosspa
dc.subject.proposalCianobacteriaspa
dc.titleRespuestas fisiológicas y bioquímicas de Limnospira maxima a la exposición a diferentes espectros de luz y fuentes de nitrógenospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbu Almakarem, A. S., Heilman, K. L., Conger, H. L., Shtarkman, Y. M., & Rogers, S. O. (2012). Extraction of DNA from plant and fungus tissues in situ. BMC Research Notes, 5, 1-11.spa
dcterms.referencesAlFadhly, N. K. Z., Alhelfi, N., Altemimi, A. B., Verma, D. K., & Cacciola, F. (2022). Tendencies Affecting the Growth and Cultivation of Genus Spirulina: An Investigative Review on Current Trends. Plants, 11(22), 3063. https://doi.org/10.3390/plants11223063spa
dcterms.referencesAlFadhly, N. K. Z., Alhelfi, N., Altemimi, A. B., Verma, D. K., Cacciola, F., & Narayanankutty, A. (2022). Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules, 27(17), 1-40. https://doi.org/10.3390/molecules27175584spa
dcterms.referencesArredondo, B. O., Voltolina, D., Zenteno, T., Arce, M., & Gómez, G. (2017). Métodos y herramientas analíticas en la evaluación de la biomasa microalgal (Segunda edición). Centro de Investigaciones Biológicas del Noroeste.spa
dcterms.referencesBachchhav, M. B., Kulkarni, M. V., & Ingale, A. G. (2017). Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode. Journal of The Institution of Engineers (India): Series E, 98, 41-45.spa
dcterms.referencesBahman, M., Aghanoori, M., Jalili, H., Bozorg, A., Danaee, S., Bidhendi, M. E., & Amrane, A. (2022). Effect of light intensity and wavelength on nitrogen and phosphate removal from municipal wastewater by microalgae under semi-batch cultivation. Environmental Technology, 43(9), 1352-1358. https://doi.org/10.1080/09593330.2020.1829087spa
dcterms.referencesBaurain, D., Renquin, L., Grubisic, S., Scheldeman, P., Belay, A., & Wilmotte, A. (2002). Remarkable Conservation of Internally Transcribed Spacer sequences of Arthrospira (“spirulina”) (Cyanophyceae, Cyanobacteria) strains from four continents and of recent and 30-year-old dried samples from Africa. Journal of Phycology, 38(2), 384-393. https://doi.org/10.1046/j.1529-8817.2002.01010.xspa
dcterms.referencesBennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419-435.spa
dcterms.referencesBraune, S., Krüger-Genge, A., Kammerer, S., Jung, F., & Küpper, J.-H. (2021). Phycocyanin from Arthrospira platensis as Potential Anti-Cancer Drug: Review of In Vitro and In Vivo Studies. Life, 11(2), 1-14. https://doi.org/10.3390/life11020091spa
dcterms.referencesBullerjahn, G. S., & Post, A. F. (1993). The Prochlorophytes: Are They More Than Just Chlorophyll a/b-Containing Cyanobacteria? Critical Reviews in Microbiology, 19(1), 43-59. https://doi.org/10.3109/10408419309113522spa
dcterms.referencesChittora, D., Meena, M., Barupal, T., Swapnil, P., & Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 22, 1-10. https://doi.org/10.1016/j.bbrep.2020.100737spa
dcterms.referencesCiferri, O. (1983). Spirulina, the edible microorganism. Microbiological Reviews, 47(4), 551-578. https://doi.org/10.1128/mr.47.4.551-578.1983spa
dcterms.referencesCrettaz, M. C. (2018). Estudio del crecimiento de Microcystis aeruginosa y de la producción de microcystina en cultivo de laboratorio [Tesis de doctorado, Universidad Nacional de la Plata]. 10.35537/10915/65910spa
dcterms.referencesCuellar-Bermudez, S. P., Struyf, T., Versluys, M., Van Den Ende, W., Wattiez, R., & Muylaert, K. (2022). Quantification of extracellular and biomass carbohydrates by Arthrospira under nitrogen starvation at lab-scale. Algal Research, 68, 1-8. https://doi.org/10.1016/j.algal.2022.102907spa
dcterms.referencesDe Mooij, T., De Vries, G., Latsos, C., Wijffels, R. H., & Janssen, M. (2016). Impact of light color on photobioreactor productivity. Algal Research, 15, 32-42. https://doi.org/10.1016/j.algal.2016.01.015spa
dcterms.referencesDeschoenmaeker, F., Facchini, R., Cabrera Pino, J. C., Bayon-Vicente, G., Sachdeva, N., Flammang, P., & Wattiez, R. (2016). Nitrogen depletion in Arthrospira sp. PCC 8005, an ultrastructural point of view. Journal of Structural Biology, 196(3), 385-393. https://doi.org/10.1016/j.jsb.2016.08.007spa
dcterms.referencesDeschoenmaeker, F., Facchini, R., Leroy, B., Badri, H., Zhang, C.-C., & Wattiez, R. (2014). Proteomic and cellular views of Arthrospira sp. PCC 8005 adaptation to nitrogen depletion. Microbiology, 160(6), 1224-1236. https://doi.org/10.1099/mic.0.074641-0spa
dcterms.referencesDiNicolantonio, J. J., Bhat, A. G., & OKeefe, J. (2020). Effects of spirulina on weight loss and blood lipids: A review. Open Heart, 7(1), 1-7. https://doi.org/10.1136/openhrt-2018-001003spa
dcterms.referencesEusebio, N., Rego, A., Glasser, N. R., Castelo-Branco, R., Balskus, E. P., & Leão, P. N. (2021). Distribution and diversity of dimetal-carboxylate halogenases in cyanobacteria. BMC Genomics, 22(1), 1-15. https://doi.org/10.1186/s12864-021-07939-xspa
dcterms.referencesFais, G., Manca, A., Bolognesi, F., Borselli, M., Concas, A., Busutti, M., Broggi, G., Sanna, P., Castillo-Aleman, Y. M., Rivero-Jiménez, R. A., Bencomo-Hernandez, A. A., Ventura-Carmenate, Y., Altea, M., Pantaleo, A., Gabrielli, G., Biglioli, F., Cao, G., & Giannaccare, G. (2022). Wide Range Applications of Spirulina: From Earth to Space Missions. Marine Drugs, 20, 1-27. https://doi.org/10.3390/md20050299spa
dcterms.referencesFaldu, N., Patel, S., Vishwakarma, N. P., Singh, A. K., Patel, K., & Pandhi, N. (2014). Genetic Diversity of Marine and Fresh Water Cyanobacteria from the Gujarat State of India. Advances in Bioscience and Biotechnology, 5(14), 1061-1066. https://doi.org/10.4236/abb.2014.514121spa
dcterms.referencesFAO, FIDA, OMS, PMA, & UNICEF. (2022). Versión resumida de El estado de la seguridad alimentaria y la nutrición en el mundo. (Adaptación de las políticas alimentarias y agrícolas para hacer las dietas saludables más asequibles). https://doi.org/10.4060/cc0640esspa
dcterms.referencesFurmaniak, M. A., Misztak, A. E., Franczuk, M. D., Wilmotte, A., Waleron, M., & Waleron, K. F. (2017). Edible Cyanobacterial Genus Arthrospira: Actual State of the Art in Cultivation Methods, Genetics, and Application in Medicine. Frontiers in Microbiology, 8, 1-21. https://doi.org/10.3389/fmicb.2017.02541spa
dcterms.referencesGal, J. L., Cole, N. R., Eggett, D. L., & Johnson, S. M. (2023). Growth comparison of Arthrospira platensis in different vessels: Standard cylinder vs. Enhanced surface area at low light. Applied Phycology, 4(1), 1-14. https://doi.org/10.1080/26388081.2022.2125829spa
dcterms.referencesGhaeni, M., & Roomiani, L. (2016). Review for Application and Medicine Effects of Spirulina, Spirulina platensis Microalgae. Journal of Advanced Agricultural Technologies, 3(2), 114-117. https://doi.org/10.18178/joaat.3.2.114-117spa
dcterms.referencesGheda, S. F., Abo-Shady, A. M., Abdel-Karim, O. H., & Ismail, G. A. (2021). Antioxidant and Antihyperglycemic Activity of Arthrospira platensis (Spirulina platensis) Methanolic Extract: In vitro and In vivo Study. Egyptian Journal of Botany, 61(1), 71-93. https://doi.org/10.21608/ejbo.2020.27436.1482spa
dcterms.referencesGuiry, M., & Guiry, G. (2023). Registro Mundial de Especies Marinas. https://www.marinespecies.org/aphia.php?p=taxdetails&id=1327751spa
dcterms.referencesHachicha, R., Elleuch, F., Ben Hlima, H., Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences, 12(4), 1-26. https://doi.org/10.3390/app12041924spa
dcterms.referencesHadiyanto, H., Muslihuddin, M., Khoironi, A., Pratiwi, W. Z., Fadlilah, M. N., Muhammad, F., Afiati, N., & Dianratri, I. (2022). The effect of salinity on the interaction between microplastic polyethylene terephthalate (PET) and microalgae Spirulina sp. Environmental Science and Pollution Research, 29(5), 7877-7887. https://doi.org/10.1007/s11356-021-16286-zspa
dcterms.referencesHuang, H., Liao, D., Pu, R., & Cui, Y. (2018). Quantifying the effects of spirulina supplementation on plasma lipid and glucose concentrations, body weight, and blood pressure. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Volume 11, 729-742. https://doi.org/10.2147/DMSO.S185672spa
dcterms.referencesHudson, B. J. F., & Karis, I. G. (1974). The lipids of the alga Spirulina. Journal of the Science of Food and Agriculture, 25(7), 759-763. https://doi.org/10.1002/jsfa.2740250703spa
dcterms.referencesJamal, A. F. M., Islam, I., Husna, A., Sakib, I., & Mony, R. (2020). Comparative growth analysis of Spirulina platensis using urea as a nitrogen substitute for NaNO3. International Journal of Business, Social and Scientific Research, 8(2), 76-80.spa
dcterms.referencesJoseph, A., Aikawa, S., Sasaki, K., Matsuda, F., Hasunuma, T., & Kondo, A. (2014). Increased biomass production and glycogen accumulation in apcE gene deleted Synechocystis sp. PCC 6803. AMB Express, 4(17), 1-16. https://doi.org/10.1186/s13568-014-0017-zspa
dcterms.referencesJung, C. H. G., Braune, S., Waldeck, P., Küpper, J.-H., Petrick, I., & Jung, F. (2021). Morphology and Growth of Arthrospira platensis during Cultivation in a Flat-Type Bioreactor. Life, 11(6), 2-8. https://doi.org/10.3390/life11060536spa
dcterms.referencesJung, C. H. G., Waldeck, P., Sykora, S., Braune, S., Petrick, I., Küpper, J.-H., & Jung, F. (2022). Influence of Different Light-Emitting Diode Colors on Growth and Phycobiliprotein Generation of Arthrospira platensis. Life, 12(6), 895. https://doi.org/10.3390/life12060895spa
dcterms.referencesKhan, Z., Bhadouria, P., & Bisen, P. (2005). Nutritional and Therapeutic Potential of Spirulina. Current Pharmaceutical Biotechnology, 6(5), 373-379. https://doi.org/10.2174/138920105774370607spa
dcterms.referencesKhatoon, H., Kok Leong, L., Abdu Rahman, N., Mian, S., Begum, H., Banerjee, S., & Endut, A. (2018). Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresource Technology, 249, 652-658. https://doi.org/10.1016/j.biortech.2017.10.052spa
dcterms.referencesLafarga, T., Mayre, E., Echeverria, G., Viñas, I., Villaró, S., Acién-Fernández, F. G., Castellari, M., & Aguiló-Aguayo, I. (2019). Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods. LWT-Food Science and Technology, 115, 1-9. https://doi.org/10.1016/j.lwt.2019.108439spa
dcterms.referencesLee, S.-H., Lee, J. E., Kim, Y., & Lee, S.-Y. (2016). The Production of High Purity Phycocyanin by Spirulina platensis Using Light-Emitting Diodes Based Two-Stage Cultivation. Applied Biochemistry and Biotechnology, 178(2), 382-395. https://doi.org/10.1007/s12010-015-1879-5spa
dcterms.referencesLi, T., Xu, J., Gao, B., Xiang, W., Li, A., & Zhang, C. (2016). Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Research, 16, 481-491. https://doi.org/10.1016/j.algal.2016.04.008spa
dcterms.referencesLi, X., Li, W., Zhai, J., & Wei, H. (2018). Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis. Bioresource Technology, 263, 555-561. https://doi.org/10.1016/j.biortech.2018.05.046spa
dcterms.referencesLichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, 1, 1-8.spa
dcterms.referencesLiu, Q., Yao, C., Sun, Y., Chen, W., Tan, H., Cao, X., Xue, S., & Yin, H. (2019). Production and structural characterization of a new type of polysaccharide from nitrogen-limited Arthrospira platensis cultivated in outdoor industrial-scale open raceway ponds. Biotechnology for Biofuels, 12(1), 131. https://doi.org/10.1186/s13068-019-1470-3spa
dcterms.referencesLuimstra, V. M., Schuurmans, J. M., Hellingwerf, K. J., Matthijs, H. C. P., & Huisman, J. (2020). Blue light induces major changes in the gene expression profile of the cyanobacterium Synechocystis sp. PCC 6803. Physiologia Plantarum, 170(1), 10-26. https://doi.org/10.1111/ppl.13086spa
dcterms.referencesMadhyastha, H. K., & Vatsala, T. M. (2007). Pigment production in Spirulina fussiformis in different photophysical conditions. Biomolecular Engineering, 24(3), 301-305. https://doi.org/10.1016/j.bioeng.2007.04.001spa
dcterms.referencesMak, Y. M., & Ho, K. K. (1992). An improved method for the isolation of chromosomal DNA from various bacteria and cyanobacteria. Nucleic Acids Research, 20(15), 4101-4102. https://doi.org/10.1093/nar/20.15.4101spa
dcterms.referencesMartins, J., Leão, P., Ramos, V., & Vasconcelos, V. (2013). N-Terminal Protease Gene Phylogeny Reveals the Potential for Novel Cyanobactin Diversity in Cyanobacteria. Marine Drugs, 11(12), 4902-4916. https://doi.org/10.3390/md11124902spa
dcterms.referencesMatos, J., Cardoso, C., Bandarra, N. M., & Afonso, C. (2017). Microalgae as healthy ingredients for functional food: A review. Food & Function, 8(8), 1-42. https://doi.org/10.1039/C7FO00409Espa
dcterms.referencesMilia, M., Corrias, F., Addis, P., Chini Zitelli, G., Cicchi, B., Torzillo, G., Andreotti, V., & Angioni, A. (2022). Influence of Different Light Sources on the Biochemical Composition of Arthrospira spp. Grown in Model Systems. Foods, 11(3), Article 3. https://doi.org/10.3390/foods11030399spa
dcterms.referencesMirhosseini, N., Cano-Europa, E., Davarnejad, R., Hallajisani, A., Franco-Colín, M., Tavakoli, O., & Blas-Valdivia, V. (2021). Cultivations of Arthrospira maxima (Spirulina) using ammonium sulfate and sodium nitrate as an alternative nitrogen sources. Iranian Journal of Fisheries Sciences, 20(2). https://doi.org/10.22092/ijfs.2021.351071.0spa
dcterms.referencesMöllers, K. B., Cannella, D., Jørgensen, H., & Frigaard, N.-U. (2014). Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnology for Biofuels, 7(1), 64. https://doi.org/10.1186/1754-6834-7-64spa
dcterms.referencesMoradi, S., Ziaei, R., Foshati, S., Mohammadi, H., Nachvak, S. M., & Rouhani, M. H. (2019). Effects of Spirulina supplementation on obesity: A systematic review and meta-analysis of randomized clinical trials. Complementary Therapies in Medicine, 47, 1-28. https://doi.org/10.1016/j.ctim.2019.102211spa
dcterms.referencesMorin, N., Vallaeys, T., Hendrickx, L., Natalie, L., & Wilmotte, A. (2010). An efficient DNA isolation protocol for filamentous cyanobacteria of the genus Arthrospira. Journal of Microbiological Methods, 80(2), 148-154. https://doi.org/10.1016/j.mimet.2009.11.012spa
dcterms.referencesMousavi, M., Mehrzad, J., Najafi, M. F., Zhiani, R., & Shamsian, S. A. A. (2022). Nitrate and ammonia: Two key nitrogen sources for biomass and phycocyanin production by Arthrospira (Spirulina) platensis. Journal of Applied Phycology, 34(5), 2271-2281. https://doi.org/10.1007/s10811-021-02664-0spa
dcterms.referencesNowicka-Krawczyk, P., Mühlsteinová, R., & Hauer, T. (2019). Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-018-36831-0spa
dcterms.referencesOgbonda, K. H., Aminigo, R. E., & Abu, G. O. (2007). Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource Technology, 98(11), 2207-2211. https://doi.org/10.1016/j.biortech.2006.08.028spa
dcterms.referencesOjit, S. K., Indrama, T., Gunapati, O., Avijeet, S. O., Subhalaxmi, S. A., Silvia, C., Indira, D. W., Romi, K., Minerva, S., Thadoi, D. A., Tiwari, O. N., & Sharma, G. D. (2015). The response of phycobiliproteins to light qualities in Anabaena circinalis. Journal of Applied Biology & Biotechnology, 3, 1-6. https://doi.org/10.7324/JABB.2015.3301spa
dcterms.referencesOrtiz-Moreno, M. L., Cárdenas-Poblador, J., Agredo, J., & Solarte-Murillo, L. V. (2020). Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum. Universitas Scientiarum, 25(1), 113-148. https://doi.org/10.11144/Javeriana.SC25-1.mtespa
dcterms.referencesPagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), 422-443. https://doi.org/10.1016/j.biotechadv.2019.02.010spa
dcterms.referencesPark, J., & Dinh, T. B. (2019). Contrasting effects of monochromatic LED lighting on growth, pigments and photosynthesis in the commercially important cyanobacterium Arthrospira maxima. Bioresource Technology, 291, 1-7. https://doi.org/10.1016/j.biortech.2019.121846spa
dcterms.referencesPelagatti, M., Mori, G., Falsini, S., Ballini, R., Lazzara, L., & Papini, A. (2023). Blue and Yellow Light Induce Changes in Biochemical Composition and Ultrastructure of Limnospira fusiformis (Cyanoprokaryota). Microorganisms, 11(5), 1236. https://doi.org/10.3390/microorganisms11051236spa
dcterms.referencesPineda-Rodriguez, Y. Y., Pompelli, M. F., Jarma-Orozco, A., Jaraba-Navas, J. D. D., Herazo-Cárdenas, D. S., Vallejo-Isaza, A., & Rodriguez-Paez, L. A. (2023). Limnospira maxima Strain SISCA 16S Ribosomal RNA Gene, Partial Sequence. En National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/nuccore/OR195505spa
dcterms.referencesPrates, D. da F., Radmann, E. M., Duarte, J. H., Morais, M. G. de, & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256, 38-43. https://doi.org/10.1016/j.biortech.2018.01.122spa
dcterms.referencesRagaza, J. A., Hossain, Md. S., Meiler, K. A., Velasquez, S. F., & Kumar, V. (2020). A review on Spirulina: Alternative media for cultivation and nutritive value as an aquafeed. Reviews in Aquaculture, 12(4), 2371-2395.spa
dcterms.referencesRajasekaran, C., Ajeesh, C. P. M., Balaji, S., Shalini, M., SIVA, R., Das, R., Fulzele, D. P., & Kalaivani, T. (2016). Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains. Walailak Journal of Science and Technology (WJST), 13(1), 67-75.spa
dcterms.referencesRamanna, L., Rawat, I., & Bux, F. (2017). Light enhancement strategies improve microalgal biomass productivity. Renewable and Sustainable Energy Reviews, 80, 765-773. https://doi.org/10.1016/j.rser.2017.05.202spa
dcterms.referencesRamos, V. M. C., Castelo-Branco, R., Leão, P. N., Martins, J., Carvalhal-Gomes, S., Sobrinho da Silva, F., Mendonça Filho, J. G., & Vasconcelos, V. M. (2017). Cyanobacterial Diversity in Microbial Mats from the Hypersaline Lagoon System of Araruama, Brazil: An In-depth Polyphasic Study. Frontiers in Microbiology, 8, 1-16. https://doi.org/10.3389/fmicb.2017.01233spa
dcterms.referencesRavindran, B., Gupta, S., Cho, W.-M., Kim, J., Lee, S., Jeong, K.-H., Lee, D., & Choi, H.-C. (2016). Microalgae Potential and Multiple Roles—Current Progress and Future Prospects—An Overview. Sustainability, 8, 1-16. https://doi.org/10.3390/su8121215spa
dcterms.referencesSanger, F., & Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94, 441-448.spa
dcterms.referencesSano, H., Wakui, A., Kawachi, M., Washio, J., Abiko, Y., Mayanagi, G., Yamaki, K., Tanaka, K., Takahashi, N., & Sato, T. (2021). Profiling system of oral microbiota utilizing polymerase chain reaction-restriction fragment length polymorphism analysis. Journal of Oral Biosciences, 63, 292-297.spa
dcterms.referencesSatoh, S., Ikeuchi, M., Mimuro, M., & Tanaka, A. (2001). Chlorophyll b Expressed in Cyanobacteria Functions as a Light-harvesting Antenna in Photosystem I through Flexibility of the Proteins. Journal of Biological Chemistry, 276(6), 4293-4297. https://doi.org/10.1074/jbc.M008238200spa
dcterms.referencesSaxena, R., Rodríguez-Jasso, R. M., Chávez-Gonzalez, M. L., Aguilar, C. N., Quijano, G., & Ruiz, H. A. (2022). Strategy Development for Microalgae Spirulina platensis Biomass Cultivation in a Bubble Photobioreactor to Promote High Carbohydrate Content. Fermentation, 8(8), 374. https://doi.org/10.3390/fermentation8080374spa
dcterms.referencesSendersky, E., Kozer, N., Levi, M., Moizik, M., Garini, Y., Shav‐Tal, Y., & Schwarz, R. (2015). The proteolysis adaptor, NblA, is essential for degradation of the core pigment of the cyanobacterial light‐harvesting complex. The Plant Journal, 83(5), 845-852. https://doi.org/10.1111/tpj.12931spa
dcterms.referencesSingh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Frontiers in Microbiology, 7, 1-19. https://doi.org/10.3389/fmicb.2016.00529spa
dcterms.referencesSoni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157-171. https://doi.org/10.1016/j.tifs.2017.09.010spa
dcterms.referencesTandeau, N., & Houmard, J. (1993). Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanisms. FEMS Microbiology Letters, 104(1), 119-189. https://doi.org/10.1016/0378-1097(93)90506-Wspa
dcterms.referencesTayebati, H., Pajoum Shariati, F., Soltani, N., & Sepasi Tehrani, H. (2021). Effect of various light spectra on amino acids and pigment production of Arthrospira platensis using flat-plate photobioreactor. Preparative Biochemistry & Biotechnology, 1-12. https://doi.org/10.1080/10826068.2021.1941102spa
dcterms.referencesThevarajah, B., Nishshanka, G. K. S. H., Premaratne, M., Nimarshana, P. H. V., Nagarajan, D., Chang, J.-S., & Ariyadasa, T. U. (2022). Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochemical Engineering Journal, 185, 1-8. https://doi.org/10.1016/j.bej.2022.108541spa
dcterms.referencesTomaselli, L., Palandri, R. M., & Tredici, M. R. (1996). On the correct use of the Spirulina designation. Algological Studies, 83, 539-548. https://doi.org/10.1127/algol_stud/83/1996/539spa
dcterms.referencesTurpin, P. J. F. (1827). Spirulina oscillarioide. Dictionnaire des sciencesnaturelles, 50, 309-310.spa
dcterms.referencesVachard, D. (2021). Cyanobacteria. En Encyclopedia of Geology (pp. 446-460). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11843-3spa
dcterms.referencesVillagómez-Flores, E., Hinojosa-Espinosa, O., & Villaseñor, J. L. (2018). El género Stevia (Eupatorieae, Asteraceae) en el estado de Morelos, México. Acta Botanica Mexicana, 125, 7-36. https://doi.org/10.21829/abm125.2018.1315spa
dcterms.referencesWan, D., Wu, Q., & Kuča, K. (2016). Spirulina. En Nutraceuticals (pp. 569-583). Elsevier. https://doi.org/10.1016/B978-0-12-802147-7.00042-5spa
dcterms.referencesWan, D., Wu, Q., & Kuča, K. (2021). Chapter 57—Spirulina. En R. C. Gupta, R. Lall, & A. Srivastava (Eds.), Nutraceuticals (Second Edition) (pp. 959-974). Academic Press. https://doi.org/10.1016/B978-0-12-821038-3.00057-4spa
dcterms.referencesWegener, K. M., Singh, A. K., Jacobs, J. M., Elvitigala, T., Welsh, E. A., Keren, N., Gritsenko, M. A., Ghosh, B. K., Camp, D. G., Smith, R. D., & Pakrasi, H. B. (2010). Global Proteomics Reveal an Atypical Strategy for Carbon/Nitrogen Assimilation by a Cyanobacterium Under Diverse Environmental Perturbations. Molecular & Cellular Proteomics, 9(12), 2678-2689. https://doi.org/10.1074/mcp.M110.000109spa
dcterms.referencesWellburn, A. R. (1994). The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology, 144(3), 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2spa
dcterms.referencesWilfinger, W. W., Mackey, K., & Chomczynski, P. (1997). Effect of pH and Ionic Strength on the Spectrophotometric Assessment of Nucleic Acid Purity. BioTechniques, 22(3), 474-481. https://doi.org/10.2144/97223st01spa
dcterms.referencesWittrock and Nordstedt (1844) Algae aquae dulcia exiccata, fascicule XIV n° 679. In: Descriptiones systematice dispositae, p 59spa
dcterms.referencesXu, H., Vavilin, D., & Vermaas, W. (2001). Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria. Proceedings of the National Academy of Sciences, 98(24), 14168-14173. https://doi.org/10.1073/pnas.251530298spa
dcterms.referencesYeh, W.-J., Chen, G.-Y., & Chen, Y.-C. (2004). Identification of a Blue-Green Alga Arthrospira maxima Using Internal Transcribed Spacer Gene Sequence. Acta Oceanographica Taiwanica, 42(1), 25-37.spa
dcterms.referencesYin, C., Daoust, K., Young, A., Tebbs, E., & Harper, D. (2017). Tackling community undernutrition at lake Bogoria, Kenya: The potential of spirulina (Arthrospira fusiformis) as a food supplement. African Journal of Food, Agriculture, Nutrition and Development, 17(1), 11603-11615. https://doi.org/10.18697/ajfand.77.15440spa
dcterms.referencesZarrouk, C. (1966). Contribution a l’etude d’une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur la croissance et la photosynthese de Spirulina mixima. https://cir.nii.ac.jp/crid/1571698599087861632spa
dcterms.referencesZhao, F., Zhang, X., Liang, C., Wu, J., Bao, Q., & Qin, S. (2006). Genome-wide analysis of restriction-modification system in unicellular and filamentous cyanobacteria. Physiological Genomics, 24(3), 181-190. https://doi.org/10.1152/physiolgenomics.00255.2005spa
dcterms.referencesZittelli, G., Mugnai, G., Milia, M., Cicchi, B., Silva, A. M., Angioni, A., Addis, P., & Torzillo, G. (2022). Effects of blue, orange and white lights on growth, chlorophyll fluorescence, and phycocyanin production of Arthrospira platensis cultures. Algal Research, 61, 1-9. https://doi.org/10.1016/j.algal.2021.102583spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PinedaRodríguezYirlisYadeth.pdf
Tamaño:
2.66 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato de autorización (2).pdf
Tamaño:
298.22 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones