Publicación: Respuestas fisiológicas y bioquímicas de Limnospira maxima a la exposición a diferentes espectros de luz y fuentes de nitrógeno
dc.audience | ||
dc.contributor.advisor | Herazo Cárdenas, Diana Sofía | spa |
dc.contributor.advisor | Vallejo Isaza, Adriana | spa |
dc.contributor.author | Pineda Rodríguez, Yirlis Yadeth | |
dc.date.accessioned | 2023-08-15T16:58:54Z | |
dc.date.available | 2023-08-15T16:58:54Z | |
dc.date.issued | 2023-08-11 | |
dc.description.abstract | Limnospira maxima es una cianobacteria cultivada por su contenido de proteínas, vitaminas, y ficobiliproteínas. El objetivo de este estudio fue analizar el impacto del tipo de luz y fuente de nitrógeno en el crecimiento y contenido de pigmentos de L. maxima. Siendo necesario primeramente 1. Tipificar la cepa mediante el marcador molecular ARNr 16S; 2. Evaluar la tasa de crecimiento de L. maxima en función del tipo de luz y fuente de nitrógeno; y 3. Determinar el contenido de pigmentos bajo diferentes espectros de luz y fuentes de nitrógeno. La tipificación se realizó utilizando primers que amplifican la región ARNr 16S. Para obtener ADN de calidad, se evaluaron tres kits de extracción de ADN y dos tipos de muestra; encontrándose que el Kit de ADN genómico PureLink™ con biomasa pulverizada (Pbact-P) fue el mejor método. Para evaluar la tasa de crecimiento (peso seco y densidad óptica) se emplearon cuatro tipos de luz y dos fuentes de nitrógeno, incluyendo un control. Se observó que la luces blanca y amarilla generaron los mejores resultados. Tanto el KNO3 y NaNO3 mostraron resultados similares, sin embargo, se recomienda el KNO3 al ser más rentable; la deficiencia de nitrógeno estimuló la biomasa seca, pero afectó la concentración de pigmentos. Finalmente, para determinar el contenido de pigmentos, se midieron las concentraciones de clorofila, carotenoides y ficobiliproteínas; encontrándose que la luz blanca promovió los mayores contenidos de ficocianina (el pigmento más importante de las cianobacterias). | spa |
dc.description.abstract | Limnospira maxima is a cyanobacterium cultivated for its protein, vitamin, and phycobiliprotein content. The aim of this study was to analyze the impact of light type and nitrogen source on the growth and pigment content of L. maxima. It was necessary to first 1. Characterize the strain using the 16S rRNA molecular marker; 2. Evaluate the growth rate of L. maxima based on light type and nitrogen source; and 3. Determine the pigment content under different light spectra and nitrogen sources. Typing was performed using primers that amplify the 16S rRNA region. To obtain high-quality DNA, three DNA extraction kits and two types of samples were evaluated, and the PureLink™ Genomic DNA Kit with pulverized biomass (Pbact-P) was found to be the best method. To evaluate the growth rate (dry weight and optical density), four types of light and two nitrogen sources, including a control, were used. It was observed that White and yellow lights produced the best results. Both KNO3 and NaNO3 showed similar results; however, KNO3 is recommended as it is more cost-effective. Nitrogen deficiency stimulated dry biomass but affected pigment concentration. Finally, to determine the pigment content in cyanobacteria, measurements of chlorophyll, carotenoid, and phycobiliprotein concentrations were conducted. The results revealed that exposure to white light had a significant effect in promoting higher levels of phycocyanin, the most relevant pigment present in cyanobacteria | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Agronómicas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | INTRODUCCIÓN .....................................................................................................................3 | spa |
dc.description.tableofcontents | 1. REVISIÓN DE LITERATURA ............................................................................................5 | spa |
dc.description.tableofcontents | 1.1. GENERALIDADES DE LAS CIANOBACTERIAS. .................................................... 5 | spa |
dc.description.tableofcontents | 1.2. CARACTERÍSTICAS GENERALES DE Limnospira maxima. ................................... 6 | spa |
dc.description.tableofcontents | 1.2.1. Morfología .......................................................................................................... 6 | spa |
dc.description.tableofcontents | 1.2.2. Clasificación taxonómica ................................................................................... 7 | spa |
dc.description.tableofcontents | 1.2.3. Hábitat ............................................................................................................... 8 | spa |
dc.description.tableofcontents | 1.2.4. Reproducción y ciclo de vida ............................................................................. 9 | spa |
dc.description.tableofcontents | 1.2.5. Fases de crecimiento ....................................................................................... 10 | spa |
dc.description.tableofcontents | 1.3. COMPOSICIÓN NUTRICIONAL ............................................................................. 12 | spa |
dc.description.tableofcontents | 1.3.1. Proteínas ......................................................................................................... 13 | spa |
dc.description.tableofcontents | 1.3.2. Vitaminas ......................................................................................................... 13 | spa |
dc.description.tableofcontents | 1.3.3. Minerales ......................................................................................................... 13 | spa |
dc.description.tableofcontents | 1.3.4. Carbohidratos .................................................................................................. 14 | spa |
dc.description.tableofcontents | 1.3.5. Lípidos y ácidos grasos ................................................................................... 14 | spa |
dc.description.tableofcontents | 1.3.6. Ficobiliproteínas ............................................................................................... 14 | spa |
dc.description.tableofcontents | 1.4. APLICACIONES FARMACÉUTICAS Y NUTRACÉUTICAS DE LA ESPIRULINA .. 15 | spa |
dc.description.tableofcontents | 1.4.1. Control de peso ................................................................................................ 15 | spa |
dc.description.tableofcontents | 1.4.2. Tratamiento de la presión arterial .................................................................... 16 | spa |
dc.description.tableofcontents | 1.4.3. Importancia en el sistema inmunológico .......................................................... 16 | spa |
dc.description.tableofcontents | 1.4.4. Importancia en el tratamiento de la diabetes ............................... 17 | spa |
dc.description.tableofcontents | 1.5. PARÁMETROS DE CRECIMIENTO ....................................................................... 18 | spa |
dc.description.tableofcontents | 1.5.1. Medio de crecimiento ....................................................................................... 18 | spa |
dc.description.tableofcontents | 1.5.2. Agitación y aireación ........................................................................................ 19 | spa |
dc.description.tableofcontents | 1.5.3. Iluminación ....................................................................................................... 20 | spa |
dc.description.tableofcontents | 1.5.4. Temperatura .................................................................................................... 20 | spa |
dc.description.tableofcontents | 1.5.5. pH .................................................................................................................... 20 | spa |
dc.description.tableofcontents | 1.5.6. Salinidad .......................................................................................................... 21 | spa |
dc.description.tableofcontents | 1.6. IMPORTANCIA DEL NITRÓGENO EN Limnospira maxima. .................................. 21 | spa |
dc.description.tableofcontents | 1.7. IMPORTANCIA DEL ESPECTRO DE LUZ EN LA PRODUCCIÓN DE BIOMASA Y PIGMENTOS DE Limnospira maxima. .................................................... 22 | spa |
dc.description.tableofcontents | 2. MATERIALES Y MÉTODOS ............................................................... 24 | spa |
dc.description.tableofcontents | 2.1. OBJETIVO ESPECÍFICO 1. Tipificar la cepa L. maxima mediante el marcador molecular ARNr 16S ............................................................. 24 | spa |
dc.description.tableofcontents | 2.1.1. Cepa de cianobacterias y medio de producción ............................... 24 | spa |
dc.description.tableofcontents | 2.1.2. Toma de muestras ........................................................................................... 25 | spa |
dc.description.tableofcontents | 2.1.3. Diseño experimental ........................................................................................ 25 | spa |
dc.description.tableofcontents | 2.1.4. Extracción de ADN genómico .......................................................................... 25 | spa |
dc.description.tableofcontents | 2.1.7. Análisis estadístico .......................................................................................... 27 | spa |
dc.description.tableofcontents | 2.2. OBJETIVO ESPECÍFICO 2. Evaluar la tasa de crecimiento de L. maxima en función del tipo de luz y fuente de nitrógeno. .............................................. 28 | spa |
dc.description.tableofcontents | 2.2.1. Cepa de cianobacterias y medio de producción ......................... 28 | spa |
dc.description.tableofcontents | 2.2.2. Condiciones del experimento y diseño experimental. ..................... 28 | spa |
dc.description.tableofcontents | 2.2.3. Densidad óptica y peso seco. .............................................. 29 | spa |
dc.description.tableofcontents | 2.2.4. Análisis estadístico ............................................................ 30 | spa |
dc.description.tableofcontents | 2.3. OBJETIVO ESPECÍFICO 3. Determinar el contenido de pigmentos en L. maxima en función del tipo de luz y fuente de nitrógeno. ..................................... 30 | spa |
dc.description.tableofcontents | 2.3.1. Determinación de clorofila y carotenoides totales ..................... 30 | spa |
dc.description.tableofcontents | 2.3.2. Determinación de ficobiliproteínas ............................................ 31 | spa |
dc.description.tableofcontents | 2.3.3. Determinación de proteínas solubles ................................ 31 | spa |
dc.description.tableofcontents | 2.3.2. Análisis estadístico .................................................................. 32 | spa |
dc.description.tableofcontents | 3. RESULTADOS Y DISCUSIÓN ................................................................. 32 | spa |
dc.description.tableofcontents | 3.1. OBJETIVO ESPECÍFICO 1. Tipificar la cepa L. maxima mediante el marcador molecular ARNr 16S ...................................................................... 32 | spa |
dc.description.tableofcontents | 3.1.1. Concentración de ADN y relaciones de pureza A260/A280 y A260/A230. ........... 32 | spa |
dc.description.tableofcontents | 3.2. OBJETIVO ESPECÍFICO 2. Evaluar la tasa de crecimiento de L. maxima en función del tipo de luz y fuente de nitrógeno. ............................................. 37 | spa |
dc.description.tableofcontents | 3.2.1. Medición de la radiación fotosintéticamente activa (RFA) ................ 37 | spa |
dc.description.tableofcontents | 3.2.2. Densidad óptica (DO) y peso seco (PS). ................................... 37 | spa |
dc.description.tableofcontents | 3.3. OBJETIVO ESPECÍFICO 3. Determinar el contenido de pigmentos en L. maxima en función del tipo de luz y fuente de nitrógeno. ...................... 42 | spa |
dc.description.tableofcontents | 3.3.1. Clorofila (Chla y Chlb) y carotenoides totales. ............................... 42 | spa |
dc.description.tableofcontents | 3.3.2. Ficobiliproteínas (Ficocianina, aloficocianina, ficoeritrina) y proteínas solubles ... 45 | spa |
dc.description.tableofcontents | 3.4. Análisis de Componentes Principales .............................................. 69 | spa |
dc.description.tableofcontents | 4. CONCLUSIONES .................................................................... 73 | spa |
dc.description.tableofcontents | 5. RECOMENDACIONES ................................................................. 74 | spa |
dc.description.tableofcontents | 6. REFERENCIAS BIBLIOGRÁFICAS .................................................. 75 | spa |
dc.description.tableofcontents | 7. ANEXOS ....................................................................................... 85 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7649 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Agrícolas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería Agronómica | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Phycocyanin | spa |
dc.subject.keywords | Food safety | spa |
dc.subject.keywords | Pigments | spa |
dc.subject.keywords | Cyanobacteria | spa |
dc.subject.proposal | Ficocianina | spa |
dc.subject.proposal | Seguridad alimentaria | spa |
dc.subject.proposal | Pigmentos | spa |
dc.subject.proposal | Cianobacteria | spa |
dc.title | Respuestas fisiológicas y bioquímicas de Limnospira maxima a la exposición a diferentes espectros de luz y fuentes de nitrógeno | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abu Almakarem, A. S., Heilman, K. L., Conger, H. L., Shtarkman, Y. M., & Rogers, S. O. (2012). Extraction of DNA from plant and fungus tissues in situ. BMC Research Notes, 5, 1-11. | spa |
dcterms.references | AlFadhly, N. K. Z., Alhelfi, N., Altemimi, A. B., Verma, D. K., & Cacciola, F. (2022). Tendencies Affecting the Growth and Cultivation of Genus Spirulina: An Investigative Review on Current Trends. Plants, 11(22), 3063. https://doi.org/10.3390/plants11223063 | spa |
dcterms.references | AlFadhly, N. K. Z., Alhelfi, N., Altemimi, A. B., Verma, D. K., Cacciola, F., & Narayanankutty, A. (2022). Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules, 27(17), 1-40. https://doi.org/10.3390/molecules27175584 | spa |
dcterms.references | Arredondo, B. O., Voltolina, D., Zenteno, T., Arce, M., & Gómez, G. (2017). Métodos y herramientas analíticas en la evaluación de la biomasa microalgal (Segunda edición). Centro de Investigaciones Biológicas del Noroeste. | spa |
dcterms.references | Bachchhav, M. B., Kulkarni, M. V., & Ingale, A. G. (2017). Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode. Journal of The Institution of Engineers (India): Series E, 98, 41-45. | spa |
dcterms.references | Bahman, M., Aghanoori, M., Jalili, H., Bozorg, A., Danaee, S., Bidhendi, M. E., & Amrane, A. (2022). Effect of light intensity and wavelength on nitrogen and phosphate removal from municipal wastewater by microalgae under semi-batch cultivation. Environmental Technology, 43(9), 1352-1358. https://doi.org/10.1080/09593330.2020.1829087 | spa |
dcterms.references | Baurain, D., Renquin, L., Grubisic, S., Scheldeman, P., Belay, A., & Wilmotte, A. (2002). Remarkable Conservation of Internally Transcribed Spacer sequences of Arthrospira (“spirulina”) (Cyanophyceae, Cyanobacteria) strains from four continents and of recent and 30-year-old dried samples from Africa. Journal of Phycology, 38(2), 384-393. https://doi.org/10.1046/j.1529-8817.2002.01010.x | spa |
dcterms.references | Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419-435. | spa |
dcterms.references | Braune, S., Krüger-Genge, A., Kammerer, S., Jung, F., & Küpper, J.-H. (2021). Phycocyanin from Arthrospira platensis as Potential Anti-Cancer Drug: Review of In Vitro and In Vivo Studies. Life, 11(2), 1-14. https://doi.org/10.3390/life11020091 | spa |
dcterms.references | Bullerjahn, G. S., & Post, A. F. (1993). The Prochlorophytes: Are They More Than Just Chlorophyll a/b-Containing Cyanobacteria? Critical Reviews in Microbiology, 19(1), 43-59. https://doi.org/10.3109/10408419309113522 | spa |
dcterms.references | Chittora, D., Meena, M., Barupal, T., Swapnil, P., & Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 22, 1-10. https://doi.org/10.1016/j.bbrep.2020.100737 | spa |
dcterms.references | Ciferri, O. (1983). Spirulina, the edible microorganism. Microbiological Reviews, 47(4), 551-578. https://doi.org/10.1128/mr.47.4.551-578.1983 | spa |
dcterms.references | Crettaz, M. C. (2018). Estudio del crecimiento de Microcystis aeruginosa y de la producción de microcystina en cultivo de laboratorio [Tesis de doctorado, Universidad Nacional de la Plata]. 10.35537/10915/65910 | spa |
dcterms.references | Cuellar-Bermudez, S. P., Struyf, T., Versluys, M., Van Den Ende, W., Wattiez, R., & Muylaert, K. (2022). Quantification of extracellular and biomass carbohydrates by Arthrospira under nitrogen starvation at lab-scale. Algal Research, 68, 1-8. https://doi.org/10.1016/j.algal.2022.102907 | spa |
dcterms.references | De Mooij, T., De Vries, G., Latsos, C., Wijffels, R. H., & Janssen, M. (2016). Impact of light color on photobioreactor productivity. Algal Research, 15, 32-42. https://doi.org/10.1016/j.algal.2016.01.015 | spa |
dcterms.references | Deschoenmaeker, F., Facchini, R., Cabrera Pino, J. C., Bayon-Vicente, G., Sachdeva, N., Flammang, P., & Wattiez, R. (2016). Nitrogen depletion in Arthrospira sp. PCC 8005, an ultrastructural point of view. Journal of Structural Biology, 196(3), 385-393. https://doi.org/10.1016/j.jsb.2016.08.007 | spa |
dcterms.references | Deschoenmaeker, F., Facchini, R., Leroy, B., Badri, H., Zhang, C.-C., & Wattiez, R. (2014). Proteomic and cellular views of Arthrospira sp. PCC 8005 adaptation to nitrogen depletion. Microbiology, 160(6), 1224-1236. https://doi.org/10.1099/mic.0.074641-0 | spa |
dcterms.references | DiNicolantonio, J. J., Bhat, A. G., & OKeefe, J. (2020). Effects of spirulina on weight loss and blood lipids: A review. Open Heart, 7(1), 1-7. https://doi.org/10.1136/openhrt-2018-001003 | spa |
dcterms.references | Eusebio, N., Rego, A., Glasser, N. R., Castelo-Branco, R., Balskus, E. P., & Leão, P. N. (2021). Distribution and diversity of dimetal-carboxylate halogenases in cyanobacteria. BMC Genomics, 22(1), 1-15. https://doi.org/10.1186/s12864-021-07939-x | spa |
dcterms.references | Fais, G., Manca, A., Bolognesi, F., Borselli, M., Concas, A., Busutti, M., Broggi, G., Sanna, P., Castillo-Aleman, Y. M., Rivero-Jiménez, R. A., Bencomo-Hernandez, A. A., Ventura-Carmenate, Y., Altea, M., Pantaleo, A., Gabrielli, G., Biglioli, F., Cao, G., & Giannaccare, G. (2022). Wide Range Applications of Spirulina: From Earth to Space Missions. Marine Drugs, 20, 1-27. https://doi.org/10.3390/md20050299 | spa |
dcterms.references | Faldu, N., Patel, S., Vishwakarma, N. P., Singh, A. K., Patel, K., & Pandhi, N. (2014). Genetic Diversity of Marine and Fresh Water Cyanobacteria from the Gujarat State of India. Advances in Bioscience and Biotechnology, 5(14), 1061-1066. https://doi.org/10.4236/abb.2014.514121 | spa |
dcterms.references | FAO, FIDA, OMS, PMA, & UNICEF. (2022). Versión resumida de El estado de la seguridad alimentaria y la nutrición en el mundo. (Adaptación de las políticas alimentarias y agrícolas para hacer las dietas saludables más asequibles). https://doi.org/10.4060/cc0640es | spa |
dcterms.references | Furmaniak, M. A., Misztak, A. E., Franczuk, M. D., Wilmotte, A., Waleron, M., & Waleron, K. F. (2017). Edible Cyanobacterial Genus Arthrospira: Actual State of the Art in Cultivation Methods, Genetics, and Application in Medicine. Frontiers in Microbiology, 8, 1-21. https://doi.org/10.3389/fmicb.2017.02541 | spa |
dcterms.references | Gal, J. L., Cole, N. R., Eggett, D. L., & Johnson, S. M. (2023). Growth comparison of Arthrospira platensis in different vessels: Standard cylinder vs. Enhanced surface area at low light. Applied Phycology, 4(1), 1-14. https://doi.org/10.1080/26388081.2022.2125829 | spa |
dcterms.references | Ghaeni, M., & Roomiani, L. (2016). Review for Application and Medicine Effects of Spirulina, Spirulina platensis Microalgae. Journal of Advanced Agricultural Technologies, 3(2), 114-117. https://doi.org/10.18178/joaat.3.2.114-117 | spa |
dcterms.references | Gheda, S. F., Abo-Shady, A. M., Abdel-Karim, O. H., & Ismail, G. A. (2021). Antioxidant and Antihyperglycemic Activity of Arthrospira platensis (Spirulina platensis) Methanolic Extract: In vitro and In vivo Study. Egyptian Journal of Botany, 61(1), 71-93. https://doi.org/10.21608/ejbo.2020.27436.1482 | spa |
dcterms.references | Guiry, M., & Guiry, G. (2023). Registro Mundial de Especies Marinas. https://www.marinespecies.org/aphia.php?p=taxdetails&id=1327751 | spa |
dcterms.references | Hachicha, R., Elleuch, F., Ben Hlima, H., Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences, 12(4), 1-26. https://doi.org/10.3390/app12041924 | spa |
dcterms.references | Hadiyanto, H., Muslihuddin, M., Khoironi, A., Pratiwi, W. Z., Fadlilah, M. N., Muhammad, F., Afiati, N., & Dianratri, I. (2022). The effect of salinity on the interaction between microplastic polyethylene terephthalate (PET) and microalgae Spirulina sp. Environmental Science and Pollution Research, 29(5), 7877-7887. https://doi.org/10.1007/s11356-021-16286-z | spa |
dcterms.references | Huang, H., Liao, D., Pu, R., & Cui, Y. (2018). Quantifying the effects of spirulina supplementation on plasma lipid and glucose concentrations, body weight, and blood pressure. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Volume 11, 729-742. https://doi.org/10.2147/DMSO.S185672 | spa |
dcterms.references | Hudson, B. J. F., & Karis, I. G. (1974). The lipids of the alga Spirulina. Journal of the Science of Food and Agriculture, 25(7), 759-763. https://doi.org/10.1002/jsfa.2740250703 | spa |
dcterms.references | Jamal, A. F. M., Islam, I., Husna, A., Sakib, I., & Mony, R. (2020). Comparative growth analysis of Spirulina platensis using urea as a nitrogen substitute for NaNO3. International Journal of Business, Social and Scientific Research, 8(2), 76-80. | spa |
dcterms.references | Joseph, A., Aikawa, S., Sasaki, K., Matsuda, F., Hasunuma, T., & Kondo, A. (2014). Increased biomass production and glycogen accumulation in apcE gene deleted Synechocystis sp. PCC 6803. AMB Express, 4(17), 1-16. https://doi.org/10.1186/s13568-014-0017-z | spa |
dcterms.references | Jung, C. H. G., Braune, S., Waldeck, P., Küpper, J.-H., Petrick, I., & Jung, F. (2021). Morphology and Growth of Arthrospira platensis during Cultivation in a Flat-Type Bioreactor. Life, 11(6), 2-8. https://doi.org/10.3390/life11060536 | spa |
dcterms.references | Jung, C. H. G., Waldeck, P., Sykora, S., Braune, S., Petrick, I., Küpper, J.-H., & Jung, F. (2022). Influence of Different Light-Emitting Diode Colors on Growth and Phycobiliprotein Generation of Arthrospira platensis. Life, 12(6), 895. https://doi.org/10.3390/life12060895 | spa |
dcterms.references | Khan, Z., Bhadouria, P., & Bisen, P. (2005). Nutritional and Therapeutic Potential of Spirulina. Current Pharmaceutical Biotechnology, 6(5), 373-379. https://doi.org/10.2174/138920105774370607 | spa |
dcterms.references | Khatoon, H., Kok Leong, L., Abdu Rahman, N., Mian, S., Begum, H., Banerjee, S., & Endut, A. (2018). Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresource Technology, 249, 652-658. https://doi.org/10.1016/j.biortech.2017.10.052 | spa |
dcterms.references | Lafarga, T., Mayre, E., Echeverria, G., Viñas, I., Villaró, S., Acién-Fernández, F. G., Castellari, M., & Aguiló-Aguayo, I. (2019). Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods. LWT-Food Science and Technology, 115, 1-9. https://doi.org/10.1016/j.lwt.2019.108439 | spa |
dcterms.references | Lee, S.-H., Lee, J. E., Kim, Y., & Lee, S.-Y. (2016). The Production of High Purity Phycocyanin by Spirulina platensis Using Light-Emitting Diodes Based Two-Stage Cultivation. Applied Biochemistry and Biotechnology, 178(2), 382-395. https://doi.org/10.1007/s12010-015-1879-5 | spa |
dcterms.references | Li, T., Xu, J., Gao, B., Xiang, W., Li, A., & Zhang, C. (2016). Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Research, 16, 481-491. https://doi.org/10.1016/j.algal.2016.04.008 | spa |
dcterms.references | Li, X., Li, W., Zhai, J., & Wei, H. (2018). Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis. Bioresource Technology, 263, 555-561. https://doi.org/10.1016/j.biortech.2018.05.046 | spa |
dcterms.references | Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, 1, 1-8. | spa |
dcterms.references | Liu, Q., Yao, C., Sun, Y., Chen, W., Tan, H., Cao, X., Xue, S., & Yin, H. (2019). Production and structural characterization of a new type of polysaccharide from nitrogen-limited Arthrospira platensis cultivated in outdoor industrial-scale open raceway ponds. Biotechnology for Biofuels, 12(1), 131. https://doi.org/10.1186/s13068-019-1470-3 | spa |
dcterms.references | Luimstra, V. M., Schuurmans, J. M., Hellingwerf, K. J., Matthijs, H. C. P., & Huisman, J. (2020). Blue light induces major changes in the gene expression profile of the cyanobacterium Synechocystis sp. PCC 6803. Physiologia Plantarum, 170(1), 10-26. https://doi.org/10.1111/ppl.13086 | spa |
dcterms.references | Madhyastha, H. K., & Vatsala, T. M. (2007). Pigment production in Spirulina fussiformis in different photophysical conditions. Biomolecular Engineering, 24(3), 301-305. https://doi.org/10.1016/j.bioeng.2007.04.001 | spa |
dcterms.references | Mak, Y. M., & Ho, K. K. (1992). An improved method for the isolation of chromosomal DNA from various bacteria and cyanobacteria. Nucleic Acids Research, 20(15), 4101-4102. https://doi.org/10.1093/nar/20.15.4101 | spa |
dcterms.references | Martins, J., Leão, P., Ramos, V., & Vasconcelos, V. (2013). N-Terminal Protease Gene Phylogeny Reveals the Potential for Novel Cyanobactin Diversity in Cyanobacteria. Marine Drugs, 11(12), 4902-4916. https://doi.org/10.3390/md11124902 | spa |
dcterms.references | Matos, J., Cardoso, C., Bandarra, N. M., & Afonso, C. (2017). Microalgae as healthy ingredients for functional food: A review. Food & Function, 8(8), 1-42. https://doi.org/10.1039/C7FO00409E | spa |
dcterms.references | Milia, M., Corrias, F., Addis, P., Chini Zitelli, G., Cicchi, B., Torzillo, G., Andreotti, V., & Angioni, A. (2022). Influence of Different Light Sources on the Biochemical Composition of Arthrospira spp. Grown in Model Systems. Foods, 11(3), Article 3. https://doi.org/10.3390/foods11030399 | spa |
dcterms.references | Mirhosseini, N., Cano-Europa, E., Davarnejad, R., Hallajisani, A., Franco-Colín, M., Tavakoli, O., & Blas-Valdivia, V. (2021). Cultivations of Arthrospira maxima (Spirulina) using ammonium sulfate and sodium nitrate as an alternative nitrogen sources. Iranian Journal of Fisheries Sciences, 20(2). https://doi.org/10.22092/ijfs.2021.351071.0 | spa |
dcterms.references | Möllers, K. B., Cannella, D., Jørgensen, H., & Frigaard, N.-U. (2014). Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnology for Biofuels, 7(1), 64. https://doi.org/10.1186/1754-6834-7-64 | spa |
dcterms.references | Moradi, S., Ziaei, R., Foshati, S., Mohammadi, H., Nachvak, S. M., & Rouhani, M. H. (2019). Effects of Spirulina supplementation on obesity: A systematic review and meta-analysis of randomized clinical trials. Complementary Therapies in Medicine, 47, 1-28. https://doi.org/10.1016/j.ctim.2019.102211 | spa |
dcterms.references | Morin, N., Vallaeys, T., Hendrickx, L., Natalie, L., & Wilmotte, A. (2010). An efficient DNA isolation protocol for filamentous cyanobacteria of the genus Arthrospira. Journal of Microbiological Methods, 80(2), 148-154. https://doi.org/10.1016/j.mimet.2009.11.012 | spa |
dcterms.references | Mousavi, M., Mehrzad, J., Najafi, M. F., Zhiani, R., & Shamsian, S. A. A. (2022). Nitrate and ammonia: Two key nitrogen sources for biomass and phycocyanin production by Arthrospira (Spirulina) platensis. Journal of Applied Phycology, 34(5), 2271-2281. https://doi.org/10.1007/s10811-021-02664-0 | spa |
dcterms.references | Nowicka-Krawczyk, P., Mühlsteinová, R., & Hauer, T. (2019). Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-018-36831-0 | spa |
dcterms.references | Ogbonda, K. H., Aminigo, R. E., & Abu, G. O. (2007). Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource Technology, 98(11), 2207-2211. https://doi.org/10.1016/j.biortech.2006.08.028 | spa |
dcterms.references | Ojit, S. K., Indrama, T., Gunapati, O., Avijeet, S. O., Subhalaxmi, S. A., Silvia, C., Indira, D. W., Romi, K., Minerva, S., Thadoi, D. A., Tiwari, O. N., & Sharma, G. D. (2015). The response of phycobiliproteins to light qualities in Anabaena circinalis. Journal of Applied Biology & Biotechnology, 3, 1-6. https://doi.org/10.7324/JABB.2015.3301 | spa |
dcterms.references | Ortiz-Moreno, M. L., Cárdenas-Poblador, J., Agredo, J., & Solarte-Murillo, L. V. (2020). Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum. Universitas Scientiarum, 25(1), 113-148. https://doi.org/10.11144/Javeriana.SC25-1.mte | spa |
dcterms.references | Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), 422-443. https://doi.org/10.1016/j.biotechadv.2019.02.010 | spa |
dcterms.references | Park, J., & Dinh, T. B. (2019). Contrasting effects of monochromatic LED lighting on growth, pigments and photosynthesis in the commercially important cyanobacterium Arthrospira maxima. Bioresource Technology, 291, 1-7. https://doi.org/10.1016/j.biortech.2019.121846 | spa |
dcterms.references | Pelagatti, M., Mori, G., Falsini, S., Ballini, R., Lazzara, L., & Papini, A. (2023). Blue and Yellow Light Induce Changes in Biochemical Composition and Ultrastructure of Limnospira fusiformis (Cyanoprokaryota). Microorganisms, 11(5), 1236. https://doi.org/10.3390/microorganisms11051236 | spa |
dcterms.references | Pineda-Rodriguez, Y. Y., Pompelli, M. F., Jarma-Orozco, A., Jaraba-Navas, J. D. D., Herazo-Cárdenas, D. S., Vallejo-Isaza, A., & Rodriguez-Paez, L. A. (2023). Limnospira maxima Strain SISCA 16S Ribosomal RNA Gene, Partial Sequence. En National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/nuccore/OR195505 | spa |
dcterms.references | Prates, D. da F., Radmann, E. M., Duarte, J. H., Morais, M. G. de, & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256, 38-43. https://doi.org/10.1016/j.biortech.2018.01.122 | spa |
dcterms.references | Ragaza, J. A., Hossain, Md. S., Meiler, K. A., Velasquez, S. F., & Kumar, V. (2020). A review on Spirulina: Alternative media for cultivation and nutritive value as an aquafeed. Reviews in Aquaculture, 12(4), 2371-2395. | spa |
dcterms.references | Rajasekaran, C., Ajeesh, C. P. M., Balaji, S., Shalini, M., SIVA, R., Das, R., Fulzele, D. P., & Kalaivani, T. (2016). Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains. Walailak Journal of Science and Technology (WJST), 13(1), 67-75. | spa |
dcterms.references | Ramanna, L., Rawat, I., & Bux, F. (2017). Light enhancement strategies improve microalgal biomass productivity. Renewable and Sustainable Energy Reviews, 80, 765-773. https://doi.org/10.1016/j.rser.2017.05.202 | spa |
dcterms.references | Ramos, V. M. C., Castelo-Branco, R., Leão, P. N., Martins, J., Carvalhal-Gomes, S., Sobrinho da Silva, F., Mendonça Filho, J. G., & Vasconcelos, V. M. (2017). Cyanobacterial Diversity in Microbial Mats from the Hypersaline Lagoon System of Araruama, Brazil: An In-depth Polyphasic Study. Frontiers in Microbiology, 8, 1-16. https://doi.org/10.3389/fmicb.2017.01233 | spa |
dcterms.references | Ravindran, B., Gupta, S., Cho, W.-M., Kim, J., Lee, S., Jeong, K.-H., Lee, D., & Choi, H.-C. (2016). Microalgae Potential and Multiple Roles—Current Progress and Future Prospects—An Overview. Sustainability, 8, 1-16. https://doi.org/10.3390/su8121215 | spa |
dcterms.references | Sanger, F., & Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94, 441-448. | spa |
dcterms.references | Sano, H., Wakui, A., Kawachi, M., Washio, J., Abiko, Y., Mayanagi, G., Yamaki, K., Tanaka, K., Takahashi, N., & Sato, T. (2021). Profiling system of oral microbiota utilizing polymerase chain reaction-restriction fragment length polymorphism analysis. Journal of Oral Biosciences, 63, 292-297. | spa |
dcterms.references | Satoh, S., Ikeuchi, M., Mimuro, M., & Tanaka, A. (2001). Chlorophyll b Expressed in Cyanobacteria Functions as a Light-harvesting Antenna in Photosystem I through Flexibility of the Proteins. Journal of Biological Chemistry, 276(6), 4293-4297. https://doi.org/10.1074/jbc.M008238200 | spa |
dcterms.references | Saxena, R., Rodríguez-Jasso, R. M., Chávez-Gonzalez, M. L., Aguilar, C. N., Quijano, G., & Ruiz, H. A. (2022). Strategy Development for Microalgae Spirulina platensis Biomass Cultivation in a Bubble Photobioreactor to Promote High Carbohydrate Content. Fermentation, 8(8), 374. https://doi.org/10.3390/fermentation8080374 | spa |
dcterms.references | Sendersky, E., Kozer, N., Levi, M., Moizik, M., Garini, Y., Shav‐Tal, Y., & Schwarz, R. (2015). The proteolysis adaptor, NblA, is essential for degradation of the core pigment of the cyanobacterial light‐harvesting complex. The Plant Journal, 83(5), 845-852. https://doi.org/10.1111/tpj.12931 | spa |
dcterms.references | Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Frontiers in Microbiology, 7, 1-19. https://doi.org/10.3389/fmicb.2016.00529 | spa |
dcterms.references | Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157-171. https://doi.org/10.1016/j.tifs.2017.09.010 | spa |
dcterms.references | Tandeau, N., & Houmard, J. (1993). Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanisms. FEMS Microbiology Letters, 104(1), 119-189. https://doi.org/10.1016/0378-1097(93)90506-W | spa |
dcterms.references | Tayebati, H., Pajoum Shariati, F., Soltani, N., & Sepasi Tehrani, H. (2021). Effect of various light spectra on amino acids and pigment production of Arthrospira platensis using flat-plate photobioreactor. Preparative Biochemistry & Biotechnology, 1-12. https://doi.org/10.1080/10826068.2021.1941102 | spa |
dcterms.references | Thevarajah, B., Nishshanka, G. K. S. H., Premaratne, M., Nimarshana, P. H. V., Nagarajan, D., Chang, J.-S., & Ariyadasa, T. U. (2022). Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochemical Engineering Journal, 185, 1-8. https://doi.org/10.1016/j.bej.2022.108541 | spa |
dcterms.references | Tomaselli, L., Palandri, R. M., & Tredici, M. R. (1996). On the correct use of the Spirulina designation. Algological Studies, 83, 539-548. https://doi.org/10.1127/algol_stud/83/1996/539 | spa |
dcterms.references | Turpin, P. J. F. (1827). Spirulina oscillarioide. Dictionnaire des sciencesnaturelles, 50, 309-310. | spa |
dcterms.references | Vachard, D. (2021). Cyanobacteria. En Encyclopedia of Geology (pp. 446-460). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11843-3 | spa |
dcterms.references | Villagómez-Flores, E., Hinojosa-Espinosa, O., & Villaseñor, J. L. (2018). El género Stevia (Eupatorieae, Asteraceae) en el estado de Morelos, México. Acta Botanica Mexicana, 125, 7-36. https://doi.org/10.21829/abm125.2018.1315 | spa |
dcterms.references | Wan, D., Wu, Q., & Kuča, K. (2016). Spirulina. En Nutraceuticals (pp. 569-583). Elsevier. https://doi.org/10.1016/B978-0-12-802147-7.00042-5 | spa |
dcterms.references | Wan, D., Wu, Q., & Kuča, K. (2021). Chapter 57—Spirulina. En R. C. Gupta, R. Lall, & A. Srivastava (Eds.), Nutraceuticals (Second Edition) (pp. 959-974). Academic Press. https://doi.org/10.1016/B978-0-12-821038-3.00057-4 | spa |
dcterms.references | Wegener, K. M., Singh, A. K., Jacobs, J. M., Elvitigala, T., Welsh, E. A., Keren, N., Gritsenko, M. A., Ghosh, B. K., Camp, D. G., Smith, R. D., & Pakrasi, H. B. (2010). Global Proteomics Reveal an Atypical Strategy for Carbon/Nitrogen Assimilation by a Cyanobacterium Under Diverse Environmental Perturbations. Molecular & Cellular Proteomics, 9(12), 2678-2689. https://doi.org/10.1074/mcp.M110.000109 | spa |
dcterms.references | Wellburn, A. R. (1994). The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology, 144(3), 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2 | spa |
dcterms.references | Wilfinger, W. W., Mackey, K., & Chomczynski, P. (1997). Effect of pH and Ionic Strength on the Spectrophotometric Assessment of Nucleic Acid Purity. BioTechniques, 22(3), 474-481. https://doi.org/10.2144/97223st01 | spa |
dcterms.references | Wittrock and Nordstedt (1844) Algae aquae dulcia exiccata, fascicule XIV n° 679. In: Descriptiones systematice dispositae, p 59 | spa |
dcterms.references | Xu, H., Vavilin, D., & Vermaas, W. (2001). Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria. Proceedings of the National Academy of Sciences, 98(24), 14168-14173. https://doi.org/10.1073/pnas.251530298 | spa |
dcterms.references | Yeh, W.-J., Chen, G.-Y., & Chen, Y.-C. (2004). Identification of a Blue-Green Alga Arthrospira maxima Using Internal Transcribed Spacer Gene Sequence. Acta Oceanographica Taiwanica, 42(1), 25-37. | spa |
dcterms.references | Yin, C., Daoust, K., Young, A., Tebbs, E., & Harper, D. (2017). Tackling community undernutrition at lake Bogoria, Kenya: The potential of spirulina (Arthrospira fusiformis) as a food supplement. African Journal of Food, Agriculture, Nutrition and Development, 17(1), 11603-11615. https://doi.org/10.18697/ajfand.77.15440 | spa |
dcterms.references | Zarrouk, C. (1966). Contribution a l’etude d’une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur la croissance et la photosynthese de Spirulina mixima. https://cir.nii.ac.jp/crid/1571698599087861632 | spa |
dcterms.references | Zhao, F., Zhang, X., Liang, C., Wu, J., Bao, Q., & Qin, S. (2006). Genome-wide analysis of restriction-modification system in unicellular and filamentous cyanobacteria. Physiological Genomics, 24(3), 181-190. https://doi.org/10.1152/physiolgenomics.00255.2005 | spa |
dcterms.references | Zittelli, G., Mugnai, G., Milia, M., Cicchi, B., Silva, A. M., Angioni, A., Addis, P., & Torzillo, G. (2022). Effects of blue, orange and white lights on growth, chlorophyll fluorescence, and phycocyanin production of Arthrospira platensis cultures. Algal Research, 61, 1-9. https://doi.org/10.1016/j.algal.2021.102583 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: