Publicación: Estudio por acoplamiento molecular del sitio de unión de potenciales inhibidores de Niemann Pick C1 involucrada en la transmisión del virus del Ébola
dc.contributor.advisor | Ensuncho Muñoz, Adolfo Enrique | spa |
dc.contributor.author | Bravo Rubio, Yarelys Patricia | |
dc.contributor.educationalvalidator | Jesus Manuel López Ochoa | |
dc.date.accessioned | 2022-07-22T03:46:32Z | |
dc.date.available | 2022-07-22T03:46:32Z | |
dc.date.issued | 2022-07-21 | |
dc.description.abstract | In this work, potential inhibitors of Ebola virus transmission were designed by analyzing the binding site of the Niemann Pick C1 protein, by means of molecular docking. For this investigation, a study of the binding site of the protein with cholesterol was carried out using the programs protein plus and CASTp; Following this, the validation of the method was carried out using the Ligplot + and USCF Chimera software. Subsequently, molecules from other investigations were taken to study their interactions and based on this, new molecules were designed to which molecular coupling was applied to be able to choose the molecules with the best binding energies and finally a study was carried out on this selected group. Of the pharmacokinetic properties by means of Swiss ADME. Structures 18(a) and 22(b) presented the best results in the bioavailability radar, both present a high gastrointestinal absorption, comply with the Lipinski rules and their values are within the established parameters, thus considering these molecules with great potential as inhibitors of the Ebola virus. | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.resumen | En este trabajo se diseñaron potenciales inhibidores de la transmisión del virus del Ébola mediante el análisis del sitio de unión de la proteína Niemann Pick C1, por medio de acoplamiento molecular. Para esta investigación se hizo un estudio del sitio de unión de la proteína con el colesterol usando los programas protein plus y CASTp; seguido a esto se realizó la validación del método utilizando los softwares Ligplot + y USCF Chimera. Posteriormente, se tomaron moléculas de otras investigaciones para estudiar sus interacciones y con base a esto se diseñaron nuevas moléculas a las cuales se les aplicó acoplamiento molecular para poder escoger las moléculas con mejores energías de unión y finalmente a este seleccionado grupo se les realizó un estudio de las propiedades farmacocinéticas por medio de Swiss ADME. Las estructuras 18 (a) y 22(b) presentaron los mejores resultados en el radar de biodisponibilidad, ambas presentan una alta absorción gastrointestinal, cumplen con las reglas de Lipinski y sus valores están dentro de los parámetros establecidos, considerándose así estas moléculas con gran potencial como inhibidores del Virus del Èbola. | spa |
dc.description.tableofcontents | 1. Introducción.....................................................................................................................................10 | spa |
dc.description.tableofcontents | 2. Antecedentes...................................................................................................................................12 | spa |
dc.description.tableofcontents | 2.1 Aspectos Bioquímicos................................................................................................................13 | spa |
dc.description.tableofcontents | 2.1.1 Filovirus.................................................................................................................................................13 | spa |
dc.description.tableofcontents | 2.1.2 El EBOV.................................................................................................................................................13 | spa |
dc.description.tableofcontents | 2.1.3 Proteína Niemann pick C1 (NPC1).......................................................................................14 | spa |
dc.description.tableofcontents | 2.1.4 Reglas de Lipinski................................................................................................................15 | spa |
dc.description.tableofcontents | 2.1.5 Propiedades farmacocinéticas (ADME).........................................................................16 | spa |
dc.description.tableofcontents | 2.1.6 Toxicidad..............................................................................................................................................17 | spa |
dc.description.tableofcontents | 2.1.7 Dosis tóxicas y clases de toxicidad....................................................................................18 | spa |
dc.description.tableofcontents | 2.2 Aspectos computacionales....................................................................................................18 | spa |
dc.description.tableofcontents | 2.2.1 Química Computacional..........................................................................................................18 | spa |
dc.description.tableofcontents | 2.2.2 Mecánica Molecular (MM).............................................................................................19 | spa |
dc.description.tableofcontents | 2.2.3 Campos de fuerza universales (UFF).....................................................................20 | spa |
dc.description.tableofcontents | 2.2.4 Diseño de fármacos asistido por computadora (DiFAC)..........................20 | spa |
dc.description.tableofcontents | 2.2.5 Acoplamiento Molecular.................................................................................................21 | spa |
dc.description.tableofcontents | 2.2.6 Paquete computacional Autodock Vina..............................................................23 | spa |
dc.description.tableofcontents | 3. Objetivos..............................................................................................................................................25 | spa |
dc.description.tableofcontents | 3.1 Objetivo General.............................................................................................................................25 | spa |
dc.description.tableofcontents | 3.2 Objetivo Específico........................................................................................................................25 | spa |
dc.description.tableofcontents | 4. Metodología.......................................................................................................................................25 | spa |
dc.description.tableofcontents | 4.1 Construcción y optimización de la geometría de los ligantes........................25 | spa |
dc.description.tableofcontents | 4.2 Acondicionamiento del dominio de la proteína NPC1.........................................26 | spa |
dc.description.tableofcontents | 4.3 Redocking molecular (Estudio de validación)...........................................................26 | spa |
dc.description.tableofcontents | 4.4 Acoplamiento molecular .........................................................................................................26 | spa |
dc.description.tableofcontents | 4.5 Análisis en Ligplus.........................................................................................................................28 | spa |
dc.description.tableofcontents | 4.6 Estudio ADME de las moléculas propuestas...............................................................28 | spa |
dc.description.tableofcontents | 4.7 Estudio teórico del riesgo de toxicidad de las estructuras propuestas (Mutagenicidad, Tumorigenicidad, Irritación y Reproducción)............................................................................................................................................28 | spa |
dc.description.tableofcontents | 5. Resultados y discusión................................................................................................................28 | spa |
dc.description.tableofcontents | 5.1 Construcción y optimización de la geometría de los ligantes.........................28 | spa |
dc.description.tableofcontents | 5.2 Acondicionamiento del dominio de la proteína NPC1..........................................32 | spa |
dc.description.tableofcontents | 5.3 Validación del método.................................................................................................................33 | spa |
dc.description.tableofcontents | 5.4 Modelado de acoplamiento molecular de la NPC1 y los ligandos.................35 | spa |
dc.description.tableofcontents | 5.5 Análisis de interacciones............................................................................................................38 | spa |
dc.description.tableofcontents | 5.6 Estudio de las propiedades farmacocinéticas (ADME)..........................................41 | spa |
dc.description.tableofcontents | 5.7 Estudio teórico del riesgo de toxicidad de las estructuras propuestas......46 | spa |
dc.description.tableofcontents | 6. Conclusiones y recomendaciones........................................................................................47 | spa |
dc.description.tableofcontents | 6.1 Conclusiones........................................................................................................................................47 | spa |
dc.description.tableofcontents | 6.2 Recomendaciones...........................................................................................................................48 | spa |
dc.description.tableofcontents | A. Anexos ...................................................................................................................................................48 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6150 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad De Córdoba | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Química | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Docking molecular | eng |
dc.subject.keywords | Ebola | eng |
dc.subject.keywords | Drugs | eng |
dc.subject.keywords | Inhibitors | eng |
dc.subject.keywords | Niemann Pick C1 | eng |
dc.subject.proposal | Acoplamiento Molecular | spa |
dc.subject.proposal | Ébola | spa |
dc.subject.proposal | Fármacos | spa |
dc.subject.proposal | Inhibidores | spa |
dc.subject.proposal | Niemann pick C1 | spa |
dc.title | Estudio por acoplamiento molecular del sitio de unión de potenciales inhibidores de Niemann Pick C1 involucrada en la transmisión del virus del Ébola | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Agencia para Sustancias Tóxicas y el Registro de Enfermedades (ATSDR) (2019) Módulo I - Introducción a la toxicología. Recuperado de https://www.atsdr.cdc.gov/es/training/toxicology_curriculum/modules/1/es_lecturenotes.html | spa |
dcterms.references | Ahmad, N., Farman, A., Badshah, S. L., Ur Rahman, A., Ur Rashid, H., & Khan, K. (2017). Molecular modeling, simulation and docking study of ebola virus glycoprotein. Journal of Molecular Graphics & Modelling, 72, 266-271. https://doi.org/10.1016/j.jmgm.2016.12.010 | spa |
dcterms.references | Ballón Paucara, W. G., & Grados Torrez, R. E. (2019). Acomplamiento molecular: Criterios prácticos para la selección de ligandos biológicamente activos e identificación de nuevos blancos terapéuticos. Revista CON-CIENCIA, 7(2), 55-72. | spa |
dcterms.references | Banerjee, P., Eckert, A., Schrey, A. & Preissner, R. (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Research, Volume 46, Issue W1, Pages W257–W263, https://doi.org/10.1093/nar/gky318 | spa |
dcterms.references | Beckham, J. (2014). Boletín de RCSB PDB: Rincón de la educación. https://cdn.rcsb.org/rcsb-pdb/general_information/news_publications/newsletters/2014q2/corner.html | spa |
dcterms.references | Bessières, M., Plebanek, E., Chatterjee, P., Shrivastava-Ranjan, P., Flint, M., Spiropoulou, C. F., Warszycki, D., Bojarski, A. J., Roy, V., & Agrofoglio, L. A. (2021). Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles as inhibitors of ebola virus infection. European Journal of Medicinal Chemistry, 214, 113211. https://doi.org/10.1016/j.ejmech.2021.113211 | spa |
dcterms.references | Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717 | spa |
dcterms.references | Derakhshan, M. H. (2021). The stability analysis and numerical simulation based on Sinc Legendre collocation method for solving a fractional epidemiological model of the Ebola virus. Partial Differential Equations in Applied Mathematics, 3, 100037. https://doi.org/10.1016/j.padiff.2021.100037 | spa |
dcterms.references | Edwards, M. R., & Basler, C. F. (2019). Current status of small molecule drug development for Ebola virus and other filoviruses. Current Opinion in Virology, 35, 42-56. https://doi.org/10.1016/j.coviro.2019.03.001 | spa |
dcterms.references | Feldmann, H., & Geisbert, T. W. (2011). Ebola haemorrhagic fever. Lancet (London, England), 377(9768), 849-862. https://doi.org/10.1016/S0140-6736(10)60667-8 | spa |
dcterms.references | Gong, X., Qian, H., Zhou, X., Wu, J., Wan, T., Cao, P., Huang, W., Zhao, X., Wang, X., Wang, P., Shi, Y., Gao, G. F., Zhou, Q., & Yan, N. (2016). Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection. Cell, 165(6), 1467-1478. https://doi.org/10.1016/j.cell.2016.05.022 | spa |
dcterms.references | Igarashi, M., Hirokawa, T., Takadate, Y., & Takada, A. (2021). Structural Insights into the Interaction of Filovirus Glycoproteins with the Endosomal Receptor Niemann-Pick C1: A Computational Study. Viruses, 13(5), 913. https://doi.org/10.3390/v13050913 | spa |
dcterms.references | Kwon, H. J., Abi-Mosleh, L., Wang, M. L., Deisenhofer, J., Goldstein, J. L., Brown, M. S., & Infante, R. E. (2009). Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell, 137(7), 1213-1224. https://doi.org/10.1016/j.cell.2009.03.049 | spa |
dcterms.references | Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0 | spa |
dcterms.references | Marques, H., & Brown, K. (2002). Molecular mechanics and molecular dynamics simulations of porphyrins, metalloporphyrins, heme proteins and cobalt corrinoids. Coordination Chemistry Reviews, 225, 123-158. https://doi.org/10.1016/S0010-8545(01)00411-8 | spa |
dcterms.references | Mirza, M. U., Vanmeert, M., Ali, A., Iman, K., Froeyen, M., & Idrees, M. (2019). Perspectives towards antiviral drug discovery against Ebola virus. Journal of medical virology, 91(12), 2029–2048. https://doi.org/10.1002/jmv.25357 | spa |
dcterms.references | Mittler, E., Alkutkar, T., Jangra, R. K., & Chandran, K. (2021). Direct Intracellular Visualization of Ebola Virus-Receptor Interaction by In Situ Proximity Ligation. mBio, 12(1), e03100-20. https://doi.org/10.1128/mBio.03100-20 | spa |
dcterms.references | Morales-Tenorio, M., Ginex, T., Cuesta-Geijo, M. Á., Campillo, N. E., Muñoz-Fontela, C., Alonso, C., Delgado, R., & Gil, C. (2021). Potential pharmacological strategies targeting the Niemann-Pick C1 receptor and Ebola virus glycoprotein interaction. European journal of medicinal chemistry, 223, 113654. https://doi.org/10.1016/j.ejmech.2021.113654 | spa |
dcterms.references | Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256 | spa |
dcterms.references | Muñoz, P. (2019). Una amenaza latente para la humanidad. Revista chilena de infectología, 36(1), 7-8. https://doi.org/10.4067/S0716-10182019000100007 | spa |
dcterms.references | Pérez, A. (s. f.). 2.0 CONSIDERACIONES GENERALES. 31. Reisfeld, B., & Mayeno, A. N. (2012). What is computational toxicology?. Methods in molecular biology (Clifton, N.J.), 929, 3–7. https://doi.org/10.1007/978-1-62703-050-2_1 | spa |
dcterms.references | Saldívar-González, F., Prieto-Martínez, F. D., & Medina-Franco, J. L. (2017). Descubrimiento y desarrollo de fármacos: Un enfoque computacional. Educación Química, 28(1), 51-58. https://doi.org/10.1016/j.eq.2016.06.002 | spa |
dcterms.references | Salata, C., Calistri, A., Alvisi, G., Celestino, M., Parolin, C., & Palù, G. (2019). Ebola Virus Entry: From Molecular Characterization to Drug Discovery. Viruses, 11(3), 274. https://doi.org/10.3390/v11030274 | spa |
dcterms.references | Silbergeld, E. (sf) Toxicología. Enciclopedia de salud y seguridad en el trabajo. Recuperado de https://www.insst.es/documents/94886/161958/Cap%C3%ADtulo+33.+Toxicolog%C3%ADa | spa |
dcterms.references | Sokolova, A. S., Yarovaya, O. I., Zybkina, A. V., Mordvinova, E. D., Shcherbakova, N. S., Zaykovskaya, A. V., Baev, D. S., Tolstikova, T. G., Shcherbakov, D. N., Pyankov, O. V., Maksyutov, R. A., & Salakhutdinov, N. F. (2020). Monoterpenoid-based inhibitors of filoviruses targeting the glycoprotein-mediated entry process. European Journal of Medicinal Chemistry, 207, 112726. https://doi.org/10.1016/j.ejmech.2020.112726 | spa |
dcterms.references | Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334 | spa |
dcterms.references | Valero-Cedeño, N. J., Mina-Ortiz, J. B., Veliz-Castro, T. I., Merchán-Villafuerte, K. M., & Perozo-Mena, A. J. (2020). COVID-19: La nueva pandemia con muchas lecciones y nuevos retos. Revisión Narrativa. Kasmera, 48(1). https://www.redalyc.org/journal/3730/373064123017/movil/ | spa |
dcterms.references | Valles-Sánchez, A., & Rosales-Marines, L. (2014). Métodos y Usos de la Química Computacional Computational Chemistry Methods and its Applications. | spa |
dcterms.references | Velásquez, M., Drosos, J., Gueto, C., Márquez, J., & Vivas-Reyes, R. (2013). Método acoplado Autodock-PM6 para seleccionar la mejor pose en estudios de acoplamiento molecular. Revista Colombiana de Química, 42(1), 101-124. | spa |
dcterms.references | Wang, H., Shi, Y., Song, J., Qi, J., Lu, G., Yan, J., & Gao, G. F. (2016). Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1. Cell, 164(1-2), 258-268. https://doi.org/10.1016/j.cell.2015.12.044 | spa |
dcterms.references | Young, D. C. (2002). Computational chemistry: A practical guide for applying techniques to real world problems. http://onlinelibrary.wiley.com/book/10.1002/0471220655 | spa |
dcterms.references | Zapata, S., & Moneriz, C. (2016). AVANCES CIENTÍFICOS EN LAS ESTRATEGIAS TERAPÉUTICAS CONTRA LA ENFERMEDAD POR VIRUS DEL ÉBOLA. Biosalud, 15(2), 87-105. https://doi.org/10.17151/biosa.2016.15.2.9 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: