Publicación:
Mercurio (Hg), Plomo (Pb) y Arsénico (As) y su relación con la masa corporal en Dendrocygna autumnalis, Platalea ajaja y Phalacrocorax brasilianus en la región de La Mojana, Colombia

dc.contributor.advisorMarrugo Negrete, José Luisspa
dc.contributor.authorBuelvas Soto, Jorge Andrésspa
dc.date.accessioned2020-11-04T20:43:25Zspa
dc.date.available2020-11-04T20:43:25Zspa
dc.date.issued2020-11-04spa
dc.description.abstractLa contaminación por metales pesados es un problema creciente a nivel mundial, puesto que a diferencia de los compuestos orgánicos, estos no pueden ser biodegradados, lo que conlleva a su bioacumulación y biomagnificación en los compartimientos ambientales y en los organismos. Este tipo de contaminación trae consigo alteraciones en la estructura de los ecosistemas y origina cambios morfológicos en los organismos.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Ambientalesspa
dc.description.modalityTrabajo de Investigación/Extensiónspa
dc.description.tableofcontentsRESUMEN ………………………………………………………………………………............................. 11spa
dc.description.tableofcontentsABSTRACT ...................................................................................................................... 12spa
dc.description.tableofcontents1. INTRODUCCIÓN........................................................................................................ 13spa
dc.description.tableofcontents2. MARCO TEÓRICO ......................................................................................................16spa
dc.description.tableofcontents2.1 Metales pesados ................................................................................................... 16spa
dc.description.tableofcontents2.2 Biomagnificación de metales pesados ………………………………………................. 16spa
dc.description.tableofcontents2.3 Toxicología de metales pesados en ecosistemas acuáticos ……………….........18spa
dc.description.tableofcontents2.4 Toxicología de metales pesados en aves .......................................................... 19spa
dc.description.tableofcontents2.5 Efecto de metales pesados (Hg, Pb y As) en la masa corporal de aves …... 20spa
dc.description.tableofcontents2.6 Muestras de aves para análisis de metales pesados …………………................ 22spa
dc.description.tableofcontents3. OBJETIVOS ................................................................................................................ 23spa
dc.description.tableofcontents3.1 General .................................................................................................................... 23spa
dc.description.tableofcontents3.2 Específicos .............................................................................................................. 23spa
dc.description.tableofcontents4. METODOLOGÍA ........................................................................................................ 24spa
dc.description.tableofcontents4.1 Área de estudio....................................................................................................... 24spa
dc.description.tableofcontents4.2 Métodos ................................................................................................................. 25spa
dc.description.tableofcontents5. RESULTADOS ........................................................................................................... 29spa
dc.description.tableofcontents5.1 Concentraciones de Hg, Pb y As en aves capturadas ..................................... 29spa
dc.description.tableofcontents5.2 Correlación entre las concentraciones de Hg, Pb y As con la masa corporal de aves capturadas .......................................................................................................... 36spa
dc.description.tableofcontents5.2.1 Correlaciones entre las concentraciones de Hg, Pb y As en sangre y plumas de las aves capturadas …………………..……............………………………...……………......... 37spa
dc.description.tableofcontents5.3 Comparaciones entre las medias de las concentraciones de Hg, Pb y As en aves capturadas ………………………………………….....................……...……………………... 38spa
dc.description.tableofcontents6. DISCUSIÓN ……………........................……………………………………………………………… 43spa
dc.description.tableofcontents7. CONCLUSIONES ……………………………………………………………………......................... 55spa
dc.description.tableofcontents8. BIBLIOGRAFÍA .......................................................................................................... 56spa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3491spa
dc.language.isospaspa
dc.publisherUniversidad de Córdobaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.programMaestría en Ciencias Ambientalesspa
dc.relation.referencesAbbasi, N. A., Jaspers, V. L. B., Chaudhry, M. J. I., Ali, S., & Malik, R. N. (2015). Influence of taxa, trophic level, and location on bioaccumulation of toxic metals in bird’s feathers: A preliminary biomonitoring study using multiple bird species from Pakistan. Chemosphere, 120, 527–537. https://doi.org/10.1016/j.chemosphere.2014.08.054spa
dc.relation.referencesAckerman, J. T., Eagles-Smith, C. A., Herzog, M. P., Hartman, C. A., Peterson, S. H., Evers, D. C., … Bryan, C. E. (2016). Avian mercury exposure and toxicological risk across western North America: A synthesis. Science of The Total Environment, 568, 749–769. https://doi.org/10.1016/j.scitotenv.2016.03.071spa
dc.relation.referencesAguilera, D. M. M. (2004). La Mojana: riqueza natural y potencial económico. Revista Del Banco De La República, 77(925), 44-106.spa
dc.relation.referencesAkyengo, O., Inalegwu, B., Ogo, O. A., & Jato, J. A. (2019). Heavy Metal Bioaccumulation Potential of Liquid Habitat from River Challawa to Tillapia zilli. International Journal of Life Sciences Research. Vol. 7, Issue 3, pp: (100-109), Month: July - September.spa
dc.relation.referencesAlarcón, P. A. E., Macchi, P. J., Trejo, A., & Alonso, M. F. (2012). Diet of the Neotropical Cormorant (Phalacrocorax brasilianus) in a Patagonian Freshwater Environment Invaded by Exotic Fish. Waterbirds, 35(1), 149–153. https://doi.org/10.1675/063.035.0115spa
dc.relation.referencesAlvárez, C. R., Moreno, M. J., Alonso, L. L., Gómara, B., Bernardo, F. J. G., MartínDoimeadios, R. C. R., & González, M. J. (2013). Mercury, methylmercury, and selenium in blood of bird species from Doñana National Park (Southwestern Spain) after a mining accident. Environmental Science and Pollution Research, 20(8), 5361–5372. https://doi.org/10.1007/s11356-013-1540-1spa
dc.relation.referencesAnthony, K., and Balwart, S. (2004). Heavy Metals Contamination of Home Grown Vegetables near Metal Smelters. Toxicol Environ. Chem., 72:221-231.spa
dc.relation.referencesAvendaño, J. E., Bohórquez, C. I., Rosselli, L., Arzuza-Buelvas, D., Estela, F. A., Cuervo, A. M.,… Renjifo, L. M. (2017). Lista de chequeo de las aves de Colombia: Una síntesis del estado del conocimiento desde Hilty & Brown (1986). Ornitologia Colombiana, 2017(16), eA01-1-eA01-83.spa
dc.relation.referencesAyerbe, F. (2018). Guia ilustrada de aves de Colombia (Ed 1). Wildlife Conservation Society/Colombia (2019). ISBN 10: 9585461412spa
dc.relation.referencesBarwick, M., & Maher, W. (2003). Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Marine Environmental Research, 56(4), 471–502. https://doi.org/10.1016/s0141-1136(03)00028-xspa
dc.relation.referencesBasha, P. S., & Rani, A. U. (2003). Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicology and Environmental Safety, 56(2), 218–221. https://doi.org/10.1016/s0147-6513(03)00028-9spa
dc.relation.referencesBashir,. M. Javed,. M. Latif., F. Faiza., A. (2018). Effects of various doses of copper sulphate on peroxidase activity in the liver, gills, kidney and brain of Cirrhina mrigala. Asian Journal of Agriculture and Biology. Vol.6 No.3 pp.367-372 ref.40spa
dc.relation.referencesBenito, V., Devesa, V., Muñoz, O., Suñer, M. ., Montoro, R., Baos, R., … González, M. . (1999). Trace elements in blood collected from birds feeding in the area around Doñana National Park affected by the toxic spill from the Aznalcóllar mine. Science of The Total Environment, 242(1–3), 309–323. https://doi.org/10.1016/s0048-9697(99)00398-8spa
dc.relation.referencesBeyer, W., M. Spalding., & D., Morrison. (1997). Mercury concentrations in feathers of wading birds from Florida: Ambio. Stockholm [Ambio], vol. 26, no. 2, pp. 97-100, Mar.spa
dc.relation.referencesBishara, A. J., & Hittner, J. B. (2012). Testing the significance of a correlation with nonnormal data: Comparison of Pearson, Spearman, transformation, and resampling approaches. Psychological Methods, 17(3), 399–417. https://doi.org/10.1037/a0028087spa
dc.relation.referencesBruzual, J. and I. Bruzual. (1983). Feeding habits of whistling ducks in the Calabozo Ricefields, Venezuela, during the non-reproductive period. Wildfowl 34:20-26spa
dc.relation.referencesBurger, J. (1995). A risk assessment for lead in birds. Journal of Toxicology and Environmental Health, 45(4), 369–396. https://doi.org/10.1080/15287399509532003spa
dc.relation.referencesBurger, J. (2002). Food Chain Differences Affect Heavy Metals in Bird Eggs in Barnegat Bay, New Jersey. Environmental Research, 90(1), 33–39. https://doi.org/10.1006/enrs.2002.4381spa
dc.relation.referencesBurger, J., & Gochfeld, M. (2000). Metals in Albatross Feathers from Midway Atoll: Influence of Species, Age, and Nest Location. Environmental Research, 82(3), 207–221. https://doi.org/10.1006/enrs.1999.4015spa
dc.relation.referencesBurger, J., & Gochfeld, M. (2005). Effects of lead on learning in herring gulls: An avian wildlife model for neurobehavioral deficits. NeuroToxicology, 26(4 SPEC. ISS.), 615– 624. https://doi.org/10.1016/j.neuro.2005.01.005spa
dc.relation.referencesBurgos-Núñez, S., Navarro-Frómeta, A., Marrugo-Negrete, J., Enamorado-Montes, G., & Urango-Cárdenas, I. (2017). Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem. Marine Pollution Bulletin, 120(1–2), 379–386. https://doi.org/10.1016/j.marpolbul.2017.05.016spa
dc.relation.referencesCalderón-Rodríguez., A. (2005). Metales pesados en aves (patos y cercetas) residentes y migratorias recolectadas en sistemas lagunares del centro y sur de Sinaloa. Posgrado en Ciencias del Mar y Limnología. Universidad Nacional Autónoma de México. 167 pp. Calao, C., & Marrugo-Negrete, J. (2015). Efectos Genotóxicos asociados a metales pesados en una población humana de la región de La Mojana, Colombia. Rev. Biomed. 35spa
dc.relation.referencesCampbell. (1995). Avian hematology and cytology. (Ed. 2). Ames, Iowa: Iowa State University Press. 104 ppspa
dc.relation.referencesCroteau, M.-N., Luoma, S. N., & Stewart, A. R. (2005). Trophic transfer of metals along freshwater food webs: Evidence of cadmium biomagnification in nature. Limnology and Oceanography, 50(5), 1511–1519. https://doi.org/10.4319/lo.2005.50.5.1511spa
dc.relation.referencesCubillos L., J. A., Rodríguez-Flórez, C. N., Rocha-Caicedo, C. A., & Barreto Prieto, R. (2017). Monitoreo de Cadmio y Plomo en tejidos de turdus fuscater en Sogamoso (Boyacá-Colombia). Bistua revista de la facultad de ciencias basicas, 15(1). https://doi.org/10.24054/01204211.v1.n1.2017.2551spa
dc.relation.referencesDauwe, L. Bervoets, R. Blust, M. Ee, T. (2002). Tissue Levels of Lead in Experimentally Exposed Zebra Finches ( Taeniopygia guttata ) with Particular Attention on the Use of Feathers as Biomonitors. Archives of Environmental Contamination and Toxicology, 42(1), 88–92. https://doi.org/10.1007/s002440010295spa
dc.relation.referencesDewanjee, S., Sahu, R., Karmakar, S., & Gangopadhyay, M. (2013). Toxic effects of lead exposure in Wistar rats: Involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves. Food and Chemical Toxicology, 55, 78–91. https://doi.org/10.1016/j.fct.2012.12.040spa
dc.relation.referencesDiop, M., Howsam, M., Diop, C., Cazier, F., Goossens, J. F., Diouf, A., & Amara, R. (2016). Spatial and seasonal variations of trace elements concentrations in liver and muscle of round Sardinelle (Sardinella aurita) and Senegalese sole (Solea senegalensis) along the Senegalese coast. Chemosphere, 144, 758–766. https://doi.org/10.1016/j.chemosphere.2015.08.085spa
dc.relation.referencesDunning Jr., J. B. (2007). CRC Handbook of Avian Body Masses. CRC Press. https://doi.org/10.1201/9781420064452spa
dc.relation.referencesEeva, T., Ahola, M., & Lehikoinen, E. (2009). Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environmental Pollution, 157(11), 3126–3131. https://doi.org/10.1016/j.envpol.2009.05.040spa
dc.relation.referencesEisler, R.(1988). Arsenic hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service Biology Report 85(1.12).spa
dc.relation.referencesEisler, R. (2006). Mercury: Hazards to living organisms. USA: CRC Press, Taylor y Francis Group. Boca Raton, FL.spa
dc.relation.referencesEisler, R. (2010). Compendium of Trace Metals and Marine Biota. Vol. 1 Plant and Invertebrates. Chapt 6. Molluscs. pp 143–397spa
dc.relation.referencesEl Morhit, M., Belghity, D., El Morhit, A. (2013). Metallic contaminnation in muscle of three fish species in the southern Atlantic coast at Laayoune (Morocco). LARHYSS Journal. ISSN 1112e3680.spa
dc.relation.referencesEmere, M.C., & Dibal, D.M. (2013). Metal accumulation in some tissues/organs of a freshwater fish (Clarias Gariepinus) from some polluted zones of River Kaduna. J Biol Agri Healthcar 3:112–117 EFSA. (2010). Scientific opinion on lead in food. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA Journal. 8(4): 1570. 10.2903/j.efsa.2010.1570.spa
dc.relation.referencesErgüll Halim and Betül Çayir. (2010). The effect of weight and condition index in mussel on heavy metal concentrations in Izmit bay. 38th CIESM Congress. Venice: Mediterranean Science Commission.spa
dc.relation.referencesEstrada-Guerrero DM, Soler-Tovar D. (2014). Las aves como bioindicadores de contaminación por metales pesados en humedales. Ornitología Colombiana 14:145160pp. https://www.researchgate.net/profile/Diego_SolerTovar/publication/27144 3706_Birds_as_bioindicators_of_heavy_metal_contamination_in_wetlands/links/54c7c3 8a0cf289f0cecdc477.pdf.spa
dc.relation.referencesEvers, D.C., Burgess, N.M., Champoux, L. et al.(2005). Patterns and Interpretation of Mercury Exposure in Freshwater Avian Communities in Northeastern North America. Ecotoxicology 14, 193–221.spa
dc.relation.referencesFerreyra, H., Romano, M., Beldomenico, P., Caselli, A., Correa, A., & Uhart, M. (2014). Lead gunshot pellet ingestion and tissue lead levels in wild ducks from Argentine hunting hotspots. Ecotoxicology and Environmental Safety, 103(1), 74–81. https://doi.org/10.1016/j.ecoenv.2013.10.015spa
dc.relation.referencesFrederick, P., & Jayasena, N. (2010). Altered pairing behaviour and reproductive success in white ibises exposed to environmentally relevant concentrations of methylmercury. Proc. R. Soc. B 278, 1851–1857.spa
dc.relation.referencesFurtado, R., Pereira, M. E., Granadeiro, J. P., & Catry, P. (2019). Body feather mercury and arsenic concentrations in five species of seabirds from the Falkland Islands. Marine Pollution Bulletin, 149, 110574. https://doi.org/10.1016/j.marpolbul.2019.110574spa
dc.relation.referencesGarelick H., Jones H., Dybowska A., Valsami-Jones E. (2009). Arsenic Pollution Sources. In: Reviews of Environmental Contamination Volume 197. Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews), vol 197. Springer, New York, NYspa
dc.relation.referencesGaritano-Zavala, Á., Cotín, J., Borràs, M., & Nadal, J. (2010). Trace metal concentrations in tissues of two tinamou species in mining areas of Bolivia and their potential as environmental sentinels. Environmental Monitoring and Assessment, 168(1– 4), 629–644. https://doi.org/10.1007/s10661-009-1139-7spa
dc.relation.referencesGasparik, J., Vladarova, D., Capcarova, M., Smehyl, P., Slamecka, J., Garaj, P., … Massanyi, P. (2010). Concentration of lead, cadmium, mercury and arsenic in leg skeletal muscles of three species of wild birds. Journal of Environmental Science and Health, Part A, 45(7), 818–823. https://doi.org/10.1080/10934521003708992spa
dc.relation.referencesGómez MF, Moreno LA, Andrade GI, Rueda C. (2016). BioDiversidad 2015. Estado y tendencias de la biodiversidad continental de Colombia (Primera ed). Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.spa
dc.relation.referencesGulson, B., Korsch, M., Matisons, M., Douglas, C., Gillam, L., & McLaughlin, V. (2009). Windblown Lead Carbonate as the Main Source of Lead in Blood of Children from a Seaside Community: An Example of Local Birds as ―Canaries in the Mine.‖ Environmental Health Perspectives, 117(1), 148–154. https://doi.org/10.1289/ehp.11577spa
dc.relation.referencesHaziri, I., Mane, B., Dermaku, S., Haziri, A., & Faiku, F. (2013). Influence of mercury on the body weight of Isa brown hibrid Influence of mercury on the body weight of Isa brown hibrid. Pelagia Research Library Advances in Applied Science Research, 2013, 4(1):240-243spa
dc.relation.referencesHeinz, G. H., Hoffman, D. J., Sileo, L., Audet, D. J., & LeCaptain, L. J. (1999). Toxicity of Lead-Contaminated Sediment to Mallards. Archives of Environmental Contamination and Toxicology, 36(3), 323–333. https://doi.org/10.1007/s002449900478spa
dc.relation.referencesHerrera Núñez, J., Rodríguez Corrales, J., Coto Campos, J. M., Salgado Silva, V., & Borbón Alpizar, H. (2013). Evaluación de metales pesados en los sedimentos superficiales del río Pirro. Revista Tecnología En Marcha, 26(1), 27. https://doi.org/10.18845/tm.v26i1.1119spa
dc.relation.referencesHilty, S. l. & w. l. Brown. (1986). A Guide to the Birds of Colombia. Princeton University Press, Princeton, New Jersey. 996 pp.spa
dc.relation.referencesHohman, W. L., Pritchert, R. D., III, R. M. P., Woolington, D. W., & Helm, R. (1990). nfluence of Ingested Lead on Body Mass of Wintering Canvasbacks. The Journal of Wildlife Management, 54(2), 211. https://doi.org/doi:10.2307/3809031spa
dc.relation.referencesHohman, W. L., T. M. Stark, and J. L. Moore. (1996). Food availability and feeding preferences of breeding fulvous whistling-ducks in Louisiana ricefields. Wilson Bull. 108:137-150.spa
dc.relation.referencesJaime., M. & Almaráz., P. (2018). Bioacumulación y transferencia de metales y contaminantes emergentes a través de las cadenas tróficas marinas (Primera ed). México: Samsara Editorial.ISBN: 9789709430769. 161 pp.spa
dc.relation.referencesJaniga, M., & Haas, M. (2018). Alpine accentors as monitors of atmospheric long-range lead and mercury pollution in alpine environments. Environmental Science and Pollution Research, 26(3), 2445–2454. https://doi.org/10.1007/s11356-018-3742-zspa
dc.relation.referencesJara-Marini, M. E., Soto-Jiménez, M. F., & Páez-Osuna, F. (2009). Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of California. Chemosphere, 77(10), 1366–1373. https://doi.org/10.1016/j.chemosphere.2009.09.025spa
dc.relation.referencesJaved. M., & Usmani, N. (2012). Uptake of Heavy Metals by Channa Punctatus from Sewage–Fed Aquaculture Pond of Panethi, Aligarh. Global J Res Engg (C) 12:27–34spa
dc.relation.referencesJaved, M., & Usmani, N. (2013). Haematological indices of Channa punctatus as an indicator of heavy metal pollution in waste water aquaculture pond, Panethi, India. African Journal of Biotechnology, 12(5), 520–525. https://doi.org/10.5897/ajb12.2115 Jayakumar, R., & Muralidharan, S. (2011). Metal contamination in select species of birds in Nilgiris district, Tamil Nadu, India. Bulletin of Environmental Contamination and Toxicology, 87(2), 166–170. https://doi.org/10.1007/s00128-011-0323-yspa
dc.relation.referencesJiménez, A., I. García-Lau, A. González, L. Mugica, & M. Acosta. (2014). Valores de masa corporal de 183 especies de aves cubanas. Revista Cubana de Ciencias Biológicas 3: 22–42.spa
dc.relation.referencesJiménez-Uzcátegui, G., Vinueza, R.L., Urbina, A.S., Egas, D.A., García, C. (2017). Leadand cadmium levels in Galapagos penguin Spheniscus mendiculus, flightlesscormorant Phalacrocorax harrisi, and waved albatross Phoebastria irrorata. Mar.Ornithol. 45, 159–163.spa
dc.relation.referencesKehrig, H. do A., Seixas, T. G., Palermo, E. A., Baêta, A. P., Castelo-Branco, C. W., Malm, O., & Moreira, I. (2008). The relationships between mercury and selenium in plankton and fish from a tropical food web. Environmental Science and Pollution Research, 16(1), 10–24. https://doi.org/10.1007/s11356-008-0038-8spa
dc.relation.referencesKendall, R. J., Lacher, T. E., Bunck, C., Daniel, B., Driver, C., Grue, C. E., … Whitworth, M. (1996). An ecological risk assessment of lead shot exposure in non-waterfowl avian species: Upland game birds and raptors. Environmental Toxicology and Chemistry, 15(1), 4–20. https://doi.org/10.1897/1551-5028(1996)015<0004:AERAOL>2.3.CO;2spa
dc.relation.referencesKhaled, A. ( 2004). Heavy metal concentrations in certain tissues of five commercially important fishes from El-Mex Bay, Alexandria, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 8, 51.spa
dc.relation.referencesKhan, A., H.I. Hussain, A. Sattar, M.Z. Khan and R.Z. Abbas, 2014. Toxico-pathological aspects of arsenic in birds and mammals: a review. Int. J. Agric. Biol., 16: 1213_1224.spa
dc.relation.referencesKhattak, A.S., Zeb, M., & Ali, L.(2019). Biological and heavy metal investigation for drinking water quality assessment of Drosh and Asheriat areas of District Chitral, Pakistan. Journal of Himalayan Earth Sciences; Peshawar. Vol 52, N.º 2, (2019): 74.spa
dc.relation.referencesKopec, A. D., Bodaly, R. A., Lane, O. P., Evers, D. C., Leppold, A. J., & Mittelhauser, G. H. (2018). Elevated mercury in blood and feathers of breeding marsh birds along the contaminated lower Penobscot River, Maine, USA. Science of The Total Environment, 634, 1563–1579. https://doi.org/10.1016/j.scitotenv.2018.03.223spa
dc.relation.referencesKrishna, P.V., Jyothirmayi, V., Rao, K.M. (2009). Human health risk assessment of heavy metal accumulation through fish consumption, from Machilipatnam Coast, Andhra Pradesh, India. Int Res J Public Environ Health 1:121–125spa
dc.relation.referencesKoivula, M. J., & Eeva, T. (2010). Metal-related oxidative stress in birds. Environmental Pollution, 158(7), 2359–2370. https://doi.org/10.1016/j.envpol.2010.03.013spa
dc.relation.referencesLaperche, V., Hellal, J., Maury-Brachet, R., Joseph, B., Laporte, P., Breeze, D., & Blanchard, F. (2014). Regional distribution of mercury in sediments of the main rivers of French Guiana (Amazonian basin). SpringerPlus, 3(1). https://doi.org/10.1186/2193- 1801-3-322spa
dc.relation.referencesLerma, M. (2014). Body condition and heavy metal concentration on Blue-footed boobies during breeding season on Isla El Rancho, Sinaloa, Mexico. Universidad nacional autónoma de México posgrado en Ciencias del Mar y Limnología unidad académica Mazatlán (biología marina). 102 pp. https://doi.org/10.13140/RG.2.2.22279.80808spa
dc.relation.referencesLi, F., Huang, J., Zeng, G., Huang, X., Li, X., Liang, J., … Bai, B. (2014). Integrated Source Apportionment, Screening Risk Assessment, and Risk Mapping of Heavy Metals in Surface Sediments: A Case Study of the Dongting Lake, Middle China. Human and Ecological Risk Assessment, 20(5), 1213–1230. https://doi.org/10.1080/10807039.2013.849479spa
dc.relation.referencesLiang, J., Liu, J., Yuan, X., Zeng, G., Lai, X., Li, X., … Li, F. (2015). Spatial and temporal variation of heavy metal risk and source in sediments of Dongting Lake wetland, midsouth China. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 50(1), 100–108. https://doi.org/10.1080/10934529.2015.964636spa
dc.relation.referencesLiu, J., Liang, J., Yuan, X., Zeng, G., Yuan, Y., Wu, H., Huang, X., Liu, J., Hua, S., Li, F. Li, X. (2015). An integrated model for assessing heavy metal exposure risk to migratory birds in wetland ecosystem: A case study in Dongting Lake Wetland, China. Chemosphere, 135, 14–19.spa
dc.relation.referencesLong, G. L., & Winefordner, J. D. (1983). Limit of detection. A closer look at the IUPAC definition. Analytical Chemistry, 55(7), 712A–724A. https://doi.org/10.1021/ac00258a001spa
dc.relation.referencesJinming Luo., Y. & Xiongrui .,Y. (2015). Bioaccumulation and dietary exposure of the Red-Crowned Cranes (Grus japonensis) to arsenic in Zhalong Wetland, northeastern China, Aquatic Ecosystem Health & Management, 18:1, 121-129spa
dc.relation.referencesMadge, S. y H. Burn. (1988). Waterfowl an Identification Guide to the Ducks, Geese and Swans of the World. Houghton Mifflin Company, NY. 131-132pp.spa
dc.relation.referencesMadera-Parra, C. A., Peña-Salamanca, E. J., & Solarte-Soto, J. A. (2014). Efecto de la concentración de metales pesados en la respuesta fisiológica y capacidad de acumulación de metales de tres especies vegetales tropicales empleadas en la fitorremediación de lixiviados provenientes de rellenos sanitarios. Ingeniería y competitividad, 16(2), 179–188. https://doi.org/10.25100/iyc.v16i2.3693spa
dc.relation.referencesMagos, L., & Clarkson, T. W. (2006). Overview of the clinical toxicity of mercury. Annals of Clinical Biochemistry, 43(4), 257–268. https://doi.org/10.1258/000456306777695654spa
dc.relation.referencesMarrugo N. J. L & Lans E. (2006). Impacto ambiental por contaminación con níquel, mercurio y cadmio en aguas, peces y sedimentos en la cuenca del río San Jorge, en el 63 departamento de Córdoba. Montería (Córdoba): Centro de Investigaciones (CIUC)- Universidad de Córdobaspa
dc.relation.referencesMarrugo-Negrete, Jose, Benitez, L. N., Olivero-Verbel, J., Lans, E., & Gutierrez, F. V. (2010). Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia. International Journal of Environmental Health Research, 20(6), 451–459. https://doi.org/10.1080/09603123.2010.499451spa
dc.relation.referencesMarrugo-Negrete, J., Verbel, J. O., Ceballos, E. L., & Benitez, L. N. (2008). Total mercury and methylmercury concentrations in fish from the Mojana region of Colombia. Environmental Geochemistry and Health, 30(1), 21–30. https://doi.org/10.1007/s10653- 007-9104-2spa
dc.relation.referencesMarrugo Negrete, J., Pinedo-Hernández, J., Paternina–Uribe, R., Quiroz-Aguas, L., & Pacheco-Florez, S. (2018). Distribución espacial y evaluación de la contaminación ambiental por mercurio en la región de la Mojana, Colombia. Revista MVZ Córdoba, 7062–7075. https://doi.org/10.21897/rmvz.1481spa
dc.relation.referencesMarrugo‐Negrete, J., Pinedo‐Hernández, J., Combatt, E. M., Bravo, A. G., & Díez, S. (2019). Flood‐induced metal contamination in the topsoil of floodplain agricultural soils: A case‐study in Colombia. Land Degradation & Development, 30(17), 2139–2149. https://doi.org/10.1002/ldr.3398spa
dc.relation.referencesMartinez-Haro, M., Green, A. J., & Mateo, R. (2011). Effects of lead exposure on oxidative stress biomarkers and plasma biochemistry in waterbirds in the field. Environmental Research, 111(4), 530–538. https://doi.org/10.1016/j.envres.2011.02.012spa
dc.relation.referencesMateo, R., Vallverdú-Coll, N., & Ortiz-Santaliestra, M. E. (2013). Intoxicación por munición de plomo en aves silvestres en España y medidas para reducir el riesgo. Ecosistemas, 22(2), 61–67. https://doi.org/10.7818/ecos.2013.22-2.10spa
dc.relation.referencesMeoño-Sánchez, Edy R. (2015). Hematología y química sérica del pijije de ala blanca (Dendrocygna autumnalis). Universidad de San Carlos de Guatemala Facultad de Medicina Veterinaria y Zootecnia escuela de Estudios de Postgrado en Hematología. 17 ppspa
dc.relation.referencesS.T. Matsumoto, M.S. Mantovani, M.I.A. Malaguttii, A.L. Dias, I.C. Fonseca, M.A. MarinMorales. (2006). Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips, Genet. Mol. Biol. 29. 148–158spa
dc.relation.referencesM.A. Momodu., & C.A. Anyakora. (2010). Heavy metal contamination of ground water: the surulere case study research, J. Environ. Earth Sci. 2 (1) 39–43.spa
dc.relation.referencesMonzalvo-Santos, K., Alfaro-De la Torre, M. C., Chapa-Vargas, L., Castro-Larragoitia, J., & Rodríguez-Estrella, R. (2016). Arsenic and lead contamination in soil and in feathers of three resident passerine species in a semi-arid mining region of the Mexican plateau. Journal of Environmental Science and Health, Part A, 51(10), 825–832. https://doi.org/10.1080/10934529.2016.1181451spa
dc.relation.referencesMuñoz-Gil, J., Marín-Espinoza, G., Andrade-Vigo, J., Zavala, R., & Mata, A. (2012). Trophic position of the Neotropic Cormorant (Phalacrocorax brasilianus): integrating diet and stable isotope analysis. Journal of Ornithology, 154(1), 13–18. https://doi.org/10.1007/s10336-012-0863-xspa
dc.relation.referencesNaccari, C., Cristani, M., Cimino, F., Arcoraci, T., & Trombetta, D. (2009). Common buzzards (Buteo buteo) bio-indicators of heavy metals pollution in Sicily (Italy). Environment International, 35(3), 594–598. https://doi.org/10.1016/j.envint.2008.11.002spa
dc.relation.referencesNosheen, N., Abdullah, S., Naz, H., & Abbas, K. (2019). Toxicological Effects of Heavy Metal (Pb+2) on Peroxidase Activity in Freshwater Fish, Catla catla. Pakistan Journal of Agricultural Research, 32(4). https://doi.org/10.17582/journal.pjar/2019/32.4.656.661 Ochoa-acuña, H., Sepúlveda, M. ., & Gross, T. . (2002). Mercury in feathers from Chilean birds: influence of location, feeding strategy, and taxonomic affiliation. Marine Pollution Bulletin, 44(4), 340–345. https://doi.org/10.1016/s0025-326x(01)00280spa
dc.relation.referencesOlivares, A. (1973). Las ciconiiformes Colombianas. Proyser, Universidad Nacional de Colombia. Bogota, Colombia. 226-233p.spa
dc.relation.referencesOlivares-Rieumont, S., de la Rosa, D., Lima, L., Graham, D. W., D′ Alessandro, K., Borroto, J., Martínez, F., & Sánchez, J. (2005). Assessment of heavy metal levels in Almendares River sediments—Havana City, Cuba. Water Research, 39(16), 3945– 3953. https://doi.org/10.1016/j.watres.2005.07.011spa
dc.relation.referencesOlivero J., & Johnson B. (2002). El lado gris de la minería del oro: La contaminación con mercurio en el norte de Colombia. Editorial Universitaria-Universidad de Cartagena.pp. 120, Cartagena: Alpha Editors.spa
dc.relation.referencesOlivero-Verbel, J., Agudelo-Frias, D., & Caballero-Gallardo, K. (2013). Morphometric parameters and total mercury in eggs of snowy egret (Egretta thula) from Cartagena Bay and Totumo Marsh, north of Colombia. Marine Pollution Bulletin, 69(1–2), 105–109. https://doi.org/10.1016/j.marpolbul.2013.01.013spa
dc.relation.referencesOlivero-verbel, J., Johnson-restrepo, B., Paz-martinez, R., & Olivero-verbel, R. (2004).Mercury in the aquatic environment of the village of Caimito At the Mojana Region , North of Colombia. Water, Air, and Soil Pollution, 409–420.spa
dc.relation.referencesOlmedo, P., Pla, A., Hernández, A. F., López-Guarnido, O., Rodrigo, L., & Gil, F. (2010). Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 659(1–2), 60–67. https://doi.org/10.1016/j.aca.2009.11.056spa
dc.relation.referencesOlson, V. A., Davies, R. G., Orme, C. D. L., Thomas, G. H., Meiri, S., Blackburn, T. M., Gaston, K. J., Owens, I. P. F., & Bennett, P. M. (2009). Global biogeography and ecology of body size in birds. Ecology Letters, 12(3), 249–259. https://doi.org/10.1111/j.1461-0248.2009.01281.xspa
dc.relation.referencesPain, D. J., Mateo, R., & Green, R. E. (2019). Effects of lead from ammunition on birds and other wildlife: A review and update. Ambio, 48(9), 935–953. https://doi.org/10.1007/s13280-019-01159-0spa
dc.relation.referencesP. Govind., & S. Madhuri. (2014). Heavy metals causing toxicity in animals and fishes, Res. J. Anim. Vet. Fish. Sci. 2 17e23.spa
dc.relation.referencesPattee, O., and D. Pain. (2003). Lead in the environment. In Handbook of ecotoxicology, eds. D.J. Hoffman, B.A. Rattner, G.A. Burton Jr., and J. Cairns Jr, Second ed., pp. 373– 408. Boca Raton, Florida, USA: CRC Press.spa
dc.relation.referencesPekey, H. (2006). The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin, 52(10), 1197–1208. https://doi.org/10.1016/j.marpolbul.2006.02.012spa
dc.relation.referencesPérez, M., F. Cid, D. Hernández, A. L. Oropesa., A. López., L, Fidalgo., & F. Soler. (2005). Contenido de metales pesados en hígado y plumas de aves marinas afectadas por el accidente del Prestige‖ en la costa de Galicia. Revista de Toxicología 22:191- 199spa
dc.relation.referencesPinedo-Hernández, J., Marrugo-Negrete, J., & Díez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere, 119, 1289–1295. https://doi.org/10.1016/j.chemosphere.2014.09.044spa
dc.relation.referencesPinowski, J., Romanowski, J., Barkowska, M., Sawicka-Kapusta, K., KaminÂski, P., Kruszewicz, A.G. (1993). Lead and cadmium in relation to body weight and mortality of the house sparrow Passer domesticus and tree sparrow Passer montanus nestlings. Acta Ornithologia 28, 63-67spa
dc.relation.referencesPinto, E., Sigaud-kutner, T. C. S., Leitao, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39(6), 1008–1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.xspa
dc.relation.referencesPlan Municipal para la Gestión del Riesgo. Municipio de San Benito Abad - Sucre. (2012). Unidad Nacional para la Gestión del Riesgo de Desastres. Presidencia de la república - Colombia.spa
dc.relation.referencesPlaza, P. I., Uhart, M., Caselli, A., Wiemeyer, G., & Lambertucci, S. A. (2018). A review of lead contamination in South American birds: The need for more research and policy changes. Perspectives in Ecology and Conservation, 16(4), 201–207. https://doi.org/10.1016/j.pecon.2018.08.001spa
dc.relation.referencesPoste, A. E., Muir, D. C. G., Guildford, S. J., & Hecky, R. E. (2015). Bioaccumulation and biomagnification of mercury in African lakes: The importance of trophic status. Science of the Total Environment, 506–507, 126–136. https://doi.org/10.1016/j.scitotenv.2014.10.094spa
dc.relation.referencesRestall, R., C. R. & M. L. (2006). Birds of northern South America: an identification guide. London.: Christopher Helmspa
dc.relation.referencesRúa Cardona, A.F.; Flórez Molina, M.T.; Palacio Baena, J. (2013,). Variations of seasonal and spatial Hg, Pb, Cr and organic matter contents in Ayapel Flood Plain Lake sediments, Córdoba, northwest Colombia. Rev. Fac. Ing.Univ. Antioquia. 69, 244–255spa
dc.relation.referencesRuelas-Inzunza, J., & Páez-Osuna, F. (2004). Trace Metals in Tissues of Resident and Migratory Birds from a Lagoon Associated with an Agricultural Drainage Basin (SE Gulf of California). Archives of Environmental Contamination and Toxicology, 47(1). https://doi.org/10.1007/s00244-004-3101-6spa
dc.relation.referencesRussi, D., Ten Brink, P., Farmer, A., Badura, T., Coates, D., Förster, J., Kumar, R., Davidson, N. (2013). The Economics of Ecosystems and Biodiversity for Water and Wetlands. IEEP, London and Brussels; Ramsar Secretariat Gland.spa
dc.relation.referencesRuiz-Guerra, C. (2012). Lista de Aves Acuáticas de Colombia. https://doi.org/10.13140/RG.2.1.2511.8244spa
dc.relation.referencesSaavedra, Y., González, A., Fernández, P., & Blanco, J. (2004). The effect of size on trace metal levels in raft cultivated mussels (Mytilus galloprovincialis). Science of the Total Environment, 318(1–3), 115–124. https://doi.org/10.1016/S0048-9697(03)00402-9 Samour, J., & Naldo, J. L. (2005). Lead Toxicosis in Falcons: A Method for Lead Retrieval. Seminars in Avian and Exotic Pet Medicine, 14(2), 143–148. https://doi.org/10.1053/j.saep.2005.04.009spa
dc.relation.referencesSánchez-Virosta, P., Espín, S., García-Fernández, A. J., & Eeva, T. (2015). A review on exposure and effects of arsenic in passerine birds. Science of The Total Environment, 512–513, 506–525. https://doi.org/10.1016/j.scitotenv.2015.01.069spa
dc.relation.referencesSassa, S. (1978). Toxic effects of lead, with particular reference to porphyrin and heme metabolism. In ―Handbook of Experimental Pharmacology,‖ Vol. 44. pp. 333-371, Springer Verlag, Berlin.spa
dc.relation.referencesScheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., & Murray, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio, 36(1), 12–18. https://doi.org/10.1579/0044-7447(2007)36[12:EOEMOT]2.0.CO;2spa
dc.relation.referencesSeewagen, C.L. (2010). Threats of environmental mercury to birds: knowledge gaps and priorities for future research. Bird Conserv Int 20:112–123. doi:10.1017/S095927090999030Xspa
dc.relation.referencesSun, Y., Li, M., Song, G., Lei, F., Li, D., & Wu, Y. (2017). The role of climate factors in geographic variation in body mass and wing length in a passerine bird. Avian Research, 8(1). https://doi.org/10.1186/s40657-016-0059-9spa
dc.relation.referencesB.M. Sheta., M.A. El-Alfy., & H.T. Abd El-Hamid. (2019). A Heavy Metal Exposure Risk assessment Model to Migratory Birds and Human in Burullus Lake, Egypt. Journal of Bioscience and Applied Research, Vol.5, No. 2, P.141 -135spa
dc.relation.referencesSierra-Marquez, L., Peñuela-Gomez, S., Franco-Espinosa, L., Gomez-Ruiz, D., DiazNieto, J., Sierra-Marquez, J., & Olivero-Verbel, J. (2018). Mercury levels in birds and small rodents from Las Orquideas National Natural Park, Colombia. Environmental 67 Science and Pollution Research, 25(35), 35055–35063. https://doi.org/10.1007/s11356- 018-3359-2spa
dc.relation.referencesSociety, W. (2016). Influence of Ingested Lead on Body Mass of Wintering Canvasbacks Author ( s ): William L . Hohman , Ronald D . Pritchert , Richard M . Pace III , Dennis W . Woolington and Robert Helm Source : The Journal of Wildlife Management , Vol . 54 , No . 2 ( Apr .54(2), 211–215.spa
dc.relation.referencesSuter II, G.W., 2011. Ecological Risk Assessment, second ed. CRC Press, Taylor & Francis group. Boca Raton (Florida).spa
dc.relation.referencesSwennen, C. (Kees), & Yu, Y.-T. (2005). Food and Feeding Behavior of the Black-faced Spoonbill. Waterbirds, 28 (1), 19–27. https://doi.org/10.1675/1524- 4695(2005)028[0019:fafbot]2.0.co;2spa
dc.relation.referencesTang, W., Zhao, Y., Wang, C., Shan, B., & Cui, J. (2013). Heavy metal contamination of overlying waters and bed sediments of Haihe Basin in China. Ecotoxicology and Environmental Safety, 98, 317–323. https://doi.org/10.1016/j.ecoenv.2013.09.038spa
dc.relation.referencesTripathi, B. N., Mehta, S. K., Amar, A., & Gaur, J. P. (2006). Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere, 62(4), 538–544. https://doi.org/10.1016/j.chemosphere.2005.06.031 Tsipoura, N., Burger, J., Newhouse, M., Jeitner, C., Gochfeld, M., & Mizrahi, D. (2011). Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands. Environmental Research, 111(6), 775– 784. https://doi.org/10.1016/j.envres.2011.05.013spa
dc.relation.referencesVan Wyk, E., Van der Bank, F. H., Verdoorn, G. H., & Hofmann, D. (2001). Selected mineral and heavy metal concentrations in blood and tissues of vultures in different regions of South Africa. South African Journal of Animal Science, 31(2). https://doi.org/10.4314/sajas.v31i2.3831spa
dc.relation.referencesVargas Licona, S. P., & Marrugo Negrete, J. L. (2019). Mercurio, metilmercurio y otros metales pesados en peces de Colombia: riesgo por ingesta. Acta Biológica Colombiana, 24(2), 232–242. https://doi.org/10.15446/abc.v24n2.74128spa
dc.relation.referencesVenkateswarlu, V., Venkatrayulu, C. H., Jhansi, T. C. H., & Bai, L. (2019). Phytoremediation of heavy metal Copper ( II ) from aqueous environment by using aquatic macrophytes Hydrilla verticillata and Pistia stratiotes. 7(4), 390–393.spa
dc.relation.referencesWeller, M. (1999). Wetlands Birds:Habitat resources and conservation implications. Cambridge University Press, New York. xv 277 pp. ISBN 0-521-63326-5. Witeska, M., Jazierska, B. (2003). The effects of environmental factors on metal toxicity to fish (review). Fresenius Environmental Bulletin, 12, 824–829spa
dc.relation.referencesXun, Y., & Xuegang, L. (2015). Heavy Metals in Sediment from Bei Shan River: Distribution, Relationship with Soil Characteristics and Multivariate Assessment of Contamination Sources. Bulletin of Environmental Contamination and Toxicology, 95(1), 56–60. https://doi.org/10.1007/s00128-015-1560-2spa
dc.relation.referencesYi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159(10), 2575–2585. https://doi.org/10.1016/j.envpol.2011.06.011spa
dc.relation.referencesZakaly, H. M., Uosif, M. A., Madkour, H., Tammam, M.,… Issa, S. (2019). Assessment of Natural Radionuclides and Heavy Metal Concentrations in Marine Sediments in View of Tourism Activities in Hurghada City, Northern Red Sea, Egypt. Journal of Physical Science, 30(3), 21–47. https://doi.org/10.21315/jps2019.30.3.3spa
dc.relation.referencesZhang, W. W., & Ma, J. Z. (2011). Waterbirds as bioindicators of wetland heavy metal pollution. Procedia Environmental Sciences, 10(PART C), 2769–2774. https://doi.org/10.1016/j.proenv.2011.09.429spa
dc.rightsCopyright Universidad de Córdobaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.keywordsBirdseng
dc.subject.keywordsMojana regioneng
dc.subject.keywordsHeavy metalseng
dc.subject.keywordsBody masseng
dc.subject.keywordsEnvironmental toxicologyeng
dc.subject.proposalAvesspa
dc.subject.proposalRegión de La Mojanaspa
dc.subject.proposalMetales pesadosspa
dc.subject.proposalToxicología ambientalspa
dc.subject.proposalMasa corporalspa
dc.titleMercurio (Hg), Plomo (Pb) y Arsénico (As) y su relación con la masa corporal en Dendrocygna autumnalis, Platalea ajaja y Phalacrocorax brasilianus en la región de La Mojana, Colombiaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
BuelvasSotoJorgeAndrés.pdf
Tamaño:
2.41 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formatoautorización.pdf
Tamaño:
164.71 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones