Publicación: Modelación numérica de la co combustión de carbón y tusa de maíz pulverizados
dc.contributor.advisor | Mendoza Fandiño, Jorge Mario | spa |
dc.contributor.author | Doria Oviedo, Miguel Emigdio | |
dc.date.accessioned | 2022-11-18T11:23:15Z | |
dc.date.available | 2022-11-18T11:23:15Z | |
dc.date.issued | 2022-11-17 | |
dc.description.abstract | En este trabajo se desarrolla mediante la dinámica de fluidos computacional (CFD) un modelo numérico de la co-combustión de carbón mineral y tusa de maíz pulverizado en una cámara de combustión a escala para combustibles pulverizados con el fin de estudiar el factor de emisiones y rendimiento energético del proceso. Para el modelo se usan de ecuaciones de Navier-Stokes, un modelo Lagrange-Euler para la trayectoria de las partículas, el modelo de turbulencia standard k épsilon, modelo de radiación DO, transporte de especies, modelo de dispersión, se definen los tamaños de partícula y su distribución Se tomaron datos de artículos anteriores sobre las propiedades energéticas de los combustibles a usar, así como la forma de estos. Al tener todos los parámetros y condiciones se simuló el proceso para cada tipo de mezcla usada. Al obtener los resultados, estos se analizan las emisiones de SOx, NOx, CO2 de lo cual se observó una disminución en las emisiones de los contaminantes a medida de que se agregaba biomasa y se validaron con las emisiones características de la combustión para carbón pulverizado. | spa |
dc.description.abstract | A numerical model of the cofiring of coal and pulverized corncob was developed through computational fluid dynamics (CFD) in order to study the emissions and energy efficiency of the process. For the model are used the Navier-Stokes equations, Lagrange-Euler model for the trajectory of particles, the standard epsilon turbulence model, DO radiation model, species transport and the dispersion model. The data of the fuels was taken from previous articles. With all the parameters and conditions, the process was simulated in software for each type of mixture used. From the results were analyzed the emissions of SOx, NOx, CO2. From these results a decrease in pollutant emissions was observed. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería Mecánica | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | RESUMEN 1 | spa |
dc.description.tableofcontents | ABSTRACT 2 | spa |
dc.description.tableofcontents | 1. Capítulo I. Descripción del trabajo de investigación 3 | spa |
dc.description.tableofcontents | 2. INTRODUCCIÓN. 3 | spa |
dc.description.tableofcontents | 2.1. OBJETIVOS. 7 | spa |
dc.description.tableofcontents | 2.1.1. Objetivo general. 7 | spa |
dc.description.tableofcontents | 2.1.2. Objetivos específicos. 7 | spa |
dc.description.tableofcontents | 2.2. Estructura de la tesis. 8 | spa |
dc.description.tableofcontents | 2.3. REVISIÓN DE LITERATURA. 9 | spa |
dc.description.tableofcontents | 2.4. Trabajos derivados 19 | spa |
dc.description.tableofcontents | 3. Capítulo II. SELECCIÓN DE PARAMETROS I 21 | spa |
dc.description.tableofcontents | 2.1 INTRODUCCIÓN. 21 | spa |
dc.description.tableofcontents | 3.1. Materiales y métodos 25 | spa |
dc.description.tableofcontents | 3.2. Resultados 35 | spa |
dc.description.tableofcontents | 3.3. Conclusiones. 41 | spa |
dc.description.tableofcontents | 4. Capítulo III: MODELADO CFD. 42 | spa |
dc.description.tableofcontents | 4.1. Introducción 42 | spa |
dc.description.tableofcontents | 4.2. Materiales y métodos. 43 | spa |
dc.description.tableofcontents | 4.3. Resultados. 45 | spa |
dc.description.tableofcontents | 4.4. Conclusiones 61 | spa |
dc.description.tableofcontents | 5. Capítulo IV. VALIDACION DEL MODELO 62 | spa |
dc.description.tableofcontents | 5.2. Resultados 62 | spa |
dc.description.tableofcontents | 5.1. Materiales y métodos. 62 | spa |
dc.description.tableofcontents | 5.3. Conclusiones. 64 | spa |
dc.description.tableofcontents | 6. Conclusiones Generales y futuros trabajos. 65 | spa |
dc.description.tableofcontents | 4.1 Objetivo específico I: Determinación de parámetros. 65 | spa |
dc.description.tableofcontents | 4.2 Objetivo específico II: Modelo CFD 65 | spa |
dc.description.tableofcontents | 4.3 Objetivo específico III: Validación del modelo. 65 | spa |
dc.description.tableofcontents | 4.4 Futuros trabajos. 66 | spa |
dc.description.tableofcontents | 4.4.1 Disminución de las emisiones mediante otros métodos de reducción de emisiones. 66 | spa |
dc.description.tableofcontents | 4.4.2 Mejora de la geometría 66 | spa |
dc.description.tableofcontents | 1. Bibliografía. 67 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6817 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | CFD | eng |
dc.subject.keywords | Co-firing | eng |
dc.subject.keywords | Coal | eng |
dc.subject.keywords | Corncob | eng |
dc.subject.proposal | CFD | spa |
dc.subject.proposal | Co-combustión | spa |
dc.subject.proposal | Carbón | spa |
dc.subject.proposal | Tusa de maíz | spa |
dc.title | Modelación numérica de la co combustión de carbón y tusa de maíz pulverizados | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Alvarez, D. (2021). combustión de corteza de coco y carbón bituminoso en una cámara de combustión dual: modelado computacional y validación experimental. Universidad de los Andes. Universidad de los andes | spa |
dcterms.references | Angarita, G. (2019). Efecto de las emisiones de 𝐍𝐎𝐗 en el proceso de combustión con mezcla de carbón y cascarilla de arroz mediante el método de co-firing. Universidad de los andes. | spa |
dcterms.references | Backreedy, R. I., Fletcher, L. M., Jones, J. M., Ma, L., Pourkashanian, M., & Williams, A. (2005). Co-firing pulverised coal and biomass: a modeling approach. Proceedings of the Combustion Institute, 30(2), 2955–2964. https://doi.org/https://doi.org/10.1016/j.proci.2004.08.085 | spa |
dcterms.references | Barnes, D. I. (2015). Understanding pulverised coal, biomass and waste combustion - A brief overview. Applied Thermal Engineering, 74, 89–95. https://doi.org/10.1016/j.applthermaleng.2014.01.057 | spa |
dcterms.references | Bartosiewicz, Y., & Duponcheel, M. (2018). Large-eddy simulation: Application to liquid metal fluid flow and heat transfer. Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors, 245–271. https://doi.org/10.1016/B978-0-08-101980-1.00017-X | spa |
dcterms.references | Benim, A. C., Deniz Canal, C., & Boke, Y. E. (2022). Computational investigation of oxy combustion of pulverized coal and biomass in a swirl burner. Energy, 238. https://doi.org/10.1016/j.energy.2021.121852 | spa |
dcterms.references | Brigagão, G. V., de Queiroz Fernandes Araújo, O., de Medeiros, J. L., Mikulcic, H., & Duic, N. (2019). A techno-economic analysis of thermochemical pathways for corncob-to-energy: Fast pyrolysis to bio-oil, gasification to methanol and combustion to electricity. Fuel Processing Technology, 193, 102–113. https://doi.org/10.1016/j.fuproc.2019.05.011 | spa |
dcterms.references | Butterworth-Heinemann. (2013). The science of Victorian brown coal: structure, properties and consequences for utilization. | spa |
dcterms.references | Chang, J., Wang, X., Zhou, Z., Chen, H., & Niu, Y. (2021). CFD modeling of hydrodynamics, combustion and NOx emission in a tangentially fired pulverized-coal boiler at low load operating conditions. Advanced Powder Technology, 32(2), 290–303. https://doi.org/10.1016/j.apt.2020.12.008 | spa |
dcterms.references | Demirbas A. (2004). Combustion characteristics of different biomassfuels . Progress in Energy and Combustion Science, 30, 219–230. | spa |
dcterms.references | Dixon, T. F., Mann, A. P., Plaza, F., & Gilfillan, W. N. (2005). Development of advanced technology for biomass combustion—CFD as an essential tool. Fuel, 84(10), 1303–1311. https://doi.org/https://doi.org/10.1016/j.fuel.2004.09.024 | spa |
dcterms.references | Fedepalma. (2018). Combustión de biomasa: conceptos, tecnologías y aplicaciones en la agroindustria de la palma de aceite* Biomass Combustion: Concepts, Technologies and Applications in the Oil Palm Agroindustry. In Revista Palmas. Bogotá (Colombia) vol (Vol. 39, Issue 4). | spa |
dcterms.references | Feng, Y., Qiu, K., Zhang, Z., Li, C., Rahman, M. M., & Cai, J. (2022). Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program. Energy, 239. https://doi.org/10.1016/j.energy.2021.122228 | spa |
dcterms.references | Goenaga, J. (2019). ANALISIS ENLA REDUCCION DE EMISIONESDE OXIDOS DE NITROGENO(NOX)EN EL PROCESO DE CO-COMBUSTION (CO FIRING)CONCARBÓN Y BIOMASA: CASCARILLA DE CAFÉ. Universidad de los Andes | spa |
dcterms.references | Gordillo, A. (2012). Estudio computacional del proceso de reburn de bagazo de caÑa de azucar en una camara de combustion dual. Universidad de los andes. | spa |
dcterms.references | Hasse, C., Debiagi, P., Wen, X., Hildebrandt, K., Vascellari, M., & Faravelli, T. (2021). Advanced modeling approaches for CFD simulations of coal combustion and gasification. In Progress in Energy and Combustion Science (Vol. 86). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2021.100938 | spa |
dcterms.references | INCOMBUSTION. (2016). INVESTIGACIÓN E INNOVACIÓN EN COMBUSTIÓN AVANZADA DE USO INDUSTRIAL. | spa |
dcterms.references | Jiménez, S. (2012). Combustión de carbón. | spa |
dcterms.references | Joshi, J. B., Nandakumar, K., Patwardhan, A. W., Nayak, A. K., Pareek, V., Gumulya, M., Wu, C., Minocha, N., Pal, E., Kumar, M., Bhusare, V., Tiwari, S., Lote, D., Mali, C., Kulkarni, A., & Tamhankar, S. (2019). Computational fluid dynamics. Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment, 21–238. https://doi.org/10.1016/B978-0-08-102337-2.00002-X | spa |
dcterms.references | Katarzyna, T., & Stęchły, S. (2019). CFD modelling of pulverised coal and biomass combustion [PhD Thesis]. The University of Sheffield. | spa |
dcterms.references | Khodaei, H., Al-Abdeli, Y. M., Guzzomi, F., & Yeoh, G. H. (2015). An overview of processes and considerations in the modelling of fixed-bed biomass combustion. In Energy (Vol. 88, pp. 946–972). Elsevier Ltd. https://doi.org/10.1016/j.energy.2015.05.099 | spa |
dcterms.references | Kohan, anthony. (n.d.). COMBUSTION, QUEMADORES, CONTROLES Y SISTEMAS DE SEGURIDAD DE LLAMA. PROCESO BAsICO DE COMBUSTION PROCESO BAs/co DE COMBUSTION. In Manual de calderas. McGraw-hill. | spa |
dcterms.references | Kumar, H., Mohapatra, S. K., & Singh, R. I. (2018). Review on CFD Modelling of Fluidized Bed Combustion Systems based on Biomass and Co-firing. In Journal of The Institution of Engineers (India): Series C (Vol. 99, Issue 4, pp. 449–474). Springer. https://doi.org/10.1007/s40032-017-0361-2 | spa |
dcterms.references | Liew, J. X., Loy, A. C. M., Chin, B. L. F., AlNouss, A., Shahbaz, M., Al-Ansari, T., Govindan, R., & Chai, Y. H. (2021). Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model. Renewable Energy, 170, 948– 963. https://doi.org/10.1016/j.renene.2021.02.053 | spa |
dcterms.references | Madejski, P. (2018). Numerical study of a large-scale pulverized coal-fired boiler operation using CFD modeling based on the probability density function method. Applied Thermal Engineering, 145, 352–363. https://doi.org/10.1016/j.applthermaleng.2018.09.004 | spa |
dcterms.references | Marangwanda, G. T., Madyira, D. M., & Babarinde, T. O. (2020). Combustion models for biomass: A review. Energy Reports, 6, 664–672. https://doi.org/10.1016/j.egyr.2019.11.135 | spa |
dcterms.references | Mesa, M. D., Viceministro, P., Lotero, M., Rafael, C., Subdirectora De Demanda, J., Escobar, L., Subdirectora De Hidrocarburos, R., Cruz, C., Subdirector, C., Eléctrica, E., Martínez, J., de Minería, S., Viana, R., Leonardo, G., Julieth, C., García, S., Francisco, J., William, M., Martínez, A., … Morillo, J. L. (2020). Plan energetico nacional 2020-2050. | spa |
dcterms.references | Mitianiec W. (2016). CO-COMBUSTION OF PULVERIZED COAL AND BIOMASS IN FLUIDIZED BED OF FURNACE. https://www.researchgate.net/publication/308795603 | spa |
dcterms.references | Mladenovic, M., Paprika, M., & Marinkovic, A. (2018). Denitrification techniques for biomass combustion. Renewable and Sustainable Energy Reviews, 82, 3350–3364. | spa |
dcterms.references | Moreno Diaz, J. (2016). MEDICIÓN DE EMISIONES DE NOXEN LA MEZCLA DE CARBÓN Y ASERRÍN MEDIANTE EL PROCESO DE CO-FIRING. Universidad de los Andes. | spa |
dcterms.references | Ndibe, C., Grathwohl, S., Paneru, M., Maier, J., & Scheffknecht, G. (2015). Emissions reduction and deposits characteristics during cofiring of high shares of torrefied biomass in a 500 kW pulverized coal furnace. Fuel, 156, 177–189. https://doi.org/10.1016/j.fuel.2015.04.017 | spa |
dcterms.references | Pérez-Jeldres, R., Cornejo, P., Flores, M., Gordon, A., & García, X. (2017). A modeling approach to co-firing biomass/coal blends in pulverized coal utility boilers: Synergistic effects and emissions profiles. Energy, 120, 663–674. https://doi.org/10.1016/j.energy.2016.11.116 | spa |
dcterms.references | Phuakpunk, K., Chalermsinsuwan, B., & Assabumrungrat, S. (2020). Comparison of chemical reaction kinetic models for corn cob pyrolysis. Energy Reports, 6, 168–178. https://doi.org/10.1016/j.egyr.2020.08.041 | spa |
dcterms.references | Sakolaree, P., Rattanaphaibun, K., Sukhanonsawas, W., & Sukjai, Y. (2022). Numerical simulation and experimental validation of pulverized coal combustion by using CFD. AIP Conference Proceedings, 2610. | spa |
dcterms.references | Silva Sanchez, C. (2017). ESTUDIO DEL EFECTO DEL BAGAZO DE CAÑA EN LA REDUCCIÓN DE LAS EMISIONES DE NOx EN LA COMBUSTION DE CARBON. Universidad de los Andes. | spa |
dcterms.references | Singh, S., Patil, T., Tekade, S. P., Gawande, M. B., & Sawarkar, A. N. (2021). Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis. Science of the Total Environment, 783. https://doi.org/10.1016/j.scitotenv.2021.147004 | spa |
dcterms.references | Sommerfeld, M. (1990). Particle Dispersion in Turbulent Flow: The effect of particle size distribution. Particle & Particle Systems Characterization, 7(1–4), 209–220. https://doi.org/10.1002/ppsc.19900070135 | spa |
dcterms.references | Tabet, F., & Gökalp, I. (2015). Review on CFD based models for co-firing coal and biomass. In Renewable and Sustainable Energy Reviews (Vol. 51, pp. 1101–1114). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.07.045 | spa |
dcterms.references | Takada, M., Niu, R., Minami, E., & Saka, S. (2018). Characterization of three tissue fractions in corn (Zea mays) cob. Biomass and Bioenergy, 115, 130–135. https://doi.org/10.1016/j.biombioe.2018.04.023 | spa |
dcterms.references | Torresi, M., Fortunato, B., Camporeale, S. M., & Saponaro, A. (2012). CFD modeling of pulverized coal combustion in an industrial burner. Proceedings of the ASME Turbo Expo, 1, 657–666. https://doi.org/10.1115/GT2012-69506 | spa |
dcterms.references | Trubetskaya, A., Beckmann, G., Wadenbäck, J., Holm, J. K., Velaga, S. P., & Weber, R. (2017). One way of representing the size and shape of biomass particles in combustion modeling. Fuel, 206, 675–683. https://doi.org/10.1016/j.fuel.2017.06.052 | spa |
dcterms.references | UPME. (2016). SEGURIDAD ENERGÉTICA PARA COLOMBIA Entregable 3: Informe Final. | spa |
dcterms.references | Weaver, D. S. , M. S. (2021). A Study of RANS Turbulence Models in Fully Turbulent Jets: A Perspective for CFD-DEM Simulations. | spa |
dcterms.references | Wolf, J., & Dong. (2013). J. Wolf and Dong,Biomass Combustion Science . Technology and En Gineering Combustion Science | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: