Publicación: Soluciones numéricas de un modelo sobre la dinámica del VIH con delay usando un esquema de diferencias finitas no estándar
dc.contributor.author | Naranjo Garcés, Jhon Jairo | spa |
dc.date.accessioned | 2019-11-18T17:48:37Z | spa |
dc.date.available | 2019-11-18T17:48:37Z | spa |
dc.date.issued | 2019-08-20 | spa |
dc.description.abstract | En este trabajo planteamos un nuevo modelo por medio de un conjunto de ecuaciones diferenciales con retardo para describir la infección intracelular por VIH, donde existen dos poblaciones de células, las que permiten que el virus se multiplique y las que están pasando al modo de producción de virus. El modelo es formulado de tal manera que existe un delay fijo durante la fase de eclipse. Las simulaciones numéricas son realizadas con un esquema numérico diseñado bajo la metodología de los esquemas de diferencias no estándar el cual preserva las propiedades del modelo continuo. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Estadístico(a) | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN 1 | spa |
dc.description.tableofcontents | 2. MODELOS EPIDEMIOLÓGICOS 5 | spa |
dc.description.tableofcontents | 2.1. Preliminares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 | spa |
dc.description.tableofcontents | 2.2. Modelo SIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 | spa |
dc.description.tableofcontents | 2.3. Modelos matemáticos para el VIH . . . . . . . . . . . . . . . . . . . . . 7 | spa |
dc.description.tableofcontents | 3. PROPIEDADES DEL MODELO CONTINUO 13 | spa |
dc.description.tableofcontents | 3.1. Positividad y acotamiento . . . . . . . . . . . . . . . . . . . . . . . . . . 13 | spa |
dc.description.tableofcontents | 3.3. Estabilidad Local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 | spa |
dc.description.tableofcontents | 4. DISEÑO Y PROPIEDADES DEL ESQUEMA DISCRETO 25 | spa |
dc.description.tableofcontents | 4.1. Puntos de equilibrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 | spa |
dc.description.tableofcontents | 4.2. Estabilidad local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 | spa |
dc.description.tableofcontents | 4.3. Simulaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 | spa |
dc.description.tableofcontents | 5. CONCLUSIONES 39 | spa |
dc.description.tableofcontents | Bibliografía 41 | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/2200 | spa |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.program | Estadística | spa |
dc.relation.references | Alexander, Murray E, Arthur R Summers y Seyed M Moghadas (2006). «Neimark– Sacker bifurcations in a non-standard numerical scheme for a class of positivity- preserving ODEs». En: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462.2074, págs. 3167-3184. | spa |
dc.relation.references | Anderson, RM (1982). «Transmission dynamics and control of infectious disease agents». En: Population Biology of Infectious Diseases. Springer, págs. 149-176. | spa |
dc.relation.references | Anguelov, Roumen y Jean M-S Lubuma (2003). «Nonstandard finite difference met- hod by nonlocal approximation». En: Mathematics and Computers in simulation 61.3-6, págs. 465-475. | spa |
dc.relation.references | Arenas, Abraham J, José Antonio Moraño y Juan Carlos Cortés (2008). «Non-standard numerical method for a mathematical model of RSV epidemiological transmis- sion». En: Computers & Mathematics with Applications 56.3, págs. 670-678. | spa |
dc.relation.references | Beauchemin, Catherine AA y Andreas Handel (2011). «A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead». En: BMC public health 11.1, S7. | spa |
dc.relation.references | Brauer, Fred y Carlos Castillo-Chavez (2001). Mathematical models in population biology and epidemiology. Vol. 40. Springer. | spa |
dc.relation.references | Bruggeman, Jorn y col. (2007). «A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems». En: Applied numerical mathematics 57.1, págs. 36-58. | spa |
dc.relation.references | Chen, Mingxiang y Dominic P Clemence (2006). «Stability properties of a nonstan- dard finite difference scheme for a hantavirus epidemic model». En: Journal of Difference Equations and Applications 12.12, págs. 1243-1256. | spa |
dc.relation.references | Chinviriyasit, Settapat y Wirawan Chinviriyasit (2010). «Numerical modelling of an SIR epidemic model with diffusion». En: Applied Mathematics and Computation 216.2, págs. 395-409. | spa |
dc.relation.references | Codina y TM Martin (2002). «Farmacia hospitalaria». En: Sociedad Española de Farma- cia Hospitalaria 3.2, págs. 1493-2000. | spa |
dc.relation.references | Conway, Jessica M, Bernhard P Konrad y Daniel Coombs (2013). «Stochastic analysis of pre-and postexposure prophylaxis against HIV infection». En: SIAM Journal on Applied Mathematics 73.2, págs. 904-928. | spa |
dc.relation.references | Cooke, Kenneth L y James A Yorke (1973). «Some equations modelling growth pro- cesses and gonorrhea epidemics». En: Mathematical Biosciences 16.1-2, págs. 75-101. | spa |
dc.relation.references | Cooper, Arik y col. (2013). «HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration». En: Nature 498.7454, pág. 376. | spa |
dc.relation.references | De Boer, Rob J (2007). «Understanding the failure of CD8+ T-cell vaccination against simian/human immunodeficiency virus». En: Journal of virology 81.6, págs. 2838-2848. | spa |
dc.relation.references | Descartes (1637). «la"Géométrie"». En: Fizmatlit 1.3. | spa |
dc.relation.references | Dimitrov, Dobromir T y Hristo V Kojouharov (2005). «Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems». En: Ap- plied Mathematics Letters 18.7, págs. 769-774. | spa |
dc.relation.references | — (2007). «Stability-preserving finite-difference methods for general multi-dimensional autonomous dynamical systems». En: Int. J. Numer. Anal. Model 4.2, págs. 282-292 | spa |
dc.relation.references | — (2008). «Nonstandard finite-difference methods for predator–prey models with general functional response». En: Mathematics and Computers in Simulation 78.1, págs. 1-11. | spa |
dc.relation.references | Dixit, Narendra M y col. (2004). «Estimates of intracellular delay and average drug efficacy from viral load data of HIV-infected individuals under antiretroviral the- rapy». En: Antivir Ther 9.2, págs. 237-46. | spa |
dc.relation.references | Doitsh, Gilad y col. (2014). «Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection». En: Nature 505.7484, pág. 509. | spa |
dc.relation.references | Dumont, Yves y Jean M-S Lubuma (2005). «Non-standard finite-difference methods for vibro-impact problems». En: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461.2058, págs. 1927-1950. | spa |
dc.relation.references | Enatsu, Yoichi, Yukihiko Nakata y Yoshiaki Muroya (2010). «Global stability for a class of discrete SIR epidemic models». En: Math. Biosci. Eng 7.2, págs. 347-361. | spa |
dc.relation.references | González-Parra, Gilberto, Abraham J Arenas y Benito M Chen-Charpentier (2010). «Combination of nonstandard schemes and Richardson’s extrapolation to impro- ve the numerical solution of population models». En: Mathematical and Computer Modelling 52.7-8, págs. 1030-1036. | spa |
dc.relation.references | Goto, T y col. (1988). «Entry of human immunodeficiency virus (HIV) into MT-2, human T cell leukemia virus carrier cell line». En: Archives of virology 102.1-2, págs. 29-38. | spa |
dc.relation.references | Gumel, Abba B (2002). «A competitive numerical method for a chemotherapy model of two HIV subtypes». En: Applied Mathematics and Computation 131.2-3, págs. 329-337. | spa |
dc.relation.references | Hale, Jack K y Sjoerd M Verduyn Lunel (2013). Introduction to functional differential equations. Vol. 99. Springer Science & Business Media. | spa |
dc.relation.references | Hethcote, Herbert W. (2000). «The mathematics of infectious diseases». En: SIAM review 42.4, págs. 599-653. | spa |
dc.relation.references | Hethcote, Herbert W y P Van den Driessche (1995). «An SIS epidemic model with variable population size and a delay». En: Journal of mathematical biology 34.2, págs. 177-194. | spa |
dc.relation.references | Ho, David D y col. (1995). «Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection». En: Nature 373.6510, pág. 123. | spa |
dc.relation.references | Jang, Sophia R-J (2007). «On a discrete West Nile epidemic model». En: Computational & Applied Mathematics 26.3, págs. 397-414. | spa |
dc.relation.references | Jansen, H y Edward H Twizell (2002). «An unconditionally convergent discretization of the SEIR model». En: Mathematics and Computers in Simulation 58.2, págs. 147-158. | spa |
dc.relation.references | Jódar, Lucas y col. (2008). «Nonstandard numerical methods for a mathematical model for influenza disease». En: Mathematics and Computers in simulation 79.3, págs. 622-633. | spa |
dc.relation.references | Kakizoe, Yusuke y col. (2015). «A method to determine the duration of the eclipse phase for in vitro infection with a highly pathogenic SHIV strain». En: Scientific reports 5, pág. 10371. | spa |
dc.relation.references | Kermack, William Ogilvy y Anderson G. McKendrick (1927). «A contribution to the mathematical theory of epidemics». En: Proceedings of the royal society of lon- don. Series A, Containing papers of a mathematical and physical character 115.772, págs. 700-721. | spa |
dc.relation.references | Keyfitz, Barbara Lee y Nathan Keyfitz (1997). «The McKendrick partial differential equation and its uses in epidemiology and population study». En: Mathematical and Computer Modelling 26.6, págs. 1-9. | spa |
dc.relation.references | Lambert, J (1973). Computational Methods in Ordinary Differential Equations. John Wi- ley & Sons. | spa |
dc.relation.references | Louzoun, Yoram y Vitaly V Ganusov (2012). «Evolution of viral life-cycle in response to cytotoxic T lymphocyte-mediated immunity». En: Journal of theoretical biology 310, págs. 3-13. | spa |
dc.relation.references | Martcheva, Maia y Olivia Prosper (2013). «Unstable dynamics of vector-borne di- seases: Modeling through delay-differential equations». En: Dynamic models of infectious diseases. Springer, págs. 43-75. | spa |
dc.relation.references | Mickens, Ronald E (1994). Nonstandard finite difference models of differential equations. world scientific. | spa |
dc.relation.references | — (2000). Applications of nonstandard finite difference schemes. World Scientific. | spa |
dc.relation.references | — (2002). «Nonstandard finite difference schemes for differential equations». En: Journal of Difference Equations and Applications 8.9, págs. 823-847. | spa |
dc.relation.references | — (2005). «Dynamic consistency: a fundamental principle for constructing nonstan- dard finite difference schemes for differential equations». En: Journal of difference equations and Applications 11.7, págs. 645-653. | spa |
dc.relation.references | Moghadas, SM y col. (2003). «A positivity-preserving Mickens-type discretization of an epidemic model». En: The Journal of Difference Equations and Applications 9.11, págs. 1037-1051. | spa |
dc.relation.references | Muroya, Yoshiaki y col. (2011). «Permanence and global stability of a class of discrete epidemic models». En: Nonlinear Analysis: Real World Applications 12.4, págs. 2105-2117. | spa |
dc.relation.references | Nelson, Kenrad E y Carolyn Masters Williams (2007). Early history of infectious disease: epidemiology and control of infectious diseases. Vol. 2. Jones & Bartlett Publishers, págs. 3-23. | spa |
dc.relation.references | Noecker, Cecilia y col. (2015). «Simple mathematical models do not accurately pre- dict early SIV dynamics». En: Viruses 7.3, págs. 1189-1217. | spa |
dc.relation.references | Obaid, Hasim A, Rachid Ouifki y Kailash C Patidar (2013). «An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection». En: International Journal of Applied Mathematics and Computer Science 23.2, págs. 357-372. | spa |
dc.relation.references | Pearson, John E, Paul Krapivsky y Alan S Perelson (2011). «Stochastic theory of early viral infection: continuous versus burst production of virions». En: PLoS compu- tational biology 7.2, e1001058. | spa |
dc.relation.references | Perelson, Alan S (2002). «Modelling viral and immune system dynamics». En: Nature Reviews Immunology 2.1, pág. 28 | spa |
dc.relation.references | Platt, Emily J y col. (2010). «Rapid dissociation of HIV-1 from cultured cells severely limits infectivity assays, causes the inactivation ascribed to entry inhibitors, and masks the inherently high level of infectivity of virions». En: Journal of virology 84.6, págs. 3106-3110. | spa |
dc.relation.references | Rosen, George (2015). A history of public health. JHU Press. | spa |
dc.relation.references | Sekiguchi, Masaki (2009). «Permanence of some discrete epidemic models». En: In- ternational Journal of Biomathematics 2.04, págs. 443-461. | spa |
dc.relation.references | Stafford, Max A y col. (2000). «Modeling plasma virus concentration during primary HIV infection». En: Journal of theoretical biology 203.3, págs. 285-301. | spa |
dc.relation.references | Toro-Zapata, Hernán, Angélica Caicedo-Casso y Sunmi Lee (2018). «The Role of Immune Response in Optimal HIV Treatment Interventions». En: Processes 6.8, pág. 102. | spa |
dc.relation.references | V Culshaw, Rebecca y Shigui Ruan (2000). «A delay-di erential equation model of HIV infection of CD4 T-cells». En: journal; Mathematical Biosciences 165 (2000) 27 ± 39; 1118. | spa |
dc.relation.references | Volterra, Vito (1928). Sur la théorie mathématique des phénomenes héréditaires. Journal de mathématiques pures et Appliquées, págs. 249-298. | spa |
dc.relation.references | Yuan, Yuan y Linda JS Allen (2011). «Stochastic models for virus and immune system dynamics». En: Mathematical biosciences 234.2, págs. 84-94. | spa |
dc.rights | Copyright Universidad de Córdoba, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.keywords | model | spa |
dc.subject.keywords | differences | spa |
dc.subject.keywords | finites | spa |
dc.subject.proposal | modelo | spa |
dc.subject.proposal | diferencias | spa |
dc.subject.proposal | finitas | spa |
dc.title | Soluciones numéricas de un modelo sobre la dinámica del VIH con delay usando un esquema de diferencias finitas no estándar | spa |
dc.type | Otros | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_1843 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/other | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_16ec | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: