Publicación:
Soluciones numéricas de un modelo sobre la dinámica del VIH con delay usando un esquema de diferencias finitas no estándar

dc.contributor.authorNaranjo Garcés, Jhon Jairospa
dc.date.accessioned2019-11-18T17:48:37Zspa
dc.date.available2019-11-18T17:48:37Zspa
dc.date.issued2019-08-20spa
dc.description.abstractEn este trabajo planteamos un nuevo modelo por medio de un conjunto de ecuaciones diferenciales con retardo para describir la infección intracelular por VIH, donde existen dos poblaciones de células, las que permiten que el virus se multiplique y las que están pasando al modo de producción de virus. El modelo es formulado de tal manera que existe un delay fijo durante la fase de eclipse. Las simulaciones numéricas son realizadas con un esquema numérico diseñado bajo la metodología de los esquemas de diferencias no estándar el cual preserva las propiedades del modelo continuo.spa
dc.description.degreelevelPregradospa
dc.description.degreenameEstadístico(a)spa
dc.description.tableofcontents1. INTRODUCCIÓN 1spa
dc.description.tableofcontents2. MODELOS EPIDEMIOLÓGICOS 5spa
dc.description.tableofcontents2.1. Preliminares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5spa
dc.description.tableofcontents2.2. Modelo SIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5spa
dc.description.tableofcontents2.3. Modelos matemáticos para el VIH . . . . . . . . . . . . . . . . . . . . . 7spa
dc.description.tableofcontents3. PROPIEDADES DEL MODELO CONTINUO 13spa
dc.description.tableofcontents3.1. Positividad y acotamiento . . . . . . . . . . . . . . . . . . . . . . . . . . 13spa
dc.description.tableofcontents3.3. Estabilidad Local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20spa
dc.description.tableofcontents4. DISEÑO Y PROPIEDADES DEL ESQUEMA DISCRETO 25spa
dc.description.tableofcontents4.1. Puntos de equilibrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27spa
dc.description.tableofcontents4.2. Estabilidad local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28spa
dc.description.tableofcontents4.3. Simulaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35spa
dc.description.tableofcontents5. CONCLUSIONES 39spa
dc.description.tableofcontentsBibliografía 41spa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/2200spa
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.programEstadísticaspa
dc.relation.referencesAlexander, Murray E, Arthur R Summers y Seyed M Moghadas (2006). «Neimark– Sacker bifurcations in a non-standard numerical scheme for a class of positivity- preserving ODEs». En: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462.2074, págs. 3167-3184.spa
dc.relation.referencesAnderson, RM (1982). «Transmission dynamics and control of infectious disease agents». En: Population Biology of Infectious Diseases. Springer, págs. 149-176.spa
dc.relation.referencesAnguelov, Roumen y Jean M-S Lubuma (2003). «Nonstandard finite difference met- hod by nonlocal approximation». En: Mathematics and Computers in simulation 61.3-6, págs. 465-475.spa
dc.relation.referencesArenas, Abraham J, José Antonio Moraño y Juan Carlos Cortés (2008). «Non-standard numerical method for a mathematical model of RSV epidemiological transmis- sion». En: Computers & Mathematics with Applications 56.3, págs. 670-678.spa
dc.relation.referencesBeauchemin, Catherine AA y Andreas Handel (2011). «A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead». En: BMC public health 11.1, S7.spa
dc.relation.referencesBrauer, Fred y Carlos Castillo-Chavez (2001). Mathematical models in population biology and epidemiology. Vol. 40. Springer.spa
dc.relation.referencesBruggeman, Jorn y col. (2007). «A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems». En: Applied numerical mathematics 57.1, págs. 36-58.spa
dc.relation.referencesChen, Mingxiang y Dominic P Clemence (2006). «Stability properties of a nonstan- dard finite difference scheme for a hantavirus epidemic model». En: Journal of Difference Equations and Applications 12.12, págs. 1243-1256.spa
dc.relation.referencesChinviriyasit, Settapat y Wirawan Chinviriyasit (2010). «Numerical modelling of an SIR epidemic model with diffusion». En: Applied Mathematics and Computation 216.2, págs. 395-409.spa
dc.relation.referencesCodina y TM Martin (2002). «Farmacia hospitalaria». En: Sociedad Española de Farma- cia Hospitalaria 3.2, págs. 1493-2000.spa
dc.relation.referencesConway, Jessica M, Bernhard P Konrad y Daniel Coombs (2013). «Stochastic analysis of pre-and postexposure prophylaxis against HIV infection». En: SIAM Journal on Applied Mathematics 73.2, págs. 904-928.spa
dc.relation.referencesCooke, Kenneth L y James A Yorke (1973). «Some equations modelling growth pro- cesses and gonorrhea epidemics». En: Mathematical Biosciences 16.1-2, págs. 75-101.spa
dc.relation.referencesCooper, Arik y col. (2013). «HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration». En: Nature 498.7454, pág. 376.spa
dc.relation.referencesDe Boer, Rob J (2007). «Understanding the failure of CD8+ T-cell vaccination against simian/human immunodeficiency virus». En: Journal of virology 81.6, págs. 2838-2848.spa
dc.relation.referencesDescartes (1637). «la"Géométrie"». En: Fizmatlit 1.3.spa
dc.relation.referencesDimitrov, Dobromir T y Hristo V Kojouharov (2005). «Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems». En: Ap- plied Mathematics Letters 18.7, págs. 769-774.spa
dc.relation.references— (2007). «Stability-preserving finite-difference methods for general multi-dimensional autonomous dynamical systems». En: Int. J. Numer. Anal. Model 4.2, págs. 282-292spa
dc.relation.references— (2008). «Nonstandard finite-difference methods for predator–prey models with general functional response». En: Mathematics and Computers in Simulation 78.1, págs. 1-11.spa
dc.relation.referencesDixit, Narendra M y col. (2004). «Estimates of intracellular delay and average drug efficacy from viral load data of HIV-infected individuals under antiretroviral the- rapy». En: Antivir Ther 9.2, págs. 237-46.spa
dc.relation.referencesDoitsh, Gilad y col. (2014). «Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection». En: Nature 505.7484, pág. 509.spa
dc.relation.referencesDumont, Yves y Jean M-S Lubuma (2005). «Non-standard finite-difference methods for vibro-impact problems». En: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461.2058, págs. 1927-1950.spa
dc.relation.referencesEnatsu, Yoichi, Yukihiko Nakata y Yoshiaki Muroya (2010). «Global stability for a class of discrete SIR epidemic models». En: Math. Biosci. Eng 7.2, págs. 347-361.spa
dc.relation.referencesGonzález-Parra, Gilberto, Abraham J Arenas y Benito M Chen-Charpentier (2010). «Combination of nonstandard schemes and Richardson’s extrapolation to impro- ve the numerical solution of population models». En: Mathematical and Computer Modelling 52.7-8, págs. 1030-1036.spa
dc.relation.referencesGoto, T y col. (1988). «Entry of human immunodeficiency virus (HIV) into MT-2, human T cell leukemia virus carrier cell line». En: Archives of virology 102.1-2, págs. 29-38.spa
dc.relation.referencesGumel, Abba B (2002). «A competitive numerical method for a chemotherapy model of two HIV subtypes». En: Applied Mathematics and Computation 131.2-3, págs. 329-337.spa
dc.relation.referencesHale, Jack K y Sjoerd M Verduyn Lunel (2013). Introduction to functional differential equations. Vol. 99. Springer Science & Business Media.spa
dc.relation.referencesHethcote, Herbert W. (2000). «The mathematics of infectious diseases». En: SIAM review 42.4, págs. 599-653.spa
dc.relation.referencesHethcote, Herbert W y P Van den Driessche (1995). «An SIS epidemic model with variable population size and a delay». En: Journal of mathematical biology 34.2, págs. 177-194.spa
dc.relation.referencesHo, David D y col. (1995). «Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection». En: Nature 373.6510, pág. 123.spa
dc.relation.referencesJang, Sophia R-J (2007). «On a discrete West Nile epidemic model». En: Computational & Applied Mathematics 26.3, págs. 397-414.spa
dc.relation.referencesJansen, H y Edward H Twizell (2002). «An unconditionally convergent discretization of the SEIR model». En: Mathematics and Computers in Simulation 58.2, págs. 147-158.spa
dc.relation.referencesJódar, Lucas y col. (2008). «Nonstandard numerical methods for a mathematical model for influenza disease». En: Mathematics and Computers in simulation 79.3, págs. 622-633.spa
dc.relation.referencesKakizoe, Yusuke y col. (2015). «A method to determine the duration of the eclipse phase for in vitro infection with a highly pathogenic SHIV strain». En: Scientific reports 5, pág. 10371.spa
dc.relation.referencesKermack, William Ogilvy y Anderson G. McKendrick (1927). «A contribution to the mathematical theory of epidemics». En: Proceedings of the royal society of lon- don. Series A, Containing papers of a mathematical and physical character 115.772, págs. 700-721.spa
dc.relation.referencesKeyfitz, Barbara Lee y Nathan Keyfitz (1997). «The McKendrick partial differential equation and its uses in epidemiology and population study». En: Mathematical and Computer Modelling 26.6, págs. 1-9.spa
dc.relation.referencesLambert, J (1973). Computational Methods in Ordinary Differential Equations. John Wi- ley & Sons.spa
dc.relation.referencesLouzoun, Yoram y Vitaly V Ganusov (2012). «Evolution of viral life-cycle in response to cytotoxic T lymphocyte-mediated immunity». En: Journal of theoretical biology 310, págs. 3-13.spa
dc.relation.referencesMartcheva, Maia y Olivia Prosper (2013). «Unstable dynamics of vector-borne di- seases: Modeling through delay-differential equations». En: Dynamic models of infectious diseases. Springer, págs. 43-75.spa
dc.relation.referencesMickens, Ronald E (1994). Nonstandard finite difference models of differential equations. world scientific.spa
dc.relation.references— (2000). Applications of nonstandard finite difference schemes. World Scientific.spa
dc.relation.references— (2002). «Nonstandard finite difference schemes for differential equations». En: Journal of Difference Equations and Applications 8.9, págs. 823-847.spa
dc.relation.references— (2005). «Dynamic consistency: a fundamental principle for constructing nonstan- dard finite difference schemes for differential equations». En: Journal of difference equations and Applications 11.7, págs. 645-653.spa
dc.relation.referencesMoghadas, SM y col. (2003). «A positivity-preserving Mickens-type discretization of an epidemic model». En: The Journal of Difference Equations and Applications 9.11, págs. 1037-1051.spa
dc.relation.referencesMuroya, Yoshiaki y col. (2011). «Permanence and global stability of a class of discrete epidemic models». En: Nonlinear Analysis: Real World Applications 12.4, págs. 2105-2117.spa
dc.relation.referencesNelson, Kenrad E y Carolyn Masters Williams (2007). Early history of infectious disease: epidemiology and control of infectious diseases. Vol. 2. Jones & Bartlett Publishers, págs. 3-23.spa
dc.relation.referencesNoecker, Cecilia y col. (2015). «Simple mathematical models do not accurately pre- dict early SIV dynamics». En: Viruses 7.3, págs. 1189-1217.spa
dc.relation.referencesObaid, Hasim A, Rachid Ouifki y Kailash C Patidar (2013). «An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection». En: International Journal of Applied Mathematics and Computer Science 23.2, págs. 357-372.spa
dc.relation.referencesPearson, John E, Paul Krapivsky y Alan S Perelson (2011). «Stochastic theory of early viral infection: continuous versus burst production of virions». En: PLoS compu- tational biology 7.2, e1001058.spa
dc.relation.referencesPerelson, Alan S (2002). «Modelling viral and immune system dynamics». En: Nature Reviews Immunology 2.1, pág. 28spa
dc.relation.referencesPlatt, Emily J y col. (2010). «Rapid dissociation of HIV-1 from cultured cells severely limits infectivity assays, causes the inactivation ascribed to entry inhibitors, and masks the inherently high level of infectivity of virions». En: Journal of virology 84.6, págs. 3106-3110.spa
dc.relation.referencesRosen, George (2015). A history of public health. JHU Press.spa
dc.relation.referencesSekiguchi, Masaki (2009). «Permanence of some discrete epidemic models». En: In- ternational Journal of Biomathematics 2.04, págs. 443-461.spa
dc.relation.referencesStafford, Max A y col. (2000). «Modeling plasma virus concentration during primary HIV infection». En: Journal of theoretical biology 203.3, págs. 285-301.spa
dc.relation.referencesToro-Zapata, Hernán, Angélica Caicedo-Casso y Sunmi Lee (2018). «The Role of Immune Response in Optimal HIV Treatment Interventions». En: Processes 6.8, pág. 102.spa
dc.relation.referencesV Culshaw, Rebecca y Shigui Ruan (2000). «A delay-di erential equation model of HIV infection of CD4 T-cells». En: journal; Mathematical Biosciences 165 (2000) 27 ± 39; 1118.spa
dc.relation.referencesVolterra, Vito (1928). Sur la théorie mathématique des phénomenes héréditaires. Journal de mathématiques pures et Appliquées, págs. 249-298.spa
dc.relation.referencesYuan, Yuan y Linda JS Allen (2011). «Stochastic models for virus and immune system dynamics». En: Mathematical biosciences 234.2, págs. 84-94.spa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.subject.keywordsmodelspa
dc.subject.keywordsdifferencesspa
dc.subject.keywordsfinitesspa
dc.subject.proposalmodelospa
dc.subject.proposaldiferenciasspa
dc.subject.proposalfinitasspa
dc.titleSoluciones numéricas de un modelo sobre la dinámica del VIH con delay usando un esquema de diferencias finitas no estándarspa
dc.typeOtrosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_1843spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/otherspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
TESIS_NARANJO.pdf
Tamaño:
747.37 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicaciónNaranjo.pdf
Tamaño:
511.81 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: