Publicación:
Análisis químico y evaluación de la actividad biológica de extractos orgánicos de holothuria spp. frente a patógenos intrahospitalarios en Montería, Colombia

dc.contributor.advisorSantafé Patiño, Gilmar
dc.contributor.advisorQuirós-Rodríguez, Jorge A.
dc.contributor.authorJulio Berrio, Mirleth
dc.contributor.juryOviedo Zumaqué, Luis Eliécer
dc.contributor.juryValle Zapata, Hernan Alonso
dc.date.accessioned2025-02-05T17:13:39Z
dc.date.available2026-12-31
dc.date.available2025-02-05T17:13:39Z
dc.date.issued2025-02-03
dc.description.abstractLa biodiversidad marina ha dado lugar a una extraordinaria variedad de compuestos químicos, muchos de ellos con propiedades biológicas excepcionales. Estos metabolitos secundarios, le confieren ventajas adaptativas a los organismos marinos, las cuales han sido utilizadas por su gran potencial en áreas como la medicina, debido a sus propiedades anticancerígenas, antimicrobianas, antifúngicas y antioxidantes. En este estudio se identificaron estructuralmente 23 compuestos mediante la cromatografía de gases acoplado a espectrometría de masas de impacto electrónico. De los 23 compuestos aislados 22 correspondían a ácidos grasos saturados e insaturados y uno de naturaleza esterólica. Por otro lado, mediante la evaluación de la actividad antioxidante del extracto etanólico de la especie Holothuria grisea frente al radical catiónico ABTS+● se determinó el valor de IC50 de 235,32 μg/mL. En cuanto al ensayo antioxidante por el método del radical DPPH● se determinó un IC50 de 1604,27 μg/mL. La evaluación de la actividad antibacteriana de las dos especies de holotúridos se realizó frente a los aislados clínicos Gram positivas (Staphylococcus aureus, Enterococcus faecium) y Gram negativas (Escherichia coli, Stenotrophomonas maltophilia) por el método de microdilución. El extracto etanólico de H. grisea presentó porcentajes significativos a 2000 mg/L reduciendo el crecimiento de estos microorganismos, destacándose la mayor sensibilidad en la especie S. maltophilia con un porcentaje de reducción de crecimiento del 100% a 1250 mg/L, seguido de E. coli y E. faecium con porcentajes de reducción de 99,34% y 91,85% respectivamente. Por su parte, el extracto etanólico de H. princeps, no presentó una considerable inhibición del crecimiento en estas cepas bacterianas. Para la evaluación de la actividad antifúngica frente a las cepas del género Candida (C. albicans, C. tropicalis, C. glabrata y C. auris), a nivel general los mejores resultados de inhibición de crecimiento se mostraron a mayores concentraciones de los extractos etanólicos (desde 2500 mg/L). Se evidenció que los aislados clínicos C. tropicalis y C. glabrata, fueron las cepas fúngicas más susceptible al extracto etanólico de H. grisea, presentando una reducción de crecimiento del 100% a 2500 mg/L y para H. princeps la cepa fúngica más suceptible fue C. glabrata, la cual presentó una reducción de crecimiento de 95,7% a 5000 mg/L.spa
dc.description.abstractMarine biodiversity has led to an extraordinary variety of chemical compounds, many of them with exceptional biological properties. These secondary metabolites confer adaptive advantages to marine organisms, which have been used for their great potential in areas such as medicine, due to their anticancer, antimicrobial, antifungal and antioxidant properties. In this study, 23 compounds were structurally identified by gas chromatography coupled to electron impact mass spectrometry. Of the 23 compounds isolated, 22 corresponded to saturated and unsaturated fatty acids and one of a sterol nature. On the other hand, by evaluating the antioxidant activity of the ethanolic extract of the species Holothuria grisea against the cationic radical ABTS+●, the IC50 value of 235.32 μg/mL was determined. Regarding the antioxidant assay by the DPPH● radical method, an IC50 of 1604.27 μg/mL was determined. The evaluation of the antibacterial activity of the two species of sea cucumbers was carried out against the Gram-positive (Staphylococcus aureus, Enterococcus faecium) and Gram-negative (Escherichia coli, Stenotrophomonas maltophilia) clinical isolates by the microdilution method. The ethanolic extract of H. grisea presented significant percentages at 2000 mg/L, reducing the growth of these microorganisms, with the greatest sensitivity being highlighted in the S. maltophilia species with a growth reduction percentage of 100% at 1250 mg/L, followed by E. coli and E. faecium with reduction percentages of 99.34% and 91.85%, respectively. On the other hand, the ethanolic extract of H. princeps did not present a considerable inhibition of growth in these bacterial strains. For the evaluation of antifungal activity against strains of the genus Candida (C. albicans, C. tropicalis, C. glabrata and C. auris), in general the best results of growth inhibition were shown Marine biodiversity has led to an extraordinary variety of chemical compounds, many of them with exceptional biological properties. These secondary metabolites confer adaptive advantages to marine organisms, which have been used for their great potential in areas such as medicine, due to their anticancer, antimicrobial, antifungal and antioxidant properties. In this study, 23 compounds were structurally identified by gas chromatography coupled to electron impact mass spectrometry. Of the 23 compounds isolated, 22 corresponded to saturated and unsaturated fatty acids and one of a sterol nature. On the other hand, by evaluating the antioxidant activity of the ethanolic extract of the species Holothuria grisea against the cationic radical ABTS+●, the IC50 value of 235.32 μg/mL was determined. Regarding the antioxidant assay by the DPPH● radical method, an IC50 of 1604.27 μg/mL was determined. The evaluation of the antibacterial activity of the two species of sea cucumbers was carried out against the Gram-positive (Staphylococcus aureus, Enterococcus faecium) and Gram-negative (Escherichia coli, Stenotrophomonas maltophilia) clinical isolates by the microdilution method. The ethanolic extract of H. grisea presented significant percentages at 2000 mg/L, reducing the growth of these microorganisms, with the greatest sensitivity being highlighted in the S. maltophilia species with a growth reduction percentage of 100% at 1250 mg/L, followed by E. coli and E. faecium with reduction percentages of 99.34% and 91.85%, respectively. On the other hand, the ethanolic extract of H. princeps did not present a considerable inhibition of growth in these bacterial strains. For the evaluation of antifungal activity against strains of the genus Candida (C. albicans, C. tropicalis, C. glabrata and C. auris), in general the best results of growth inhibition were shown Marine biodiversity has led to an extraordinary variety of chemical compounds, many of them with exceptional biological properties. These secondary metabolites confer adaptive advantages to marine organisms, which have been used for their great potential in areas such as medicine, due to their anticancer, antimicrobial, antifungal and antioxidant properties. In this study, 23 compounds were structurally identified by gas chromatography coupled to electron impact mass spectrometry. Of the 23 compounds isolated, 22 corresponded to saturated and unsaturated fatty acids and one of a sterol nature. On the other hand, by evaluating the antioxidant activity of the ethanolic extract of the species Holothuria grisea against the cationic radical ABTS+●, the IC50 value of 235.32 μg/mL was determined. Regarding the antioxidant assay by the DPPH● radical method, an IC50 of 1604.27 μg/mL was determined. The evaluation of the antibacterial activity of the two species of sea cucumbers was carried out against the Gram-positive (Staphylococcus aureus, Enterococcus faecium) and Gram-negative (Escherichia coli, Stenotrophomonas maltophilia) clinical isolates by the microdilution method. The ethanolic extract of H. grisea presented significant percentages at 2000 mg/L, reducing the growth of these microorganisms, with the greatest sensitivity being highlighted in the S. maltophilia species with a growth reduction percentage of 100% at 1250 mg/L, followed by E. coli and E. faecium with reduction percentages of 99.34% and 91.85%, respectively. On the other hand, the ethanolic extract of H. princeps did not present a considerable inhibition of growth in these bacterial strains. For the evaluation of antifungal activity against strains of the genus Candida (C. albicans, C. tropicalis, C. glabrata and C. auris), in general the best results of growth inhibition were shown at higher concentrations of the ethanolic extracts (from 2500 mg/L). It was evidenced that the clinical isolates C. tropicalis and C. glabrata were the most susceptible fungal strains to the ethanolic extract of H. grisea, presenting a 100% reduction in growth at 2500 mg/L, and for H. princeps the most susceptible fungal strain was C. glabrata, which presented a 95.7% reduction in growth at 5000 mg/L.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Químicas
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsINTRODUCCIÓN ..............................................15spa
dc.description.tableofcontents1. OBJETIVOS ...................................................19spa
dc.description.tableofcontents1.1 OBJETIVO GENERAL ...........................................19spa
dc.description.tableofcontents1.2 OBJETIVOS ESPECÍFICOS ................................19spa
dc.description.tableofcontents2. MARCO TEÓRICO ............................................20spa
dc.description.tableofcontents2.1 MARCO REFERENCIAL ........................................21spa
dc.description.tableofcontents2.2 PHYLUM ECHINODERMATA ...............24spa
dc.description.tableofcontents2.3 CLASE Holothuroidea ............................25spa
dc.description.tableofcontents2.3.1 Descripción general y taxonomía de la especie de Holothuria grisea. .........27spa
dc.description.tableofcontents2.3.2 Descripción general y taxonomía de la especie de Holothuria princeps. .........28spa
dc.description.tableofcontents2.4 ENFERMEDADES CAUSADAS POR MICROORGANISMOS Y EFECTOS DEL PROCESO DE OXIDACIÓN ..........30spa
dc.description.tableofcontents2.4.1 Estrés oxidativo ...................................30spa
dc.description.tableofcontents2.4.2 Enfermedades causadas por microorganismos ..............................31spa
dc.description.tableofcontents2.4.3 Infecciones Asociadas a la Atención en Salud (IAAS) de microorganismos patógenos .......................... 32spa
dc.description.tableofcontents3. MATERIALES Y MÉTODOS ...............34spa
dc.description.tableofcontents3.1 RECOLECCIÓN DEL MATERIAL BIOLÓGICO ..............34spa
dc.description.tableofcontents3.2 PREPARACIÓN DEL MATERIAL BIOLÓGICO ................34spa
dc.description.tableofcontents3.3 ESTUDIO QUÍMICO DE H. grisea MEDIANTE EL USO DE TÉCNICAS CROMATOGRÁFICAS COMO CROMATOGRAFÍA EN COLUMNA (CC), CROMATOGRAFÍA EN CAPA DELGADA (CCD) y CGAR-EM ......35spa
dc.description.tableofcontents3.3.1 FRACCIONAMIENTO CROMATOGRÁFICO DE H. grisea ........................35spa
dc.description.tableofcontents3.3.2 DERIVATIZACIÓN DE ÁCIDOS GRASOS ...........................................35spa
dc.description.tableofcontents3.3.3 IDENTIFICACIÓN QUÍMICA DE LOS METABOLITOS SECUNDARIOS MAYORITARIOS AISLADOS DE H. grisea, MEDIANTE CGAR-EM .............36spa
dc.description.tableofcontents3.4 EVALUACIÓN DE LA ACTIVIDAD ANTIOXIDANTE FRENTE A LOS RADICALES ABTS+•, DPPH• DEL EXTRACTO ETANÓLICO DE LA ESPECIE H. grisea ...............36spa
dc.description.tableofcontents3.4.1 Protocolo del ensayo ABTS+• ............................37spa
dc.description.tableofcontents3.4.2 Protocolo del ensayo DPPH• ..............................39spa
dc.description.tableofcontents3.5 ACTIVIDAD ANTIBACTERIANA Y ANTIFÚNGICA DE LOS EXTRACTOS ETANÓLICOS DE LAS ESPECIES Holothuria princeps Y Holothuria grisea SOBRE LOS AISLADOS CLÍNICOS INTRAHOSPITALARIOS .....40spa
dc.description.tableofcontents3.5.1 Evaluación de la actividad antibacteriana ............40spa
dc.description.tableofcontents3.5.1.1 Pruebas de susceptibilidad antibacteriana ..................41spa
dc.description.tableofcontents3.5.2 Evaluación de la actividad antifúngica ............................43spa
dc.description.tableofcontents3.5.2.1 Pruebas de susceptibilidad antifúngica ..............................43spa
dc.description.tableofcontents3.6 ANÁLISIS ESTADÍSTICO ...............................44spa
dc.description.tableofcontents4. RESULTADOS Y ANÁLISIS DE RESULTADOS .......................46spa
dc.description.tableofcontents4.1 IDENTIFICACIÓN QUÍMICA DE LOS METABOLITOS SECUNDARIOS MAYORITARIOS AISLADOS DE H. grisea, MEDIANTE CGAR-EM. ................................................................46spa
dc.description.tableofcontents4.1.1 Compuestos aislados de H. grisea ................................46spa
dc.description.tableofcontents4.1.1.1 Compuesto HG4 de H. grisea ...........................48spa
dc.description.tableofcontents4.1.1.2 Compuesto HG11 de H. grisea .........................50
dc.description.tableofcontents4.1.1.3 Compuesto HG14 de H. grisea .............................52
dc.description.tableofcontents4.1.1.4 Compuesto HG19 de H. grisea .................................55
dc.description.tableofcontents4.2 EVALUACIÓN DE LA ACTIVIDAD ANTIOXIDANTE FRENTE A LOS RADICALES ABTS+• y DPPH• DEL EXTRACTO ETANÓLICO DE LA ESPECIE H. grisea. ..........64
dc.description.tableofcontents4.2.1 Evaluación de la actividad antioxidante frente al radical ABTS+• del extracto etanólico de la especie H. grisea. ...................................65
dc.description.tableofcontents4.2.2 Evaluación de la actividad antioxidante frente al radical DPPH• del extracto etanólico de la especie H. grisea. ...................................67
dc.description.tableofcontents4.3 EVALUACIÓN DE LA ACTIVIDAD ANTIMICROBIANA DE LOS EXTRACTOS ETANÓLICOS DE LAS ESPECIES Holothuria princeps y Holothuria grisea SOBRE LOS AISLADOS CLÍNICOS INTRAHOSPITALARIOS. .................................................................72
dc.description.tableofcontents4.3.1 Ensayo de la actividad antibacteriana de las especies Holothuria princeps y Holothuria grisea sobre los aislados clínicos intrahospitalarios .............................72
dc.description.tableofcontents4.3.2 Ensayo de la actividad antifúngica de las especies Holothuria grisea y Holothuria princeps sobre los aislados clínicos intrahospitalarios ...................79
dc.description.tableofcontents5. CONCLUSIONES ............................................87
dc.description.tableofcontents6. BIBLIOGRAFIA ......................................89
dc.description.tableofcontents7. ANEXOS ......................................................... 102
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9007
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Ciencias Químicas
dc.relation.referencesAhmed, H. O., Mahdy, A., Nasser, S. A. M., El-Wakeil, K. F. Abd, Obuid-Allah, A. H., & Hassan, M. M. (2022). Biochemical composition of some Echinodermata (Holothuroidea, Echinoidea) from the Red Sea, Egypt. Brazilian Journal of Biology, 82(e246309), 1-7. doi: 10.1590/1519-6984.246309.
dc.relation.referencesAlvarado, J. J., Solís-Marín, F. A., & Ahearn, C. G. (2010). Echinoderm (Echinodermata) diversity in the Pacific coast of Central America. Marine Biodiversity, 40, 45-56.
dc.relation.referencesÁlvarez, C., Morales, S., Rodríguez, G., Rodríguez, J., Roberto, E., Picot, C., Ceballos, A., Parra, C., Le Pape, P. (2023). The mortality attributable to Candidemia in C. auris is higher than that in other Candida species: Myth or Reality? Journal of Fungi, 9(4), 430. https://doi.org/10.3390/jof9040430
dc.relation.referencesAman, S.; Mittal, D.; Shriwastav, S.; Tuli, H.S.; Chauhan, S.; Singh, P.; Sharma, S.; Saini, R.V.; Kaur, N.; Saini, A.K. (2022). Prevalence of multidrug-resistant strains in device associated nosocomial infection and their in vitro killing by nanocomposites. Ann. Med. Surg. 2022, 78, 103687.
dc.relation.referencesArdiansyah, A., Bayu, A., Wulandari, D., & Putra, M. Y. (2022). Fatty acid from sea cucumber: Mini review. In AIP Conference Proceedings (Vol. 2641, No. 1, p. 020022). AIP Publishing LLC.
dc.relation.referencesArdiansyah, A., Nugroho, A., Rasyid, A., Putra, M.Y., (2021). Screening of antioxidant and antiacne activities in 16 sea cucumbers in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 695, 012048. https://doi.org/10.1088/1755-1315/695/1/012048.
dc.relation.referencesArizza, V. y otros 5 autores (2013). Gender differences in the immune system activities of sea urchin Paracentrotus lividus. Comparative Biochemistry and Physiology, Part A: 164, 447–455.
dc.relation.referencesAties López, L., Duret Gala, Y., Tabares Tabío, M., & Fernández Pérez, S. (2017). Los enzibióticos como alternativa terapéutica contra las enfermedades bacterianas. Medisan, 21(10), 3077-3083.
dc.relation.referencesAvato, P. (2020). Editorial to the Special Issue—“Natural products and drug discovery”. Molecules , 25, 1128.
dc.relation.referencesAyobami, O.; Willrich, N.; Harder, T.; Okeke, I.N.; Eckmanns, T.; Markwart, R. (2019). The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: A systematic review and meta-analysis. Emerg. Microbes Infect. 8, 1747–1759.
dc.relation.referencesBaharara, J., Amini, E., Kerachian, M. A., & Soltani, M. (2014). The osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells. Iranian journal of basic medical sciences, 17(8), 626.
dc.relation.referencesBahrami Y, Zhang W, Franco C MM. (2018) Distribution of saponins in the sea cucumber Holothuria lessoni; the body wall versus the viscera, and their biological activities. Mar Drugs 16:1–30. https:// doi. org/ 10. 3390/md161 10423
dc.relation.referencesBahrami, Y.; Franco, C.M. (2016) Acetylated triterpene glycosides and their biological activity from holothuroidea reported in the past six decades. Mar. Drugs, 14, 147. https://doi.org/10.3390/md14080147
dc.relation.referencesBatra, B., Sharma, D., Bose, D., Parthasarthy, V., & Sarkar, A. (2023). Implications of bioprospecting marine diversity and sustainable production of bioactive compounds. In Marine Antioxidants (pp. 27-43). Academic Press.
dc.relation.referencesBenavides-Serrato, M., Borrero-Pérez, G. H., Cantera K, J. R., Cohen-Rengifo, M., & Neira, R. (2013). Echinoderms of Colombia. In Echinoderm research and diversity in Latin America (pp. 145-182). Springer, Berlin, Heidelberg.
dc.relation.referencesBlunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H., & Prinsep, M. R. (2012). Marine natural products. Natural product reports, 29(2), 144-222.
dc.relation.referencesBoonsilp, S.; Homkaew, A.; Phumisantiphong, U.; Nutalai, D.; Wongsuk, T. (2021). Species distribution, antifungal susceptibility, and molecular epidemiology of Candida species causing candidemia in a tertiary care hospital in Bangkok, Thailand. J. Fungi 2021, 7, 577.
dc.relation.referencesBordbar, S., Anwar, F., Saari, N. (2011). High-value components and bioactives from sea cucumbers for functional foods A review. Marine Drugs 9:1761-1805
dc.relation.referencesBorrero-Pérez G.H., M. Benavides-Serrato y C.M. Diaz-Sanchez (2012). Equinodermos del Caribe colombiano II: Echinoidea y Holothuroidea. Serie de Publicaciones Especiales de Invemar No. 30. Santa Marta, 250 p. ISBN 978-958-8448-52-7
dc.relation.referencesCampos Péret, V. A., Reis, R. C. F. M., Braga, S. F. P., Benedetti, M. D., Caldas, I. S., Carvalho, D. T., Santana, L. F. de A., Johann, S., & Souza, T. B. de. (2023). New miconazole-based azoles derived from eugenol show activity against Candida spp. and Cryptococcus gattii by inhibiting the fungal ergosterol biosynthesis. European Journal of Medicinal Chemistry, 256(2023), 115436.
dc.relation.referencesCarletti, A.; Cardoso, C.; Lobo-Arteaga, J.; Sales, S.; Juliao, D.; Ferreira, I.; Chainho, P.; Dionísio, M.A.; Cardoso, J., Nakayama, D. G., Sousa, E., & Pinto, E. (2020). Marine-derived compounds and prospects for their antifungal application. Molecules, 25(24), 5856.
dc.relation.referencesCenters for Disease Control. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019.
dc.relation.referencesContreras, O. I., Angulo, A. A., & Santafé, G. G. (2022). Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels. Molecules, 27(22). https://doi.org/10.3390/molecules27228004.
dc.relation.referencesCortés, J. A., Ruiz, J. F., Melgarejo-Moreno, L. N., & Lemos, E. V. (2020). Candidemia en Colombia. Biomédica, 40(1), 195. https://doi.org/10.7705/biomedica.4400.
dc.relation.referencesCusimano, M. G., Spinello, A., Barone, G., Schillaci, D., Cascioferro, S., Magistrato, A., Parrino, B., Arizza, V., & Vitale, M. (2019). A Synthetic derivative of antimicrobial peptide Holothuroidin 2 from Mediterranean Sea Cucumber (Holothuria tubulosa) in the control of Listeria monocytogenes. Marine drugs, 17(3), 159.
dc.relation.referencesCutress, B. M. (1996). Changes in dermal ossicles during somatic growth in Caribbean littoral sea cucumbers (Echinoidea: Holothuroidea: Aspidochirotida). Bulletin of Marine Science, 58(1), 44-116.
dc.relation.referencesDarya, M., Sajjadi, M.M., Yousefzadi, M., Sourinejad, I. and Zarei, M., (2020). Antifouling and antibacterial activities of bioactive extracts from different organs of the sea cucumber Holothuria leucospilota. Helgoland Marine Research, 74(1), 4. https://doi.org/10.1186/s10152-020-0536-8.
dc.relation.referencesDe Oliveira, D.; Forde, B.; Kidd, T.; Harris, P.; Schembri, M.; Beatson, S.; Paterson, D.; Walker, M. (2020). Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33, e00181-19.
dc.relation.referencesDellière, S., Sze Wah Wong, S., & Aimanianda, V. (2020). Soluble mediators in antifungal immunity. Current Opinion in Microbiology, 58(2020), 24–31. https://doi.org/10.1016/J.MIB.2020.05.005
dc.relation.referencesDenissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. (2022). Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health, 244, 114006.
dc.relation.referencesDiaz, T. A., Reyes, E. R., González, J. C., & Carrasco, J. M. (2021). Estrés oxidativo, terapia antioxidante y cáncer. Revista Cubana de Oncología, 19(2).
dc.relation.referencesDiba G, Jamili S, Ramezani FE. (2017). Evaluation of the antioxidant ac- tivity of dried (rehydrate) and fresh sea cucumber Holothuria parva. Iranian Scientific Fisheries Journal 25(4): 77–86.
dc.relation.referencesDiniz-Neto, H., Silva, S. L., Cordeiro, L. V., Silva, D. F., Oliveira, R. F., AthaydeFilho, P. F., Oliveira-Filho, A. A., Guerra, F. Q. S., & Lima, E. O. (2022). Antifungal activity of 2-chloro-N-phenylacetamide: a new molecule with fungicidal and antibiofilm activity against fluconazole-resistant Candida spp. Brazilian Journal of Biology, 84(2024), e255080. https://doi.org/10.1590/1519-6984.255080
dc.relation.referencesEaves, A. A., & Palmer, A. R. (2003). Widespread cloning in echinoderm larvae. Nature, 425(6954), 146-146
dc.relation.referencesEreguero MG, Cordero MA, Dalayap R, Tabugo SR. (2022). Antifungal activity of selected sea cucumber species from Tukuran, Zamboanga del Sur, Mindanao, Philippines using modified SPOTi assay. Biodiversitas 23: 6049-6055.
dc.relation.referencesEsmat AY, Said MM, Soliman AA, El-Masry KS, Badiea EA. (2013). Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats. Nutrition, 29:258-67.
dc.relation.referencesEsmat AY, Said MM, Soliman AA, El-Masry KS, Badiea EA. (2013). Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats. Nutrition, 29:258-67.
dc.relation.referencesGocer M, Olgunoglu, IA, Oglunoglu MP. (2018). A study on fatty acid profile and some major mineral contents of sea cucumber (Holothuria (platyperona) sanctori) from Mediterranean Sea (Turkey). Food Science and Quality Management 72: 1–5.
dc.relation.referencesGomes, E.R., Freitas, A.C., Rocha-Santos, T.A.P., Duare, A.C. (2014). Bioactive compounds derived from echinoderms. RSC Adv. 4, 29365–29382.
dc.relation.referencesGuo K, Su L, Wang Y, Liu H, Lin J, Cheng P, Yin X, Liang M, Wang Q, Huang Z. (2020). Antioxidant and anti-aging effect of sea cucumber protein hydrolysate and bioinformatics characterization of its composing peptides. Food & Function 11: 5004–5016. https://doi.org/10.1039/D0FO00560F
dc.relation.referencesGutiérrez, E. B. G., Rubio, J. A. R., & Rus, T. I. (2023). Competencias de prevención y control de infecciones y bioseguridad en los programas de instrumentación quirúrgica en Colombia. Educación Médica, 24(2), 100786.
dc.relation.referencesGutiérrez, E. B. G., Rubio, J. A. R., & Rus, T. I. (2023). Competencias de prevención y control de infecciones y bioseguridad en los programas de instrumentación quirúrgica en Colombia. Educación Médica, 24(2), 100786.
dc.relation.referencesHendler, G., Miller, J. E., Pawson, D. L., & Kier, P. M. (1995). Sea stars, sea urchins, and allies: echinoderms of Florida and the Caribbean.
dc.relation.referencesHossain, A., Dave, D., & Shahidi, F. (2022). Antioxidant Potential of Sea Cucumbers and Their Beneficial Effects on Human Health. Marine Drugs, 20(8), 1–22. https://doi.org/10.3390/md20080521
dc.relation.referencesHossain, A.; Dave, D.; Shahidi, F. (2020). Northern Sea cucumber (Cucumaria frondosa): A potential candidate for functional food, nutraceutical, and pharmaceutical sector. Mar. Drugs 2020, 18, 274.
dc.relation.referencesHossain, A.; Dave, D.; Shahidi, F. (2022). Effect of high-pressure processing (HPP) on phenolics of North Atlantic sea cucumber (Cucumaria frondosa). J. Agric. Food Chem. 70, 3489–3501.
dc.relation.referencesHua, H.A.N.; Ling, L.I.; Yi, Y.H.; Wang, X.H.; Pan, M.X. (2012). Triterpene glycosides from sea cucumber Holothuria scabra with cytotoxic activity. Chin. Herb. Med. 4, 183–188.
dc.relation.referencesJenzri, M., Bouraoui, Z., Guerbej, H., Jebali, J., & Gharred, T. (2024). Seasonal variation in fatty acid profiles of Holothuria poli (Delle Chiaje, 1823) from Monastir Bay (Tunisia): implications for trophic markers and lipid nutritional quality assessment. New Zealand Journal of Marine and Freshwater Research, 1-23.
dc.relation.referencesKarapanagiotidis, I.T.; Gkalogianni, E.Z.; Apostologamvrou, C.; Voulgaris, K.; Varkoulis, A.; Vafidis, D. (2024). Proximate Compositions and Fatty Acid Profiles of Raw and Processed Holothuria polii and Holothuria tubulosa from the Aegean Sea. Sustainability , 16, 6048. https://doi.org/10.3390/su16146048
dc.relation.referencesKareh M., Nahas R., Al Aaraj L., Al-Ghadban S., Deen N., Saliba N., El-Sabban M., Talhouk R. (2018) Anti-proliferative and anti-inflammatory activities of the sea cucumber Holothuria polii aqueous extract. SAGE Open Medicine 6:1-14.
dc.relation.referencesKünili, İ. E., & Çolakoğlu, F. A. (2018). Antioxidant and antimicrobial activity of sea cucumber (Holothuria tubulosa, Gmelin 1791) extracts. Canakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 1(2), 66-71.
dc.relation.referencesLewandowska, A.M., et al., (2014). Temperature effects on phytoplankton diversity—The zooplankton link. J. Sea Res. v. 85, 359–364.
dc.relation.referencesMaier, M. S. (2007). Metabolitos secundarios bioactivos de organismo marinos pertenecientes al phylum Echinodermata.
dc.relation.referencesMalve, H., (2016). Exploring the ocean for new drug developments: Marine pharmacology. Journal of Pharmacy and Bioallied Sciences, 8(2), pp. 83–91. https://doi.org/10.4103/0975-7406.171700.
dc.relation.referencesMashjoor S, Yousefzadi M. Holothurians antifungal and antibacterial activity to human pathogens in the Persian Gulf. Journal De Mycologie Médicale (2016), http://dx.doi.org/10.1016/j.mycmed.2016.08.008
dc.relation.referencesMéndez N, Angulo A, Contreras O. (2016). Actividad antibacteriana in vitro de Curcuma longa (Zingiberaceae) frente a bacterias nosocomiales en Montería, Colombia. Rev Biol Trop. 64(3):1201-1208.
dc.relation.referencesMisgiati, W. I., Murniasih, T., Novriyanti, E., Tarman, K., Safithri, M., Setyaningsih, I., Cahyati, D., Pratama, B. P., & Wirawati, I. (2024). The anticancer and antioxidant potential of local sea cucumber Holothuria edulis, an ecology balancer of Labuan Bajo marine ecosystem. Case Studies in Chemical and Environmental Engineering, 9, 100625. doi: 10.1016/j.cscee.2024.100625.
dc.relation.referencesMiyashita, K. (2014). Marine antioxidants. Antioxidants and Functional Components in Aquatic Foods, 219–235. https://doi.org/10.1002/9781118855102.ch8.
dc.relation.referencesMohamed, M. E., Saber, S. A., El-Kafrawy, S. B., Alabdein Nassar, M. Z., & El-Naggar, H. A. (2024). Biotechnological Activities of Holothuria papillifera Mortensen, 1938 Inhabiting the Suez Gulf (Northern Red Sea), Egypt. Egyptian Journal of Aquatic Biology & Fisheries, 28(4).
dc.relation.referencesMüller, C., Obermeier, M., & Berg, G. (2016). Bioprospecting plant-associated microbiomes. Journal of Biotechnology, 235, 171-180.
dc.relation.referencesNazemi M., Motallebi A., Abbasi E., Khaledi M. & Zare M. (2022). Antibacterial, antifungal, and cytotoxic activity of the fraction contains squalene in the acetone extract of a sea cucumber, Stichopus hermanni. Iranian Journal of Fisheries Sciences, 21(6), pp. 1495-1507. DOI: 10.22092/ijfs.2023.128416.
dc.relation.referencesNugroho, A., Harahap, I.A., Ardiansyah, A., Bayu, A., Rasyid, A., Murniasih, T., Setyastuti, A., Putra, M.Y., (2021). Antioxidant and antibacterial activities in 21 species of Indonesian sea cucumbers. J. Food Sci. Technol. 59, 239–248. https://doi.org/ 10.1007/s13197-021-05007-6.
dc.relation.referencesOh, G-W, Ko, S-C, Lee, DH, Heo, S-J, and Jung, W-K (2017) Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): a review. Fisheries and Aquatic Sciences 20: e28. https://doi.org/10.1186/ s41240-017-007.
dc.relation.referencesPamungkas, S. Y., & Haryono, F. E. D. (2023). Bioprospecting of sea cucumber (Holothuria sp.) as industries and functional foods for human health. International Journal of Science and Research Archive, 10(2), 669-690. https://doi.org/10.30574/ijsra.2023.10.2.0994
dc.relation.referencesParrish, C.C. (2009). Essential fatty acids in aquatic food webs. In Lipids in Aquatic Ecosystems; Arts, M.T., Brett, M.T., Kainz, M.J., Eds.; Springer: New York, NY, USA; pp. 309–326.
dc.relation.referencesPastrana, O. J., Santafé, G. G., & Torres, O. L. (2016). Perfil de ácidos grasos y evaluación de las actividades antioxidante y antifúngica del Holotureo Isostichopus badionotus. Información tecnológica, 27(3), 03-10.
dc.relation.referencesPastrana, O., Santafé, G., & Sánchez, E. (2019). Perfil lipídico y ensayos de las actividades antioxidante, insecticida y antialimentaria de la esponja marina Iotrochota birotulata (Iotrochotidae: Demospongiae). Revista de Biología Tropical, 67(1), 213–223. https://doi.org/10.15517/rbt.v67i1.32357
dc.relation.referencesPawson, D. L., Pawson, D. J., & King, R. A. (2010). A taxonomic guide to the Echinodermata of the South Atlantic Bight, USA: 1. Sea cucumbers (Echinodermata: Holothuroidea). Zootaxa, 2449(1), 1-48.
dc.relation.referencesPérez-Ruzafa, A., Alvarado, J. J., Solís-Marín, F. A., Hernández, J. C., Morata, A., Marcos, C., ... & Williams, S. M. (2013). Latin America echinoderm biodiversity and biogeography: Patterns and affinities. Echinoderm research and diversity in Latin America, 511-542
dc.relation.referencesPham-Huy, L., He, H., & Pham-Huy, C. (2008). Free Radicals, Antioxidants in Disease and Health. Int J Biomed Sci, 2, 89–96. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614697/.
dc.relation.referencesPires, M., & García, Y. (2024). Biochemical and ecological components of Holothuria (Halodeima) grisea, Selenka 1867 (Echinodermata: Holothuroidea). Regional Studies in Marine Science, 73, 103460.
dc.relation.referencesPiri-Gharaghie, T., Ghajari, G., Hassanpoor, M., Jegargoshe-Shirin, N., Soosanirad, M., Khayati, S., ... & Mirzaei, A. (2023). Investigation of antibacterial and anticancer effects of novel niosomal formulated Persian Gulf Sea cucumber extracts. Heliyon, 9(3).
dc.relation.referencesPurcell SW, Hair CA, Mills DJ (2012) Sea cucumber culture, farming and sea ranching in the tropics: Progress, problem and opportunities. Aquaculture 368–369: 68–81. https://doi.org/10.1016/j.aquacul- ture.2012.08.053
dc.relation.referencesPutra, Y., Soffa, F. B., Firdaus, M., Pangestuti, R., & Siahaan, E. A. (2022). Determination of fatty acid profiles and bioactive properties of body wall and viscera of Holothuria atra collected from Lombok Island, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 1119, No. 1, p. 012052). IOP Publishing.
dc.relation.referencesQuiroz Lobo, Y., Santafé Patiño, G., & Quirós-Rodríguez, J. A. (2021). Caracterización de los ácidos grasos y actividad antimicrobiana del extracto en metanol de Holothuria princeps (Holothuriida: Holothuriidae). Revista de Biología Tropical , 69(1), 36-44.
dc.relation.referencesRahman, M. A., Chowdhury, S. H., Hasan, M. J., Rahman, M. H., Yeasmin, S. M., Farjana, N., ... & Parvez, M. S. (2020). Status, prospects and market potentials of the sea cucumber fisheries with special reference on their proper utilization and trade. Annual Research & Review in Biology, 35(7), 84-101.
dc.relation.referencesRasyid A, Yasman Y, Putra MY (2021) Current prospects of nutraceutical and pharmaceutical use of sea cucumbers. Pharmacia 68(3): 561–572. https://doi.org/10.3897/pharmacia.68.e69140
dc.relation.referencesRosenthal, V. D., Yin, R., Lu, Y., Rodrigues, C., Myatra, S. N., Kharbanda, M., ... & Jin, Z. (2023). The impact of healthcare-associated infections on mortality in ICU: a prospective study in Asia, Africa, Eastern Europe, Latin America, and the Middle East. American journal of infection control, 51(6), 675-682.
dc.relation.referencesSantafé, G. G., Guzmán, M. S., & Torres, O. L. (2014). Triterpenos Holostáticos con Actividad Antifúngica obtenidos del pepino de mar Holothuria floridana: Recolectado en la Bahía de Cispatá, Córdoba-Colombia. Información tecnológica, 25(2), 87-92
dc.relation.referencesSantoyo, G.; Orozco-Mosqueda & M. Govindappa, M. C.; Govindappa, M. (2012). Mechanisms Biocontrol and Plant Growth-Promoting Activity in Soil Bacterial Species of Bacillus and Pseudomonas: A Review: Biocontrol Science and Technology: Vol 22, No 8. Biocontrol Science and Technology. pp 855–872.
dc.relation.referencesSarhadizadeh N, Afkhami M, Ehsanpour M. (2014). Evaluation bioactivity of a sea cucumber, Stichopus hermanni from Persian Gulf. European Journal Experimental Biology 4(1): 234–258
dc.relation.referencesShi, S., Feng, W., Hu, S., Liang, S., An, N., & Mao, Y. (2016). Bioactive compounds of sea cucumbers and their therapeutic effects. Chinese Journal of Oceanology and Limnology, 34(3), 549-558.
dc.relation.referencesTelahigue K, Ghali R, Nouiri E, Labidi A, Hajji T. (2020). Antibacterial activities and bioactive compounds of the ethyl acetate extract of the sea cucumber Holothuria forskali from Tunisian coasts. Journal of the Marine Biological Association of the United Kingdom, pp. 1–9. https://doi.org/10.1017/S002531542000001
dc.relation.referencesThawabteh, A.M.; Swaileh, Z.; Ammar, M.; Jaghama,W.; Yousef, M.; Karaman, R.; A. Bufo, S.; Scrano, L. (2023). Antifungal and Antibacterial Activities of Isolated Marine Compounds. Toxins. 15, 93. https://doi.org/10.3390/ toxins15020093
dc.relation.referencesVerea, L. P., Ferrer, A. F., Reyes, Y. O., Miranda, Y. P., & Méndez, A. R. (2019). Infecciones nosocomiales y resistencia antimicrobiana. Revista Cubana de Medicina Intensiva y Emergencias, 18(1), 1-17. Recuperado: https://www.medigraphic.com/pdfs/revcubmedinteme/cie-2019/cie121b.
dc.relation.referencesWang, F., Cao, Y., Guo, Y., Zhu, Z., & Zhang, C. (2021). Evaluation of antioxidant and antibacterial activities of lipid extracts from Eustigmatos cf. polyphem (Eustigmatophyceae) and preliminary identification of bioactive compound. Algal Research, 59. https://doi.org/10.1016/j.algal.2021.102446
dc.relation.referencesWargasetia, T. L., Ratnawati, H., Widodo, N., & Widyananda, M. H. (2023). Antioxidant and anti-inflammatory activity of sea cucumber (Holothuria scabra) active compounds against KEAP1 and iNOS protein. Bioinformatics and Biology Insights, 17, 11779322221149613.
dc.relation.referencesYuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The Traditional Medicine and Modern Medicine from Natural Products. Molecules, 21(5), 559. https://doi.org/10.3390/molecules21050559
dc.relation.referencesZhao, Y., Wang, Y., Zhang, X., Liu, H., Wang, G., & Liu, H. (2012). Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish & Shellfish Immunology, 32(5), 750-755.
dc.relation.referencesZhukova, N.V. (2023). Fatty Acids of Echinoderms: Diversity, Current Applications and Future Opportunities. Mar. Drugs, 21, 21. https://doi.org/10.3390/md21010021
dc.relation.referencesZmemlia N, Bejaoui S, Khemiri I, Bouriga N, Louiz I, El-Bok S, Ben-Attia M, Souli A. (2020). Biochemical composition and antioxidant potential of the edible Mediterranean sea cucumber Holothuria tubulosa. Grasas Aceites 71 (3), e364. https://doi.org/10.3989/gya.0452191.
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsSea cucumberseng
dc.subject.keywordsFatty acidseng
dc.subject.keywordsBiological activityeng
dc.subject.keywordsAntioxidant activityeng
dc.subject.keywordsCórdobaeng
dc.subject.proposalHoloturoideosspa
dc.subject.proposalÁcidos grasosspa
dc.subject.proposalActividad biológicaspa
dc.subject.proposalActividad antioxidantespa
dc.subject.proposalCórdobaspa
dc.titleAnálisis químico y evaluación de la actividad biológica de extractos orgánicos de holothuria spp. frente a patógenos intrahospitalarios en Montería, Colombiaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
mirlethjulioberrio.pdf
Tamaño:
2.01 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
FORMATO DE AUTORIZACIÓN-.pdf
Tamaño:
1.23 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones