Publicación:
Desarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)

dc.audience
dc.contributor.advisorNisperuza Pérez, Carlos Andrés
dc.contributor.authorLondoño Montes, Nixon
dc.contributor.juryEscobar Yepes, Juan
dc.contributor.juryAycardi Morinelly, Maria Paulina
dc.date.accessioned2025-07-21T20:19:52Z
dc.date.available2026-07-21
dc.date.available2025-07-21T20:19:52Z
dc.date.issued2025-07-20
dc.description.abstractHemipholis cordifera es una especie de ofiuroideo perteneciente a la familia Ophiactidae registrada en el Atlántico, que puede encontrarse asociada a arrecifes de coral, esponjas, fondos fangosos, arenosos, rocosos y algas a profundidades entre 1 y 18 m. En general, la identificación de esta especie se ha basado en organismos adultos y no existen registros de posibles cambios en su morfología durante su crecimiento. Por otro lado, H. cordifera tiene semejanzas morfológicas con otras especies, principalmente del género Amphiodia, lo que podría dificultar su correcta identificación taxonómica. El presente estudio proporciona descripciones morfológicas y morfométricas de los estadios post-metamórficos de 150 organismos de H. cordifera a partir de muestras recolectadas en el Caribe colombiano. A cada individuo se le midieron 15 características anatómicas y con base en el diámetro del disco, se establecieron intervalos de talla. Se brindan datos cuantitativos sobre cada medida anatómica considerando el tamaño de los organismos. Los datos morfométricos se ajustaron a una ecuación de potencia para detectar el grado de alometría en el crecimiento de los caracteres anatómicos. También se obtuvieron microestructuras de la sección proximal del brazo de especímenes en diferentes estadios para su observación en un SEM. El diámetro del disco de H. cordifera varió entre 1,97 y 7,25 mm y se establecieron tres intervalos de talla: juveniles (1,97-3,73 mm), etapa intermedia (3,73 -5,53 mm) y adultos (5,54-7,27 mm). La relación entre la longitud del brazo (LB) y el diámetro del disco (DD) en Hemipholis cordifera presentó un crecimiento alométrico negativo (k = 0,47), lo que indica un desarrollo más rápido de los brazos en comparación con el disco. Los valores bajos de LB/DD observados sugieren un estilo de vida de superficie o epifaunal. Además, las 14 relaciones morfométricas establecidas presentaron crecimiento alométrico negativo. El Índice de Asimetría reveló que, en cuanto a la longitud, el 76% de los organismos tienen los escudos radiales simétricos, mientras que en el 19% y el 5% presentaron asimetría sesgada a la derecha e izquierda respectivamente. Por otro lado, teniendo en cuenta la serie de crecimiento de la especie, las estructuras que sufren cambios a lo largo del desarrollo ontogénico post-metamórfico son: placas primarias, escudos radiales, placas dorsales y ventrales de los brazos y el análisis detallado de las microestructuras revelo cambios en las vértebras, que incluyen variaciones en el área muscular, dorso muscular y quilla entre organismos juveniles y adultos. Estos hallazgos constituyen el primer acercamiento detallado al desarrollo post-metamórfico de H. cordifera desde una perspectiva morfológica y morfométrica. Los resultados no solo contribuyen al conocimiento de la ontogenia en ofiuros, sino que también ofrecen nuevas herramientas para su identificación taxonómica, resaltando la necesidad de considerar las variaciones asociadas al crecimiento en estudios sistemáticos. Asimismo, aportan elementos clave para futuras investigaciones sobre ecología funcional, evolución morfológica y filogenia en la familia Ophiactidae.spa
dc.description.abstractHemipholis cordifera is a species of ophiuroid belonging to the family Ophiactidae, recorded in the Atlantic Ocean. It can be found associated with coral reefs, sponges, muddy, sandy, and rocky bottoms, as well as algae, at depths ranging from 1 to 18 meters. In general, the identification of this species has been based on adult specimens, and there are no records of possible morphological changes throughout its growth. Moreover, H. cordifera shows morphological similarities with other species, mainly within the genus Amphiodia, which may hinder its correct taxonomic identification. This study provides morphological and morphometric descriptions of the post-metamorphic stages of 150 H. cordifera individuals, based on samples collected in the Colombian Caribbean. Fifteen anatomical characteristics were measured for each individual, and size classes were established based on disk diameter. Quantitative data were provided for each anatomical trait in relation to the organism's size. Morphometric data were fitted to a power equation to determine the degree of allometric growth of the anatomical traits. Additionally, microstructures of the proximal section of the arm were examined in different stages using scanning electron microscopy (SEM). The disk diameter of H. cordifera ranged from 1.97 to 7.25 mm, and three size classes were established: juveniles (1.97–3.73 mm), intermediate stage (3.73–5.53 mm), and adults (5.54–7.27 mm). The relationship between arm length (AL) and disk diameter (DD) showed negative allometric growth (k = 0.47), indicating faster development of the arms compared to the disk. The low AL/DD values suggest an epifaunal or surface-dwelling lifestyle. Furthermore, the 14 established morphometric relationships also showed negative allometric growth. The Asymmetry Index revealed that, in terms of length, 76% of the individuals had symmetrical radial shields, while 19% and 5% exhibited right- and left-biased asymmetry, respectively. Additionally, based on the species' growth series, the structures that undergo changes throughout post-metamorphic ontogenetic development include: primary plates, radial shields, dorsal and ventral arm plates. A detailed analysis of microstructures revealed changes in the vertebrae, including variations in muscle area, muscle dorsum, and keel between juvenile and adult specimens. These findings represent the first detailed approach to the post-metamorphic development of H. cordifera from a morphological and morphometric perspective. The results not only contribute to the understanding of ophiuroid ontogeny but also offer new tools for their taxonomic identification, highlighting the importance of considering growth-related variations in systematic studies. Additionally, they provide key elements for future research on functional ecology, morphological evolution, and phylogeny within the Ophiactidae family.eng
dc.description.degreelevelPregrado
dc.description.degreenameBiólogo(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsResumenspa
dc.description.tableofcontentsAbstractspa
dc.description.tableofcontentsIntroduccionspa
dc.description.tableofcontentsObjetivosspa
dc.description.tableofcontentsEstado del artespa
dc.description.tableofcontentsMarco teoricospa
dc.description.tableofcontentsOnteogeniaspa
dc.description.tableofcontentsMorfometriaspa
dc.description.tableofcontentsPlasticidad fenotipicaspa
dc.description.tableofcontentsLeyes de escalaspa
dc.description.tableofcontentsClase Ophiuroideaspa
dc.description.tableofcontentsHemipholisspa
dc.description.tableofcontentsMetodologiaspa
dc.description.tableofcontentsRecoleccion de ejemplaresspa
dc.description.tableofcontentsFase de laboratoriospa
dc.description.tableofcontentsAnalisis de la informacionfra
dc.description.tableofcontentsResultadosspa
dc.description.tableofcontentsCaracterizacion ontogenica de Hemipholis cordiferaspa
dc.description.tableofcontentsDiscospa
dc.description.tableofcontentsBrazosspa
dc.description.tableofcontentsvertebras desarticuladasspa
dc.description.tableofcontentsPlacas braquiales desarticuladas del brazospa
dc.description.tableofcontentsDiscusionspa
dc.description.tableofcontentsConclusionspa
dc.description.tableofcontentsRecomendacionesspa
dc.description.tableofcontentsBibliografiasspa
dc.description.tableofcontentsAnexosspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Institucional Unicórdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9442
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBiología
dc.relation.referencesAlitto, R. A. S., Granadier, G., Christensen, A. B., O'Hara, T., Di Domenico, M., & Borges, M. (2018). Unravelling the taxonomic identity of Ophiothela verrill, 1867 (Ophiuroidea) along the Brazilian coast. Marine Biodiversity, 48(1), 101–115. https://doi.org/10.1007/s12526-017-0734-0
dc.relation.referencesAlvarado, J. J., Solís-Marín, F. A., & Ahearn, C. (2010). Echinoderm (Echinodermata) diversity in the Caribbean Sea. Marine Biodiversity, 40(3), 261-285.
dc.relation.referencesBalon, E. K. (1990). Epigenesis of an epigeneticist: The development of some alternative concepts of ontogeny and evolution. Guelph Ichthyology Reviews.
dc.relation.referencesBenavides-Serrato, M., Borrero-Pérez, G., & Díaz-Sánchez, C. M. (2011). Equinodermos del Caribe colombiano I: Crinoidea, Asteroidea y Ophiuroidea. Instituto de Investigaciones Marinas y Costeras - INVEMAR. Santa Marta, Colombia: Serie de Publicaciones Especiales de INVEMAR, 22.
dc.relation.referencesBenítez-Villalobos, F., & Díaz-Martínez, J. P. (2013). Variaciones morfométricas de Ophiocoma aethiops Lütken, 1859 en tres zonas de la Isla Gorgona [Tesis de maestría no publicada o Manuscrito no publicado]. Universidad Nacional de Colombia / Institución de afiliación.
dc.relation.referencesBock, D. G., & Smith, A. B. (2021). Adaptive morphological variability in benthic echinoderms. Journal of Marine Biology, 98(4), 675–689. https://doi.org/10.1016/j.jmb.2021.05.007
dc.relation.referencesBookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge University Press.
dc.relation.referencesBorges, M., Alitto, R. A. S., & Amaral, A. C. Z. (2015). From baby to adult: Ontogenetic series of nine species of Ophiuroidea from Atlantic southwestern. Revista de Biología Tropical, 63(Suppl. 2), 361–381. https://doi.org/10.15517/rbt.v63i2.18837
dc.relation.referencesBosc, L. A. G. (1802). Histoire naturelle des vers, contenant leur description et leurs moeurs; avec figures dessinées d’après nature (Vol. 2). Paris: Chez Deterville, de l'imprimerie de Guilleminet 20-29.
dc.relation.referencesBradley, R. D., Bradley, L. C., Garner, H. J., & Baker, R. J. (2014). Assessing the value of natural history collections and addressing issues regarding long-term growth and care. Bioscience, 64(12), 1150–1158.
dc.relation.referencesBradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics.
dc.relation.referencesBrennan, I. G., & Keogh, J. S. (2018). Miocene biome turnover drove conservative body size evolution across Australian vertebrates. Proceedings of the Royal Society B: Biological Sciences, 285(1880), 20181474. https://doi.org/10.1098/rspb.2018.1474
dc.relation.referencesBrogger, M. I., Martínez, M. I., Cadierno, M. P., & Penchaszadeh, P. E. (2015). Tooth microstructure and feeding biology of the brittle star Ophioplocus januarii (Echinodermata: Ophiuroidea) from northern Patagonia, Argentina. Revista de Biología Tropical, 63(Suppl. 2), 353–360.
dc.relation.referencesClark HL. (1914). Growth changes in brittle stars. Carnegie Institution of Washington Publication 5, 93–126.
dc.relation.referencesCollin, R., Venera-Pontón, D. E., Driskell, A. C., Macdonald, K. S., & Boyle, M. J. (2021). Challenges for morphological taxonomy in the context of protracted marine invertebrate larval phases. Marine Biodiversity, 51(3), 1-14. https://doi.org/10.1007/s12526-021-01189-6
dc.relation.referencesDamiano CJS, Serrano H, Alitto RAS, Mendonça JB, Tavares M, Borges M (2025). Post-larval development and growthintraspecific variations in Ophiocoma echinata and Ophiocoma trindadensis from Brazil (Echinodermata: Ophiuroidea). Journal of the Marine Biological Association of the United Kingdom 105, e12, 1–15. https://doi.org/10.1017/S0025315424001164
dc.relation.referencesEichsteller, A. C., O’Hara, T. D., & Stöhr, S. (2023). Ophiotholia (Echinodermata: Ophiuroidea): A little-known deep-sea genus present in polymetallic nodule fields with the description of a new species. Frontiers in Marine Science, 10, 1056282. https://doi.org/10.3389/fmars.2023.1056282
dc.relation.referencesEichsteller, A., Martínez, R., & Solís-Marín, F. A. (2023). Ontogenetic variation in ophiuroid skeletal elements: Implications for taxonomy and phylogeny. Marine Biodiversity, 53(2), 45–58. https://doi.org/10.1007/s12526-023-01234-5
dc.relation.referencesEmson, R. H., & Wilkie, I. C. (1980). "Fission and autotomy in echinoderms". Oceanography and Marine Biology Annual Review, 18, 155-250.
dc.relation.referencesFell, H. B. (1960). Synoptic keys to the genera of Ophiuroidea. Zoology Publications from Victoria University of Wellington, 26, 1–44.
dc.relation.referencesGaurisas, D. Y., & Solís-Marín, F. A. (2015). Uso de la Microscopía Electrónica de Barrido en la Taxonomía de las Estrellas Quebradizas (Echinodermata: Ophiuroidea). Libro de resúmenes IV Congreso Latinoamericano de Equinodermos. Recuperado de https://www.researchgate.net/publication/329629224
dc.relation.referencesGaurisas, M., & Solís-Marín, F. A. (2015). Microstructural analysis of ophiuroid ossicles using SEM: Taxonomic implications. Zootaxa, 3985(3), 301–316. https://doi.org/10.11646/zootaxa.3985.3.1
dc.relation.referencesGoharimanesh, M., Stöhr, S., Mirshamsi, O., Ghassemzadeh, F., & Adriaens, D. (2021). Interactive identification key to all brittle star families (Echinodermata: Ophiuroidea) leads to revised morphological descriptions. European Journal of Taxonomy, 766, 1–63. https://doi.org/10.5852/ejt.2021.766.1483
dc.relation.referencesGoswami, A., Binder, W. J., Meachen, J., & O’Keefe, F. R. (2022). The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics. Annual Review of Ecology, Evolution, and Systematics, 53, 275-300. https://doi.org/10.1146/annurev-ecolsys-102220-024657
dc.relation.referencesGould, S. J. (1977). Geometric similarity in allometric growth: A contribution to the problem of scaling in biology. American Naturalist, 105(941), 113–136. https://doi.org/10.1086/282703
dc.relation.referencesGranja-Fernández, R., Hernández-Ávila, I., Herrero-Pérezrul, M. D., & Solís-Marín, F. A. (2021). Morphological variability of Ophiocomella alexandri from the Pacific coast of Mexico. Journal of the Marine Biological Association of the United Kingdom, 101(3), 405–412. https://doi.org/10.1017/S0025315421000426
dc.relation.referencesHendler, G. (2011). New insights on the nomenclature, taxonomy, and biology of species of Hemipholis (Echinodermata: Ophiuroidea: Ophiactidae). Zootaxa, 3048(1), 44. https://doi.org/10.11646/zootaxa.3048.1.2
dc.relation.referencesHendler, G. (2018). "Taxonomy of brittle stars (Echinodermata: Ophiuroidea) from the Caribbean Sea and adjacent waters". Zootaxa, 4461(1), 1-164.
dc.relation.referencesHendler, G., Miller, J. E., Pawson, D. L., & Kier, P. M. (1995). Sea Stars, Sea Urchins, and Allies: Echinoderms of Florida and the Caribbean. Smithsonian Institution Press.
dc.relation.referencesHenkel, T. P., & Pawlik, J. R. (2005). Habitat use by sponge-dwelling brittlestars. Marine Biology, 146(2), 301–313. https://doi.org/10.1007/s00227-004-1448-
dc.relation.referencesHickman, C. P. (1998). A field guide to sea stars and other echinoderms of Galápagos. Sugar Spring Press.
dc.relation.referencesHumara-Gil, K. J., Granja-Fernández, R., Bautista-Guerrero, E., Solís-Marín, F. A., & Rodríguez-Troncoso, A. P. (2025). On Ophioderma (Echinodermata: Ophiuroidea) coming of age: Morphological variations in three eastern Pacific species. Journal of the Marine Biological Association of the United Kingdom, 105, e49, 1–13. https://doi.org/10.1017/S0025315425000396
dc.relation.referencesHuxley, J. S. (1924). Constant differential growth-ratios and their significance. Nature, 114(2867), 895-896. https://doi.org/10.1038/114895a0
dc.relation.referencesHuxley, J.S. (1932) Problems of Relative Growth. Johns Hopkins University Press, Methuen, London, 273.
dc.relation.referencesIriondo, J. M. (2000). Taxonomía y conservación: Dos aproximaciones a un mismo dilema. Portugaliae Acta Biologica, 18(1-2), 63-71.
dc.relation.referencesLaguarda-Figueras, A., Hernández-Herrejón, L. A., Solís-Marín, F. A., & Durán-González, A. (2009). Ofiuroideos del Caribe Mexicano y Golfo de México. CONABIO UNAM.
dc.relation.referencesLjungman, A. V. (1867). Ophiuroidea viventia huc usque cognita enumerat. Öfversigt af Kongl. Vetenskaps-Akademiens Forhandlingar, 23, 303–336.
dc.relation.referencesLyman, T. (1865). Ophiuridae and Astrophytidae. Harvard University Press, Welch, Bigelow, & Company.
dc.relation.referencesMartínez Melo, Alejandra & Rios-Jara, Eduardo & Solis-Marin, Francisco & Galván-Villa, Cristian & Buitron, Blanca & Laguarda-Figueras, Alfredo. (2018). Principios para identificación de equinodermos.
dc.relation.referencesMartínez, R., Chen, H., O’Connor, S., Lee, K., & Dubois, P. (2022). Biomechanical adaptations in Ophiuroidea: Articulation and mobility. Marine Ecology Progress Series, 670, 45–58. https://doi.org/10.3354/meps13720
dc.relation.referencesMartynov, A., Ishida, Y., Irimura, S., Tajiri, R., O’Hara, T., & Fujita, T. (2015). When ontogeny matters: A new Japanese species of brittle star illustrates the importance of considering both adult and juvenile characters in taxonomic practice. PLOS ONE, 10(10), e0139463. https://doi.org/10.1371/journal.pone.0139463
dc.relation.referencesMatsumoto, H. (1915). A new classification of the Ophiuroidea: with description of new genera and species. Proceedings of the Academy of Natural Sciences of Philadelphia. 68: 43-92., available online at https://biodiversitylibrary.org/page/1708443
dc.relation.referencesMondin, M. A., López, R. D., Fernández, J. E., & Carranza, S. (2024). Taxonomic challenges in Ophiactis: A geometric morphometrics approach. Zoological Journal of the Linnean Society.
dc.relation.referencesO’Hara, T. D., Hugall, A. F., Thuy, B., & Stöhr, S. (2017). Morphological and molecular evidence for multiple origins of deep-sea ophiuroid families. Molecular Phylogenetics and Evolution, 112, 1–14. https://doi.org/10.1016/j.ympev.2017.04.003
dc.relation.referencesO'Hara, T. D., Stöhr, S., Hugall, A. F., Thuy, B., & Martynov, A. (2018). Morphological diagnoses of higher taxa in Ophiuroidea (Echinodermata) in support of a new classification. European Journal of Taxonomy, 416, 1–35. https://doi.org/10.5852/ejt.2018.416
dc.relation.referencesPardo-Gandarillas, M. C., Torres, F. I., & Méndez, M. A. (2023). Autotomy in crustaceans: Biases in morphological studies and ecological implications. Journal of Experimental Marine Biology and Ecology, 560, 151857. https://doi.org/10.1016/j.jembe.2022.151857
dc.relation.referencesPaterson, G. L. (1985). The deep-sea Ophiuroidea of the North Atlantic Ocean. Bulletin British Museum (Natural History), Zoology Series, 49(28), 76–80. Disponible en: https://archive.org/details/biostor-48/mode/1up
dc.relation.referencesPérez-Portela, R., Leiva, C., & Turon, X. (2022). Sex-specific transcriptomic differences in the immune cells of a key Atlantic-Mediterranean sea urchin. Frontiers in Marine Science, 9, 1166. https://doi.org/10.3389/fmars.2022.1067666
dc.relation.referencesReiss, M. J. (1991). The allometry of growth and reproduction. Cambridge University Press.
dc.relation.referencesRodríguez, J. A. Q. (2015). Echinoderms in Shallow-Bottom from Ahumadera Sector, Cispatá Bay, Cordoba, Colombian Caribbean. Acta Biológica Colombiana, 20(1), 101-108.
dc.relation.referencesRosales-Contreras, G. I., Laguarda-Figueras, A., & Solís-Marín, F. A. (2021). Morfología y microestructura interna de la estrella quebradiza Ophiocomella alexandri (Echinodermata: Ophiocomidae). Revista de Biología Tropical, 69(S1), S358–S374. https://doi.org/10.15517/rbt.v69iSuppl.1.46367
dc.relation.referencesRueda, J. L., Urra, J., & Gofas, S. (2022). The silent crisis in marine taxonomy: Underfunding and the loss of expertise in molluscan systematics. Frontiers in Marine Science, 9, 887955. https://doi.org/10.3389/fmars.2022.887955
dc.relation.referencesSanvicente-Añorve, L., Solís-Marín, F. A., & Rosales-Contreras, I. (2021). Morphometry and relative growth of Ophiolepis crassa (Echinodermata: Ophiuroidea), a brittle star from the Eastern Pacific. Zoological Studies, 60, 26. https://doi.org/10.6620/ZS.2021.60-26
dc.relation.referencesSmith, L. C., Arizza, V., Hudgell, M. A. B., Barone, G., Bodnar, A. G., Buckley, K. M., Cunsolo, V., Dheilly, N. M., Franchi, N., Fugmann, S. D., Furukawa, R., García-Arrarás, J., Henson, J. H., Hibino, T., Irons, Z. H., Li, C., Lun, C. M., Majeske, A. J., Oren, M., Pagliara, P., Pinsino, A., Raftos, D. A., Rast, J. P., Samasa, B., Schillaci, D., Schrankel, C. S., Stabili, L., Stensväg, K., & Sutton, E. (2018). Echinodermata: The complex immune system in echinoderms. In E. L. Cooper (Ed.), Advances in Comparative Immunology (pp. 409–501). Springer. https://doi.org/10.1007/978-3-319-76768-0_13
dc.relation.referencesSolís-Marín, F. A., Laguarda-Figueras, A., & Honey-Escandón, M. (2005). Biodiversidad de equinodermos (Echinodermata) en México / Biodiversity of echinoderms (Echinodermata) in Mexico. Colección Nacional de Equinodermos “Ma. E. Caso Muñoz”, Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México.
dc.relation.referencesStancyk, S. E., Golde, H. M., Pape-Lindstrom, P. A., & Dobson, W. E. (1982). "Brittle star bioenergetics: Growth and reproduction in Hemipholis cordifera". Marine Biology, 69(1), 1-7.
dc.relation.referencesStöhr, S. (2005). Who’s who among baby brittle stars (Echinodermata: Ophiuroidea): Post-metamorphic development of some North Atlantic forms. Zoological Journal of the Linnean Society, 143(4), 543–576. https://doi.org/10.1111/j.1096-3642.2005.00155.x
dc.relation.referencesStöhr, S., & Martynov, A. (2016). Paedomorphosis as an evolutionary driving force: Insights from deep-sea brittle stars. PLOS ONE, 11(11), e0164562. https://doi.org/10.1371/journal.pone.0164562
dc.relation.referencesStöhr, S., & Martynov, A. (2022). Restructuring higher taxonomy using broad-scale phylogenomics: The living Ophiuroidea. Molecular Phylogenetics and Evolution, 177, 107624. https://doi.org/10.1016/j.ympev.2022.107624
dc.relation.referencesStöhr, S., O’Hara, T. D., & Thuy, B. (2012). Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE, 7(3), e31940. https://doi.org/10.1371/journal.pone.0031940
dc.relation.referencesStöhr, S., O'Hara, T., & Thuy, B. (2025). Ophiuroidea: Diversity and global distribution of brittle stars. In Echinoderm biodiversity and biogeography (pp. 45–52). Marine Research Press.
dc.relation.referencesThomas, L. P. (1962). "The shallow water amphiurid brittle stars (Ophiuroidea) of Florida". Bulletin of Marine Science of the Gulf and Caribbean, 12(4), 623-694.
dc.relation.referencesThuy, B., & Stöhr, S. (2011). Lateral arm plate morphology in brittle stars (Echinodermata: Ophiuroidea): New perspectives for ophiuroid micropalaeontology and classification. Zootaxa, 3013(1), 1–47.
dc.relation.referencesThuy, B., & Stöhr, S. (2023). Skeletal microstructure in Ophiactidae (Echinodermata: Ophiuroidea). Zoomorphology. https://doi.org/10.1007/s00435-023-00601-5
dc.relation.referencesTomholt, L., Byrne, M., & O'Hara, T. D. (2020). Dominance of brittle stars in benthic marine communities: Ecological and morphological characteristics. Marine Biology Research, 16(5), 327–342. https://doi.org/10.1080/17451000.2020.1718010
dc.relation.referencesVan Valen, L. (1962). A study of fluctuating asymmetry. Evolution, 16(2), 125–142.
dc.relation.referencesVerrill, A. E. (1867). V. Notes on the Radiata in the Museum of Yale College, with Descriptions of New Genera and Species. No. 2. Notes on the echinoderms of Panama and the West Coast of America, with descriptions of new genera and species. Transactions of the Connecticut Academy of Arts and Sciences, 1, 251–322.
dc.relation.referencesZar, J. H. (1999). Biostatistical analysis (4th ed.). Prentice Hall.
dc.relation.referencesZelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists: A primer (2nd ed.). Academic Press. https://doi.org/10.1016/B978-0-12-386903-6.00001-8
dc.relation.referencesZiegler, A., Faber, C., & Mueller, S. (2019). Comparative morphology and evolution of echinoderm skeletal plates. Frontiers in Zoology, 16(1), 1–15.
dc.relation.referencesZiegler, A., Faber, C., Mueller, S., & Bartolomaeus, T. (2021). Comparative morphology and evolution of the echinoderm water vascular system. Zoomorphology, 140(3), 357-376. https://doi.org/10.1007/s00435-021-00534-4
dc.relation.referencesZiegler, A., Martynov, A., & Thuy, B. (2024). High-resolution micro-CT for ophiuroid taxonomy. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.14275
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsHemipholis cordifera
dc.subject.keywordsAllometry
dc.subject.keywordsMorphometrics
dc.subject.keywordsOntogeny
dc.subject.keywordsOphiactidae
dc.subject.proposalHemipholis cordifera
dc.subject.proposalAlometria
dc.subject.proposalMorfometria
dc.subject.proposalOntogenia
dc.subject.proposalOphiactidae
dc.titleDesarrollo ontogénico post-metamórfico y análisis morfométrico de la estrella frágil Hemipholis Cordifera Bosc, 1802 (Echinodermata Ophiuroidea)spa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Londoño Montes, Nixon
Tamaño:
3.52 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AutorizaciónPublicación.pdf
Tamaño:
249 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: