Publicación:
El papel transformador de la inteligencia artificial en la reducción de incertidumbre del mercado empresarial

dc.contributor.advisorDoria Sierra, Carlos Fernando
dc.contributor.authorJiménez Burgos, Sebastián Andrés
dc.contributor.authorOssa Perdomo, Arelia de la
dc.contributor.juryAnaya Yances, Freddy
dc.contributor.juryBuelvas Sierra, Ramón
dc.date.accessioned2024-08-11T00:23:26Z
dc.date.available2024-08-11T00:23:26Z
dc.date.issued2024-08-06
dc.description.abstractEste estudio analiza el impacto de la Inteligencia Artificial en las decisiones empresariales en un mercado global caracterizado por la incertidumbre. Explora cómo la incertidumbre afecta la gestión empresarial y la importancia de la adaptabilidad y el uso de la Inteligencia Artificial en un contexto en que varían velozmente las tendencias de consumo y los datos externos se multiplican. A partir de un análisis bibliométrico se clasifican áreas de estudio con base a la actividad empresarial y se identifican diversos modelos de Inteligencia Artificial aplicados a las empresas. En lo que se pudo notar que prevalecen el Machine Learning, el Deep Learning y modelos híbridos creados a partir de los primeros, que ayudan con la reducción de incertidumbre y mejora en la toma de decisiones. Destacando que el uso de los modelos de IA conlleva la consideración de principios éticos y de estrategia para la escogencia del modelo adecuado para cada contexto.spa
dc.description.abstractThis study analyzes the impact of the Artificial Intelligence on business decisions in a global market characterized by uncertainty. It explores how uncertainty affects business management and the importance of adaptability and the use of Artificial Intelligence in a context of rapidly changing consumer trends and multiplying external data. Based on a bibliometric analysis, areas of study are classified according to business activity and various Artificial Intelligence models applied to companies are identified. It was noted that Machine Learning, Deep Learning and hybrid models created from the first ones, which help with the reduction of uncertainty and improvement in decision making, prevail. Emphasizing that the use of AI models involves the consideration of ethical principles and strategy for the choice of the appropriate model for each context.eng
dc.description.degreelevelPregrado
dc.description.degreenameAdministrador(a) en Finanzas y Negocios Internacionales
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsEl Papel Transformador de la Inteligencia Artificial en la Reducción de Incertidumbre del Mercado Empresarial. 5spa
dc.description.tableofcontentsIntroducción. 5spa
dc.description.tableofcontentsAnálisis Bibliométrico. 7spa
dc.description.tableofcontentsLa Incertidumbre Empresarial. 11spa
dc.description.tableofcontentsProblemáticas Asociadas al Uso de la Inteligencia Artificial en los Escenarios de Incertidumbre del Mercado Empresarial. 16spa
dc.description.tableofcontentsModelos de Inteligencia Artificial Utilizados en cada Área de Estudio Asociada a la Reducción de Incertidumbre del Mercado Empresarial. 19spa
dc.description.tableofcontentsConclusiones. 29spa
dc.description.tableofcontentsReferencias. 33spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/home
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8492
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Económicas, Jurídicas y Administrativas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programCiencias Administrativas
dc.relation.referencesAaltonen, H., Sierla, S., Subramanya, R., & Vyatkin, V. (2021). Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage. Energies, 14(17), 5587. DOI 10.3390/en14175587
dc.relation.referencesAl-Nefaie, A. H., & Aldhyani, T. H. H. (2022). Bitcoin Price Forecasting and Trading: Data Analytics Approaches. Electronics (Switzerland), 11(24). https://doi.org/10.3390/electronics11244088
dc.relation.referencesAlves, G. H., Guimarães, G. C., & Moura, F. A. M. (2023). Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing. Energies, 16(14), 5262. DOI 10.3390/en16145262
dc.relation.referencesArroyo, J., Corea, F., Jimenez-Diaz, G., & Recio-Garcia, J. A. (2019). Assessment of machine learning performance for decision support in venture capital investments. IEEE Access, 7, 124233–124243. https://doi.org/10.1109/ACCESS.2019.2938659
dc.relation.referencesBernal, C. (2010). Metodología de la investigación. Pearson Educación.
dc.relation.referencesBrown, S. (2018). Previsión de la demanda en un mercado incierto: Estrategias para una toma de decisiones eficaz. International Journal of Forecasting, 34(2), 201-215.
dc.relation.referencesBrown, S. (2019). The role of artificial intelligence in global data access and processing. International Journal of Information Management, 49, 102072.
dc.relation.referencesChen, C. (2010). VOSviewer: A software tool for bibliometric analysis. Dordrecht: Springer.
dc.relation.referencesCortés-Leal, A., Cárdenas, C., Del-Valle-Soto, C. (2022). Maintenance 5.0: Towards a Worker-in-the-Loop Framework for Resilient Smart Manufacturing. Applied Sciences (Switzerland), 12(22), 11330. DOI 10.3390/app122211330
dc.relation.referencesCuong, T. N., Kim, H.-S., Bao Long, L. N., & You, S.-S. (2023). Decision Support System for Managing Multi-Echelon Supply Chain Networks Against Disruptions Using Adaptive Fractional Order Control Algorithm. RAIRO - Operations Research, 57(2). DOI 10.1051/ro/2023035
dc.relation.referencesGarcía, M. (2017). Adaptación a la incertidumbre de los mercados: Retos y Soluciones. Strategic Management Journal, 38(6), 1302-1313.
dc.relation.referencesGhosh, I., & Chaudhuri, T. D. (2023). Modelos FEB-stacking y FEB-DNN para la predicción de tendencias bursátiles: un análisis de rendimiento para los periodos pre y post Covid-19. Risks, 11(5), 94. DOI 10.3390/risks11050094
dc.relation.referencesHeistrene, L., Machlev, R., Perl, M., Belikov, J., Baimel, D., Levy, K., Mannor, S., & Levron, Y. (2023). Explainability-based Trust Algorithm for electricity price forecasting models. Energy and AI, 14, 100259. DOI 10.1016/j.egyai.2023.100259
dc.relation.referencesHu, H., Lin, T., Wang, S., & Rodriguez, L. F. (2017). A cyberGIS approach to uncertainty and sensitivity analysis in biomass supply chain optimization. Applied Energy, 203, 54. DOI 10.1016/j.apenergy.2017.03.107
dc.relation.referencesJankova, Z., Jana, D. K., & Dostal, P. (2021). Investment Decision Support Based on Interval Type-2 Fuzzy Expert System. Engineering Economics, 32(2), 15. DOI 10.5755/j01.ee.32.2.24884
dc.relation.referencesJohnson, J. (2019). Real-time data access: A critical asset for business decision-making. Journal of Management Information Systems, 36(2), 351-375.
dc.relation.referencesJohnson, P. (2020). La incertidumbre política y su impacto en la toma de decisiones empresariales. Journal of Economic Perspectives, 33(4), 67-84.
dc.relation.referencesJones, A. (2019). Comprender la incertidumbre en la toma de decisiones empresariales. Journal of Business Strategy, 40(2), 10-17.
dc.relation.referencesKliangkhlao, M., Limsiroratana, S., & Sahoh, B. (2022). The Design and Development of a Causal Bayesian Networks Model for the Explanation of Agricultural Supply Chains. IEEE Access, 10, 86813–86823. DOI 10.1109/ACCESS.2022.3199353
dc.relation.referencesKolte, A., Roy, J. K., & Vasa, L. (2023). The impact of unpredictable resource prices and equity volatility in advanced and emerging economies: An econometric and machine learning approach. Resources Policy, 80, 03216. DOI 10.1016/j.resourpol.2022.103216
dc.relation.referencesLee, A. H. I., & Kang, H.-Y. (2023). A Three-Phased Fuzzy Logic Multi-Criteria Decision-Making Model for Evaluating Operation Systems for Smart TVs. Applied Sciences (Switzerland), 13(13), 7869. DOI 10.3390/app13137869
dc.relation.referencesLi, M., & Madina, Z. (2021). Artificial Intelligence Assists the Construction of Quantitative Model for the High-Quality Development of Modern Enterprises. Computational and Mathematical Methods in Medicine, 7211790. DOI 10.1155/2021/7211790
dc.relation.referencesLiu, Y., Zhang, D., & Gooi, H. B. (2021). Data-driven decision-making strategies for electricity retailers: A deep reinforcement learning approach. CSEE Journal of Power and Energy Systems, 7(2), 9215156, 20. DOI 10.17775/CSEEJPES.2019.02510.
dc.relation.referencesLomakin, N., Maramygin, M., Kataev, A., Kraschenko, S., Yurova, O., & Lomakin, I. (2022). Cognitive model of financial stability of the domestic economy based on artificial intelligence in conditions of uncertainty and risk. International Journal of Technology, 13(7), 1588. https://doi.org/10.14716/ijtech.v13i7.6185
dc.relation.referencesMitchell, T. M. (1997). Machine Learning. McGraw Hill. ISBN 0071154671, 9780071154673.
dc.relation.referencesPlakandaras, V., Gogas, P., & Papadimitriou (2019). The Effects of Geopolitical Uncertainty in Forecasting Financial Markets: A Machine Learning Approach. Algorithms, 12(1), 1, 15. DOI 10.3390/a12010001
dc.relation.referencesReddy, D. M., & Balamanigandan, R. (2023). Mobile U-Net V3 And Bilstm: Predicting Stock Market Prices Based on Deep Learning Approaches. Jordanian Journal of Computers and Information Technology, 9(3). DOI 10.5455/jjcit.71-1682317264
dc.relation.referencesRouhiainen, L. (2018). Inteligencia artificial 101 cosas que debes saber hoy sobre nuestro futuro. Alienta Editorial, Barcelona, España. ISBN: 978-84-17568-08-5 https://planetadelibrosec0.cdnstatics.com/libros_contenido_extra/40/39308_Inteligencia_artificial.pdf
dc.relation.referencesSmith, M. (2018). The convergence of the internet and artificial intelligence: Implications for business and society. Journal of Business Research, 89, 113-121.
dc.relation.referencesSmith, R. (2020). Gestionar la incertidumbre en un mercado volátil: Strategies for Success. Harvard Business Review, 96(4), 45-52.
dc.relation.referencesStern, A. D., Goldfarb, A., Minssen, T., & Price, W. N., II. (2022). AI Insurance: How Liability Insurance Can Drive the Responsible Adoption of Artificial Intelligence in Health Care. NEJM Catalyst Innovations in Care Delivery, 3(4). DOI 10.1056/CAT.21.0242
dc.relation.referencesSvetlova, E. (2022). AI meets narratives: the state and future of research on expectation formation in economics and sociology. Socio-Economic Review, 20(2), 5. DOI 10.1093/ser/mwab033
dc.relation.referencesUNAM CAUTITLÁN (s.f.). Lógica difusa. Grupos de Investigación en Sistemas Inteligentes -GISI. https://virtual.cuautitlan.unam.mx/intar/?page_id=997
dc.relation.referencesVan Phuoc, N. (2022). The Critical Factors Impacting Artificial Intelligence Applications Adoption in Vietnam: A Structural Equation Modeling Analysis. Economies, 10(6), 129. DOI 10.3390/economies10060129.
dc.relation.referencesVilkkumaa, E., Liesiö, J., Salo, A., & Ilmola-Sheppard, L. (2018). Scenario-based portfolio model for building robust and proactive strategies. European Journal of Operational Research, 266(1), 25. DOI 10.1016/j.ejor.2017.09.012.
dc.relation.referencesWang, S. L., Shafi, K., Ng, T. F., Lokan, C., & Abbass, H. A. (2022). Contrasting Human and Computational Intelligence Based Autonomous Behaviors in a Blue-Red Simulation Environment. Sustainability (Switzerland), 14(24), 16836. DOI 10.3390/su142416836.
dc.relation.referencesWhite, L. (2020). Datos en tiempo real y toma de decisiones en un entorno empresarial acelerado. Journal of Business Analytics, 5(1), 35-48.
dc.relation.referencesXu, Y.-Z., Zhang, J.-L., Hua, Y., & Wang, L.-Y. (2019). Dynamic credit risk evaluation method for e-commerce sellers based on a hybrid artificial intelligence model. Sustainability (Switzerland), 11(19). https://doi.org/10.3390/su11195521
dc.relation.referencesYan, X., & Ma, S. (2022). Garment Design Models Combining Bayesian Classifier and Decision Tree Algorithm. Computational Intelligence and Neuroscience, 2022, 1904158. DOI 10.1155/2022/1904158.
dc.relation.referencesYigitcanlar, T., & Cugurullo, F. (2020). The sustainability of artificial intelligence: an urbanistic viewpoint from the lens of smart and sustainable cities. Sustainability (Switzerland), 12(20), 1–24. https://doi.org/10.3390/su12208548
dc.relation.referencesÅström, J., Reim, W., & Parida, V. (2022). Value creation and value capture for AI business model innovation: a three-phase process framework. Review of Managerial Science, 16(7), 33. DOI 10.1007/s11846-022-00521-z
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsArtificial intelligenceeng
dc.subject.keywordsDecision makingeng
dc.subject.keywordsUncertaintyeng
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalToma de decisionesspa
dc.subject.proposalIncertidumbrespa
dc.titleEl papel transformador de la inteligencia artificial en la reducción de incertidumbre del mercado empresarialspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
JiménezBurgosSebastiánAndrés-OssaPerdomoAreliadela.pdf
Tamaño:
335.78 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
279.42 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: