Publicación: Evaluación del índice glicémico y la cinética de hidrólisis del almidón mediante un modelo digestivo in vitro, en un snack elaborado a base de harina de plátano y batata
dc.audience | ||
dc.contributor.advisor | Chams Chams, Linda María | |
dc.contributor.advisor | Hernández Bedoya, Cristian Camilo | |
dc.contributor.author | López Calderón, Gabriela | |
dc.contributor.author | Pomares Guerrero, Hugo Carlos | |
dc.contributor.jury | Alvis Ramos, Erasmo Manuel | |
dc.contributor.jury | Ruiz Pérez, Rander Antonio | |
dc.date.accessioned | 2025-07-16T16:00:24Z | |
dc.date.available | 2025-07-16T16:00:24Z | |
dc.date.issued | 2025-07-14 | |
dc.description.abstract | La composición de la dieta, particularmente el tipo y cantidad de carbohidratos, es un factor clave en el control glicémico. El consumo elevado de carbohidratos se asocia a un riesgo cinco veces mayor de desarrollar diabetes mellitus tipo 2 (DM2). El índice glicémico (IG) clasifica los alimentos por su capacidad de elevar la glucosa postprandial. Ante las limitaciones de los estudios in vivo en humanos, que incluyen alta variabilidad y costos, los modelos in vitro surgen como alternativa rigurosa y reproducible para determinar el IG. Objetivo Evaluar el índice glicémico de un snack elaborado a base de harina de plátano y batata, mediante un modelo gástrico in vitro, que permitirá estimar la liberación de glucosa. Metodología Tras la digestión enzimática, se midió la concentración de glucosa en alícuotas tomadas en diferentes tiempos, determinando el almidón hidrolizado, sus fracciones (ARD, ALD, AR) e (IG). Resultados Los snacks C y D mostraron los valores máximos de concentración final teórica de glucosa (C∞), así mismo C alcanzó la menor constante de velocidad de hidrólisis (k), indicando una liberación de glucosa más lenta. El IG varió de 51,140 a 69,90, la fracción de almidón rápidamente digerible (ARD) mostró diferencias significativas (p=0,0173). Se concluyó que la formulación C (80% plátano / 20% batata) es una opción prometedora como snack de bajo eIG, con potencial como alimento funcional para poblaciones con requerimientos nutricionales especiales como los pacientes con DM2. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Bacteriólogo(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Introducción | spa |
dc.description.tableofcontents | Materiales y Métodos | spa |
dc.description.tableofcontents | Resultados | spa |
dc.description.tableofcontents | Discusión | spa |
dc.description.tableofcontents | Conclusiones | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9361 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias de la Salud | |
dc.publisher.program | Bacteriología | |
dc.relation.references | Mohan V, Sudha V, Shobana S, Gayathri R, Krishnaswamy K. Are Unhealthy Diets Contributing to the Rapid Rise of Type 2 Diabetes in India? Vol. 153, Journal of Nutrition. Elsevier B.V.; 2023. p. 940–8 | |
dc.relation.references | Krishnan V, Awana M, Singh A, Goswami S, Vinutha T, Kumar RR, et al. Starch molecular configuration and starch-sugar homeostasis: Key determinants of sweet sensory perception and starch hydrolysis in pearl millet (Pennisetum glaucum). Int J Biol Macromol [Internet]. 2021;183:1087–95. Available from: https://www.sciencedirect.com/science/article/pii/S0141813021009727 | |
dc.relation.references | Lal MK, Singh B, Sharma S, Singh MP, Kumar A. Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends Food Sci Technol [Internet]. 2021;111:741–55. Available from: https://www.sciencedirect.com/science/article/pii/S0924224421001746 | |
dc.relation.references | Salman C K M, Beura M, Singh A, Dahuja A, Kamble VB, Shukla RP, et al. Biomimic models for in vitro glycemic index: Scope of sensor integration and artificial intelligence. Vol. 25, Food Chemistry: X. Elsevier Ltd; 2025 | |
dc.relation.references | Parmar PR, Yadav N, Dubey S, Arfa N, Ghoshal T, Mahanta J, et al. Microdroplet Sensor for Point-of-Care-Testing of Glycemic Index Using Gold-Amylase Nanocomposite. IEEE Journal on Flexible Electronics. 2023;2(6):457–63. | |
dc.relation.references | Mondal D, Awana M, Mandal S, Pandit K, Singh A, Syeunda CO, et al. Functional foods with a tailored glycemic response based on food matrix and its interactions: Can it be a reality? Vol. 22, Food Chemistry: X. Elsevier Ltd; 2024. | |
dc.relation.references | Bonsembiante L, Targher G, Maffeis C. Type 2 diabetes and dietary carbohydrate intake of adolescents and young adults: What is the impact of different choices? Vol. 13, Nutrients. MDPI; 2021 | |
dc.relation.references | Aderinola T, Ajayeoba T, Akanni G, Uzomah A, Onyeaka H, Adeboye A. Legume-based functional foods in West Africa for managing non-communicable diseases: a comprehensive review of dietary strategies. Nutrire [Internet]. 2024;49(2):47. Available from: https://doi.org/10.1186/s41110-024-00290-7 | |
dc.relation.references | Afrose Subaitha Z, Priyadarshini SR, Yoha KS, Moses JA. Impact of post-harvest processing techniques on the glycemic index of millets. Vol. 4, Food Chemistry Advances. Elsevier Ltd; 2024. | |
dc.relation.references | Li C, Hu Y. In vitro and animal models to predict the glycemic index value of carbohydrate-containing foods. Trends Food Sci Technol [Internet]. 2022;120:16–24. Available from: https://www.sciencedirect.com/science/article/pii/S0924224421006889 | |
dc.relation.references | Costantini A, Nikoloudaki O, Di Cagno R. In Vitro Determination of the Glycemic Index. In: Gobbetti M, Rizzello CG, editors. Basic Methods and Protocols on Sourdough [Internet]. New York, NY: Springer US; 2024. p. 145–54. Available from: https://doi.org/10.1007/978-1-0716-3706-7_15 | |
dc.relation.references | Li C, Yu W, Wu P, Chen XD. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends Food Sci Technol [Internet]. 2020;96:114–26. Available from: https://www.sciencedirect.com/science/article/pii/S0924224419304959 | |
dc.relation.references | Mackie A, Mulet-Cabero AI, Torcello-Gomez A. Simulating human digestion: Developing our knowledge to create healthier and more sustainable foods. Food Funct. 2020 Nov 1;11(11):9397–431 | |
dc.relation.references | Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc [Internet]. 2019;14(4):991–1014. Available from: https://doi.org/10.1038/s41596-018-0119-1 | |
dc.relation.references | Li C, Hu Y, Li S, Yi X, Shao S, Yu W, et al. Biological factors controlling starch digestibility in human digestive system. Vol. 12, Food Science and Human Wellness. KeAi Communications Co.; 2023. p. 351–8 | |
dc.relation.references | Atkinson FS, Brand-Miller JC, Foster-Powell K, Buyken AE, Goletzke J. International tables of glycemic index and glycemic load values 2021: a systematic review. Vol. 114, American Journal of Clinical Nutrition. Oxford University Press; 2021. p. 1625–32. | |
dc.relation.references | Colombo R, Ferron L, Frosi I, Papetti A. Advances in static in vitro digestion models after the COST action Infogest consensus protocol. Food Funct [Internet]. 2021;12(17):7619–36. Available from: http://dx.doi.org/10.1039/D1FO01089A | |
dc.relation.references | Pautong PA, Añonuevo JJ, de Guzman MK, Sumayao R, Henry CJ, Sreenivasulu N. Evaluation of in vitro digestion methods and starch structure components as determinants for predicting the glycemic index of rice. LWT. 2022 Oct 1;168 | |
dc.relation.references | Li C, Hu Y. In vitro and animal models to predict the glycemic index value of carbohydrate-containing foods. Trends Food Sci Technol [Internet]. 2022;120:16–24. Available from: https://www.sciencedirect.com/science/article/pii/S0924224421006889 | |
dc.relation.references | Edwards CH, Cochetel N, Setterfield L, Perez-Moral N, Warren FJ. A single-enzyme system for starch digestibility screening and its relevance to understanding and predicting the glycaemic index of food products. Food Funct [Internet]. 2019;10(8):4751–60. Available from: http://dx.doi.org/10.1039/C9FO00603F | |
dc.relation.references | Dávila León R, González-Vázquez M, Lima-Villegas KE, Mora-Escobedo R, Calderón-Domínguez G. In vitro gastrointestinal digestion methods of carbohydrate-rich foods. Vol. 12, Food Science and Nutrition. John Wiley and Sons Inc; 2024. p. 722–33 | |
dc.relation.references | Mulet-Cabero AI, Egger L, Portmann R, Ménard O, Marze S, Minekus M, et al. A standardised semi-dynamic in vitro digestion method suitable for food – an international consensus. Food Funct [Internet]. 2020;11(2):1702–20. Available from: http://dx.doi.org/10.1039/C9FO01293A | |
dc.relation.references | Kaur J, Kaur K, Singh B, Singh A, Sharma S. Insights into the latest advances in low glycemic foods, their mechanism of action and health benefits. Vol. 16, Journal of Food Measurement and Characterization. Springer; 2022. p. 533–46. | |
dc.relation.references | Ioniță-Mîndrican CB, Ziani K, Mititelu M, Oprea E, Neacșu SM, Moroșan E, et al. Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art Review. Vol. 14, Nutrients. MDPI; 2022 | |
dc.relation.references | Wang Y, Ral JP, Saulnier L, Kansou K. How Does Starch Structure Impact Amylolysis? Review of Current Strategies for Starch Digestibility Study. Foods. 2022 May 1;11(9). | |
dc.relation.references | Soto CV, Pérez-Bravo F, Mariotti-Celis MS. Amount, stability, and digestibility of carbohydrates after the extrusion process: Impact on the glycemic index of flours commonly consumed in Chile. Vol. 50, Revista Chilena de Nutricion. Sociedad Chilena de Nutricion Bromatologia y Toxilogica; 2023. p. 233–41 | |
dc.relation.references | Santamaria M, Garzon R, Moreira R, Rosell CM. Estimation of viscosity and hydrolysis kinetics of corn starch gels based on microstructural features using a simplified model. Carbohydr Polym. 2021 Dec 1;273 | |
dc.relation.references | Jenkins DJA, Wolever TMS, Taylor RH, Barker H, Jenkins AL, Goff D V, et al. Glycemic index of foods: a physiological basis for carbohydrate exchangee 3. 1981 | |
dc.relation.references | Hernández P, Mata C, Lares M, Velazco Y, Brito S. Nutrición Clínica Índice glicémico y carga glucémica de las dietas de adultos diabéticos y no diabéticos Glycemic index and glycemic load of diets of diabetic and nondiabetic adults. Vol. 26, An Venez Nutr. 2013. | |
dc.relation.references | Arp CG, Correa MJ, Ferrero C. Resistant starches: A smart alternative for the development of functional bread and other starch-based foods. Vol. 121, Food Hydrocolloids. Elsevier B.V.; 2021. | |
dc.relation.references | Ashwar BA, Gani A, Ashraf Z ul, Jhan F, Shah A, Gani A, et al. Prebiotic potential and characterization of resistant starch developed from four Himalayan rice cultivars using β-amylase and transglucosidase enzymes. LWT. 2021 May 1;143. | |
dc.relation.references | Njapndounke B, Foko Kouam ME, Boungo GT, Klang JM, Ngoufack FZ. Optimization of production conditions of biscuit from Musa sapientum flour (‘banane cochon’): Nutritional composition and glycaemic index of the optimized biscuit. J Agric Food Res. 2021 Dec 1;6. | |
dc.relation.references | Co E, Iroaganachi M, Kc E. Ameliorative potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiacal L.) on renal and liver growth in streptozotocin induced diabetic rats [Internet]. 2013. Available from: www.jadweb.org | |
dc.relation.references | Arun KB, Thomas S, Reshmitha TR, Akhil GC, Nisha P. Dietary fibre and phenolic-rich extracts from Musa paradisiaca inflorescence ameliorates type 2 diabetes and associated cardiovascular risks. J Funct Foods. 2017 Apr 1;31:198–207. | |
dc.relation.references | Ania V, Soto S. CUANTIFICACION DE ALMIDON TOTAL Y DE ALMIDON RESISTENTE EN HARINA DE PLATANO VERDE (MUSA CAVENDISHII) Y BANANA VERDE (MUSA PARADISÍACA) [Internet]. 2010. Available from: http://www.bolivianchemistryjournal.org,http://www.scielo.org,http://www.scribd.com/bolivianjournalofchemistry | |
dc.relation.references | Kaur L, Dhull SB, Kumar P, Singh A. Banana starch: Properties, description, and modified variations - A review. Int J Biol Macromol [Internet]. 2020;165:2096–102. Available from: https://www.sciencedirect.com/science/article/pii/S0141813020346869 | |
dc.relation.references | Ble-Castillo JL, Juárez-Rojop IE, Tovilla-Zárate CA, García-Vázquez C, Servin-Cruz MZ, Rodríguez-Hernández A, et al. Acute consumption of resistant starch reduces food intake but has no effect on appetite ratings in healthy subjects. Nutrients. 2017 Jul 1;9(7). | |
dc.relation.references | Bojarczuk A, Skąpska S, Mousavi Khaneghah A, Marszałek K. Health benefits of resistant starch: A review of the literature. Vol. 93, Journal of Functional Foods. Elsevier Ltd; 2022 | |
dc.relation.references | Liu Q, Shi J, Jin Z, Jiao A. Development and characterization of resistant starch produced by an extrusion–debranching strategy with a high starch concentration. Food Hydrocoll. 2023 Mar 1;136. | |
dc.relation.references | Kumar PS, Saravanan A, Sheeba N, Uma S. Structural, functional characterization and physicochemical properties of green banana flour from dessert and plantain bananas (Musa spp.). LWT. 2019 Dec 1;116. | |
dc.relation.references | Grover JYS; V V. Plantas medicinales de la India con potencial antidiabético. Revista de Etnofarmacología. 2002;81:81–100 | |
dc.relation.references | Shodehinde SA, Ademiluyi AO, Oboh G, Akindahunsi AA. Contribution of Musa paradisiaca in the inhibition of α-amylase, α-glucosidase and Angiotensin-I converting enzyme in streptozotocin induced rats. Life Sci. 2015 Jul 15;133:8–14. | |
dc.relation.references | Njapndounke B, Saah MBD, Kouam MEF, Boungo GT, Ngoufack FZ. Optimum Biscuit From Musa Sapientum L. And Vigna Unguiculata L. Composite Flour: Effect On Pancreatic Histology, Biochemical And Hematological Parameters Of Diabetic Rats. Heliyon. 2021 Sep 1;7(9). | |
dc.relation.references | Sanchez-Rivera MM, Bello-Pérez LA, Tovar J, Martinez MM, Agama-Acevedo E. Esterified plantain flour for the production of cookies rich in indigestible carbohydrates. Food Chem. 2019 Sep 15;292:1–5. | |
dc.relation.references | Pico J, Corbin S, Ferruzzi MG, Martinez MM. Banana flour phenolics inhibit trans-epithelial glucose transport from wheat cakes in a coupled: In vitro digestion/Caco-2 cell intestinal model. Food Funct. 2019 Oct 1;10(10):6300–11. | |
dc.relation.references | Jiménez-Domínguez G, Ble-Castillo JL, Aparicio-Trápala MA, Juárez-Rojop IE, Tovilla-Zárate CA, Ble-Castillo DJ, et al. Effects of acute ingestion of native banana starch on glycemic response evaluated by continuous glucose monitoring in obese and lean subjects. Int J Environ Res Public Health. 2015 Jul 6;12(7):7491–505. | |
dc.relation.references | Martinez MM. Starch nutritional quality: beyond intraluminal digestion in response to current trends. Vol. 38, Current Opinion in Food Science. Elsevier Ltd; 2021. p. 112–21. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | glycemic index | |
dc.subject.keywords | Resistant starch | |
dc.subject.keywords | Hydrolysis kinetics | |
dc.subject.keywords | In vitro digestion | |
dc.subject.keywords | Postprandial glucose | |
dc.subject.keywords | Functional foods | |
dc.subject.keywords | Type 2 diabetes | |
dc.subject.proposal | índice glicémico | |
dc.subject.proposal | Almidón resistente | |
dc.subject.proposal | Cinética de hidrolisis | |
dc.subject.proposal | Digestión in vitro | |
dc.subject.proposal | Glucosa posprandial | |
dc.subject.proposal | Alimentos funcionales | |
dc.subject.proposal | Diabetes tipo 2 | |
dc.title | Evaluación del índice glicémico y la cinética de hidrólisis del almidón mediante un modelo digestivo in vitro, en un snack elaborado a base de harina de plátano y batata | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- Evaluación del índice glicémico y la cinética de hidrólisis del almidón (REVISADO 30-05-2025)[1].pdf
- Tamaño:
- 466.56 KB
- Formato:
- Adobe Portable Document Format
Cargando...
- Nombre:
- Formato de autorización.pdf
- Tamaño:
- 1.12 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: