Publicación: Arsénico y plomo en especies ícticas de ecosistemas dulceacuícolas en la región de La Mojana sucreña, Colombia
dc.contributor.advisor | Marrugo Negrete, Jorge Luis | |
dc.contributor.author | Guzmán Ospino, Yenis Patricia | |
dc.date.accessioned | 2021-07-16T14:04:56Z | |
dc.date.available | 2023-07-15 | |
dc.date.available | 2021-07-16T14:04:56Z | |
dc.date.issued | 2021-07-15 | |
dc.description.abstract | La región de la Mojana está ubicada en la costa Caribe colombiana y es uno de los ecosistemas más importantes en nuestro país y uno de los más biodiversos en el planeta, pero también ha sido una de las regiones más impactadas por las actividades de la minería del oro, recibiendo la gran descarga de contaminantes proveniente de estas acciones. El objetivo de este trabajo fue determinar las concentraciones de arsénico total (As-T) y plomo total (Pb-T) empleando espectroscopia de absorción atómica, en el músculo de especies ícticas con alto consumo e interés comercial en cuatro municipios de la Mojana (Caimito, Guaranda, San Benito y San Marcos) y evaluar el potencial riesgo para la salud de los consumidores. Los resultados obtenidos mostraron que las concentraciones de AsT y Pb-T en todas las especies estuvieron por debajo del límite máximo permisible (MPL) establecido por la normativa nacional e internacional (1.0 mg/kg para As y 0.3-0.4 mg/kg para Pb). En el municipio de Guaranda las especies fueron obtenidas del río Cauca y fueron las que registraron las concentraciones más altas de ambos metales. La mojarra amarilla (Caquetaia kraussi) registró la concentración de As-T (159.79 ± 107.85 μg/kg) y Pb-T (50.41 ± 51.79 μg/kg) más alta entre todas las especies. La ingesta diaria estimada (EDI), el riesgo potencial (HQ), el riesgo potencial total (THQ), la tasa máxima permitida de consumo de pescado (CRlim), el riesgo carcinogénico (CR) y el índice de contaminación por metales (MPI) evaluados, sugieren que no hay riesgo para la población al consumir estas especies de pescado en ninguno de cuatro municipios. | spa |
dc.description.abstract | The Mojana region is located on the Colombian Caribbean coast and is one of the most important ecosystems in our country and one of the most biodiverse on the planet, but it has also been one of the regions most impacted by gold mining activities, receiving the great discharge of pollutants from these actions. The aim of this work was to determine the concentrations of total arsenic (As-T) and total lead (Pb-T) using atomic absorption spectroscopy, in the muscle of fish species with high consumption and commercial interest in four municipalities of La Mojana (Caimito, Guaranda, San Benito and San Marcos) and evaluate the potential risk to the health of consumers. The results obtained showed that the concentrations of As-T and PbT in all species were below the maximum permissible limit (MPL) established by national and international regulations (1.0 mg/kg for As and 0.3-0.4mg/kg for Pb). In the municipality of Guaranda, the fish species were obtained from the Cauca River and were those that registered the highest concentrations of both metals. The yellow mojarra (Caquetaia kraussi) registered the highest concentration of As-T (159.79 ± 107.85 μg/kg) and Pb-T (50.41 ± 51.79 μg/kg) among all species. Estimated Daily Intake (EDI), Potential Risk (HQ), Total Potential Risk (THQ), Maximum Allowable Fish Consumption Rate (CRlim), Carcinogenic Risk (CR), and Metal Contamination Index (MPI) were evaluated and suggest that there is no risk to the population when consuming these species of fish in any of the four municipalities. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Ambientales | spa |
dc.description.modality | Trabajo de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1 INTRODUCCIÓN ...................11 | spa |
dc.description.tableofcontents | 2 OBJETIVOS..................13 | spa |
dc.description.tableofcontents | 2.1 Objetivo General.....................13 | spa |
dc.description.tableofcontents | 2.2 Objetivos Específico...................13 | spa |
dc.description.tableofcontents | 3 ANTECEDENTES Y MARCO TEÓRICO..................14 | spa |
dc.description.tableofcontents | 3.1 Antecedentes....................14 | spa |
dc.description.tableofcontents | 3.2 Marco Teórico..................18 | spa |
dc.description.tableofcontents | 3.2.1 Metales pesados......................18 | spa |
dc.description.tableofcontents | 3.2.2 Arsénico (As).................20 | spa |
dc.description.tableofcontents | 3.2.3 Plomo (Pb).................22 | spa |
dc.description.tableofcontents | 3.2.4 Arsénico y plomo provenientes de la minería.25 | spa |
dc.description.tableofcontents | 3.2.5 Bioacumulación de metales en peces..................30 | spa |
dc.description.tableofcontents | 4 METODOLOGÍA.....................38 | spa |
dc.description.tableofcontents | 4.1 Tipo de Estudio.......................38 | spa |
dc.description.tableofcontents | 4.2 Área de Estudio...................38 | spa |
dc.description.tableofcontents | 4.3 Recolección de la Información en Campo................40 | spa |
dc.description.tableofcontents | 4.3.1 Tamaño de la muestra..................40 | spa |
dc.description.tableofcontents | 4.3.2 Aplicación de encuestas..................41 | spa |
dc.description.tableofcontents | 4.3.3 Recolección y análisis de muestras..................42 | spa |
dc.description.tableofcontents | 4.3.4 Determinación de las concentraciones de arsénico total (As-T) y plomo total (Pb-T)...................42 | spa |
dc.description.tableofcontents | 4.3.5 Control de calidad analítico.....................43 | spa |
dc.description.tableofcontents | 4.4 Evaluación de Riesgo para la Salud Humana.....44 | spa |
dc.description.tableofcontents | 4.4.1Determinación del nivel de ingesta dietario (EDI)......44 | spa |
dc.description.tableofcontents | 4.4.2 Potencial de riesgo (HQ)................45 | spa |
dc.description.tableofcontents | 4.4.3 Tasa máxima permitida de consumo de pescado (CRlim)................46 | spa |
dc.description.tableofcontents | 4.4.4 Índice de contaminación por metales (MPI)..................46 | spa |
dc.description.tableofcontents | 4.4.5 Riesgo carcinogénico (CR).....................46 | spa |
dc.description.tableofcontents | 4.5 Análisis Estadístico.................47 | spa |
dc.description.tableofcontents | 5 RESULTADOS Y DISCUSIÓN...................48 | spa |
dc.description.tableofcontents | 5.1 Generalidades de las Muestras de Pescados......48 | spa |
dc.description.tableofcontents | 5.2 Concentraciones de Arsénico Total (As-T) y Plomo Total (Pb-T) ........52 | spa |
dc.description.tableofcontents | 5.2.1 Relación entre concentración de As-T y Pb-T con talla y peso de peces de mayor consumo...........65 | spa |
dc.description.tableofcontents | 5.3 Evaluación de Riesgo para la Salud Humana..............66 | spa |
dc.description.tableofcontents | 6 CONCLUSIONES.......................75 | spa |
dc.description.tableofcontents | 7 RECOMENDACIONES...............77 | spa |
dc.description.tableofcontents | 8 REFERENCIAS BIBLIOGRÁFICAS................78 | spa |
dc.description.tableofcontents | ANEXOS...............94 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4360 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Ambientales | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Heavy metals | spa |
dc.subject.keywords | Fishes | eng |
dc.subject.keywords | Potential risk | eng |
dc.subject.keywords | La Mojana | eng |
dc.subject.proposal | Metales pesados | spa |
dc.subject.proposal | Peces | spa |
dc.subject.proposal | Riesgo potencial | spa |
dc.subject.proposal | La Mojana | spa |
dc.title | Arsénico y plomo en especies ícticas de ecosistemas dulceacuícolas en la región de La Mojana sucreña, Colombia | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abbas B., Al-Jubori W., Abdullah A., Sha`aban H., Mohammed M. (2018). Environmental Pollution with the Heavy Metal Compound. Research J. Pharm. and Tech., 11(9): 4035-4041. | spa |
dcterms.references | Acevedo N. (2017). Gestión empresarial, productividad y destino turístico en San Benito Abad –Sucre – Colombia. Cartagena. (Tesis de Maestría). Universidad Tecnológica De Bolívar. | spa |
dcterms.references | Ali D., Almarzoug M., Al Ali H., Samdani M., Hussain S. (2020). Fish as bio indicators to determine the effects of pollution in river by using the micronucleus and alkaline single cell gel electrophoresis assay. | spa |
dcterms.references | Aytekin T., Kargın D., Yeter Çoğun H., Temiz Ö., Sağ Varkal H.,Kargın F. (2019). Accumulation and health risk assessment of heavy metals in tissues of the shrimp and fish species from the Yumurtalik coast of Iskenderun Gulf, Turkey. Heliyon, 5(8): e02131. | spa |
dcterms.references | Acharya S. (2013). Lead between the lines. Nature Chem., 5: 894. | spa |
dcterms.references | Arango S., Jaramillo P., Olaya Y., et al. (2017). Simulating mining policies in developing countries: The case of Colombia. Socio-Econ. Plan. Sci., 60: 99- 113. | spa |
dcterms.references | Alonso D., Pérez R., Okio C., Castillo E. (2020). Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo, Colombia. J. Environ. Manage., 264, 110478. | spa |
dcterms.references | Alonso D., Latorre S., Castillo E., Brandão P. (2014). Environmental occurrence of arsenic in Colombia: A review. Environ. Pollut., 186: 272-281. | spa |
dcterms.references | Agudelo-Calderón, C., García-Ubaque, J., Robledo-Martínez, R., García-Ubaque, C., & Quiroz-Arcentales, L. (2016). Evaluación de condiciones ambientales: aire, agua y suelos en áreas de actividad minera en Boyacá, Colombia. Revista de Salud Pública, 18(1),50-60. | spa |
dcterms.references | Aguilera, M. (2004). La Mojana: riqueza natural y potencial económico. Obtenido de https://www.banrep.gov.co/docum/Lectura_finanzas/pdf/DTSER-48.pdf | spa |
dcterms.references | Bundschuh J., Armienta M., Morales-Simfors N., Ayaz Alam M., et al. (2020): Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology, 140 pp. DOI: 10.1080/10643389.2020.1770527. | spa |
dcterms.references | Bustamante N., Danoucaras N. McIntyre N., Díaz-Martínez J., Restrepo-Baena O. (2016). Review of improving the water management for the informal gold mining in Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, 79: 163-172. | spa |
dcterms.references | Briffa J., Sinagra E., Blundell R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6: e04691. | spa |
dcterms.references | Beltrán-Tumala D., Rivera-Rosero M., Guerrero C., et al. (2016). Diferentes periodos de adaptación al alimento inerte en larvas de Pseudoplatystoma fasciatum. Investig. Pecu., 4 (2): 51-57. | spa |
dcterms.references | Bawuro, R., Voegborlo, & Adimad. (2018). Bioaccumulation of Heavy Metals in Some Tissues of Fish in Lake Geriyo, Adamawa State, Nigeria. Obtenido de https://www.hindawi.com/journals/jeph/2018/1854892/ | spa |
dcterms.references | Calao C., Marrugo J. (2015). Efectos genotóxicos asociados a metales pesados en una población humana de la región de La Mojana, Colombia, 2013. Biomédica, 35(Supl.2):139-151. | spa |
dcterms.references | Cadavid J., Pérez N., Marrugo J. (2019). Contaminación por metales pesados en la bahía Cispatá en Córdoba-Colombia y su bioacumulación en macromicetos. Gestión y Ambiente, 22(1): 43-53. | spa |
dcterms.references | Chen S., Yan X., Chen Z. (2013) Arsenic in Nature. In: Kretsinger R.H., Uversky V.N., Permyakov E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. Disponible en: https://doi.org/10.1007/978-1-4614-1533-6_489. [consultado noviembre de 2020]. | spa |
dcterms.references | Cardoso A. (2015). Behind the life cycle of coal: Socioenvironmental liabilities of coal mining in Cesar, Colombia. Ecol. Econ., 120: 71-82. | spa |
dcterms.references | Chojnacka K., Mikulewicz M. (2014). Bioaccumulation: 456-460. In: Wexler P. (ed.), Encyclopedia of Toxicology (Third Edition). 5220 pp. | spa |
dcterms.references | Castro-González M., Méndez-Armenta M. (2008). Heavy metals: Implications associated to fish consumption. Environ. Toxicol. Pharmacol., 26(3): 263-271. | spa |
dcterms.references | Campo N., Simanca K. (2019). Evaluación de las concentraciones de Cadmio, Plomo, Zinc y Cromo en especies ícticas del departamento de la Guajira- Colombia y riesgo de exposición en humanos (Tesis de pregrado). Corporación Universitaria de la Costa, Barranquilla-Colombia. | spa |
dcterms.references | Contaminated Soils from a Historical Mining Site: Implications for Different Mobilities of Heavy Metals. ACS Earth and Space Chemistry, 4(7):1064-1077. | spa |
dcterms.references | Copaja, S., Olivares, F., & Fuenzalida, F. (2017). NIVELES DE Cd, Cu y Zn EN LA LAPA (FISURELLA sp.) EN EL BORDE COSTERO DE LA COMUNA DE CHAÑARAL. Obtenido de http://repositorio.uchile.cl/bitstream/handle/2250/146536/Seminario%20T%C 3%ADtulo%20Francisca%20Fuenzalida.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | Díaz S., Palma R., Muñoz N., Becerra-Arias C., Fernández J. (2020). Factors Associated with High Mercury Levels in Women and Girls from The Mojana Region, Colombia, 2013–2015. Int. J. Environ. Res. Public Health, 17: 1827. | spa |
dcterms.references | Doria C., Fagundo J. (2017). Niveles de metales en partículas atmosféricas en la zona minera de carbón, Norte de Colombia. Iteckne, 14(2): 110-121. | spa |
dcterms.references | Deza S., Bazán R., Culquichicón Z. (2005). Bioecología y Pesquería de Pseudoplatystoma fasciatum (Linnaeus, 1766; Pisces), Doncella, en la región Ucayali. Folia Amazónica, 14 (2): 5-17. | spa |
dcterms.references | De Lima D., Santos C., Silva R., Yoshioka E., Bezerra R. (2015). Heavy metal contamination in fish and water from Cassiporé River basin, State of Amapá, Brazil. Acta Amazonica, 45(4): 405-414. | spa |
dcterms.references | Dhir B. (2018). Chapter 4 - Biotechnological Tools for Remediation of Acid Mine Drainage (Removal of Metals From Wastewater and Leachate): 67-82. In: Mnv P., Favas P., Maiti S. (eds.) Bio-Geotechnologies for Mine Site Rehabilitation: 695 pp. | spa |
dcterms.references | Doria M., Espitia A., Segura F., Olaya C. (2021). Reproductive biology of Bocachico Prochilodus magdalenae (Prochilodontidae) in the San Jorge River, Colombia. Acta Biol, Colomb,, 26 (1): 54-61. | spa |
dcterms.references | Fuentes-Gandara F., Pinedo-Hernández J., Marrugo-Negrete J., Díez S. (2018). Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environ. Geochem. Health, 40(1): 229-242. | spa |
dcterms.references | FAO/OMS (Food and Agricultural Organization / World Health Organization). (2019). Norma general para los contaminantes y las toxinas presentes en los alimentos y piensos. Reporte Técnico. Disponible en: http://www.fao.org/fao- whocodexalimentarius/shproxy/es/?lnk=1&url=https%253A%252F%252Fwo rkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B1 93-1995%252FCXS_193s.pdf. [consultado diciembre de 2020]. | spa |
dcterms.references | Fontalvo P., Berdugo G., Narváez J. (2018). Diversidad y estructura genética del Prochilodus magdalenae (Pisces: Prochilodontidae) aguas arriba y abajo de la represa Betania, Colombia. Intropica, 13(2), 87–100. | spa |
dcterms.references | Gutiérrez F., Ruiz C. (2020). Fish as bioindicators: coal and mercury pollution in Colombia’s ecosystems. Environ. Sci. Pollut. Res., 27: 27541-27562. | spa |
dcterms.references | Gallego S., Ramírez C., López B., Macía S., Leal J., Velásquez C. (2018). Evaluation of Mercury, Lead, Arsenic, and Cadmium in Some Species of Fish in the Atrato River Delta, Gulf of Urabá, Colombian Caribbean. Water Air Soil Pollut, 229: 275-287. | spa |
dcterms.references | Gray T. (2008). Muestra de galena (PbS) [imagen]. Disponible en: https://periodictable.com/Items/Galena3/index.html. [consultado noviembre de 2020]. | spa |
dcterms.references | Gankhurel B., Fukushi K., Akehi A., Takahashi Y., Zhao X., Kawasaki K. (2020). Comparison of Chemical Speciation of Lead, Arsenic, and Cadmium in | spa |
dcterms.references | Güiza L. (2013). La pequeña minería en Colombia: una actividad no tan pequeña. DYNA (Colombia), 80(181): 109-117. | spa |
dcterms.references | Guerrero A., Olivero J. y Marrugo J. (2014). Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage and exposure to metals. MRGTEM, 762(1): 24-29. | spa |
dcterms.references | Gámez D., Morón E., Fuentes J. (2014). Descripción del hábito alimentario de doce especies asociadas a la Ciénaga Grande de Santa Marta, Colombia. Bol. Invest. Mar. Cost., 43(1): 23-42. | spa |
dcterms.references | Garnero P., Bistoni M., Monferran M. (2020). Trace element concentrations in six fish species from freshwater lentic environments and evaluation of possible health risks according to international standards of consumption. Environ. Sci. Pollut. Res., 27: 27598-27608. | spa |
dcterms.references | Helmenstine A. (2019). Dos de las tres formas alotrópica del arsénico [imagen]. Tomada y modificada de: https://www.thoughtco.com/interesting-arsenic- element-facts-603360. [consultado noviembre de 2020]. | spa |
dcterms.references | Hazrat A., Ezzat K. (2018a). Bioaccumulation of non‑essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ. Chem. Lett., 16: 903-917 | spa |
dcterms.references | Hazrat A., Ezzat K. (2018b). Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs- Concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess., 25(6): 1353-1376. | spa |
dcterms.references | Herrera-Herrera C., Fuentes-Gandara F., Zambrano-Arévalo A. et al. (2019). Health Risks Associated with Heavy Metals in Imported Fish in a Coastal City in Colombia. Biol. Trace Elem. Res., 190: 526–534 | spa |
dcterms.references | Haddaway N., Cooke S., Lesser P., et al. (2019). Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social– ecological systems in Arctic and boreal regions: a systematic map protocol. Environ. Evid., 8(9): 11pp. | spa |
dcterms.references | Ismail A., Riaz M., Akhtar S., Goodwill J., Sun J. (2019). Heavy metals in milk: global prevalence and health risk assessment. Toxin Reviews, 38(1): 1-12. | spa |
dcterms.references | Juárez F. (2016). La minería ilegal en Colombia: un conflicto de narrativas. El Ágora U.S.B., 16(1), 135-146. | spa |
dcterms.references | Jain M., Das A. (2017). Impact of Mine Waste Leachates on Aquatic Environment: A Review. Curr. Pollution Rep., 3: 31-37. | spa |
dcterms.references | Jia Y., Wang L., Li S., Cao J., Yang Z. (2018). Species-specific bioaccumulation and correlated health risk of arsenic compounds in freshwater fish from a typical mine-impacted river. Sci. Total Environ., 625: 600-607. | spa |
dcterms.references | Khoshnood Z. (2017). Effects of Environmental Pollution on Fish: A Short Review. Transylv. Rev. Syst. Ecol. Res., 19(1): 49-60. | spa |
dcterms.references | Kumari B., Kumar V., Sinha A., et al. (2017). Toxicology of arsenic in fish and aquatic systems. Environ. Chem. Lett, 15: 43–64. | spa |
dcterms.references | Kim H., Kim Y., Seo Y. (2015). An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J. Cancer Prev., 20(4): 232-240. | spa |
dcterms.references | Kamunda C., Mathuthu M., Madhuku M. (2016). Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa. Int. J. Environ. Res. Public. Health, 13(7), 663: 1-11. | spa |
dcterms.references | Loh N., Loh H., Wang L., Wang M. (2016). Chapter 5: Health Effects and Control of Toxic Lead in the Environment. 51 pp. In: Wang L., Wang MH., Hung YT., Shammas N. (eds) Natural Resources and Control Processes. Handbook of Environmental Engineering, vol 17. Springer, Cham | spa |
dcterms.references | Lee J-W., Choi H., Hwang U-K., Kang J-C., Kang Y., Kim K., Kim J-H. (2019). Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environ. Toxicol. Pharmacol., 68: 101-108. | spa |
dcterms.references | López E., Barragán R. (2016). Metals and metalloid in eight fish species consumed by citizens of Bogota D.C., Colombia, and potential risk to humans. J. Toxicol. Environ. Heal. - Part A, 79(5):232-243. | spa |
dcterms.references | Muñoz O., Zamorano P., García O., Bastías J. (2017). Arsenic, cadmium, mercury, sodium, and potassium concentrations in common foods and estimated daily intake of the population in Valdivia (Chile) using a total diet study. Food Chem. Toxicol., 109(Pt 2):1125-1134. | spa |
dcterms.references | Melai V., Giovannini A., Chiumiento F., Bellocci M., Migliorati G. (2018). Occurrence of metals in vegetables and fruits from areas near landfill in Southern Italy and implications for human exposure. Int. J. Food Contam., 5: 8-21. | spa |
dcterms.references | Marrugo-Negrete J., Pinedo-Hernández J., Paternina–Uribe R., Quiroz-Aguas L., Pacheco-Florez S. (2018a). Distribución espacial y evaluación de la contaminación ambiental por mercurio en la región de la Mojana, Colombia. Revista MVZ Córdoba, 23(S): 7062-7075. | spa |
dcterms.references | Marrugo J., Navarro A., Ruiz J. (2015a). Total mercury concentrations in fish from Urrá reservoir (Sinú river, Colombia). Six years of monitoring. Rev MVZ Cordoba; 20(3): 4754–4765. | spa |
dcterms.references | Marrugo J., Pinedo J., Díez S. (2015b). Geochemistry of mercury in tropical swamps impacted by gold mining. Chemosphere, 134: 44-51. | spa |
dcterms.references | Marrugo J., Ruiz J., Ruiz A. (2018b). Biomagnification of Mercury in Fish from Two Gold Mining-Impacted Tropical Marshes in Northern Colombia. Arch. Environ. Contam. Toxicol., 74(1): 121–130. | spa |
dcterms.references | Meza M., De La Ossa J., Hernández J., Marrugo J. (2020). Mercurio total en hígado de Trachemys callirostris (Gray, 1856) (Testudines: Emydidae) en tres zonas de la Mojana, Sucre-Colombia. Rev. U.D.C.A Act. & Div. Cient., 23(1): e1239. | spa |
dcterms.references | Marrugo J., Olivero J., Lans E., Benitez L. (2008). Total mercury and methylmercury concentrations in fish from the Mojana region of Colombia. Environ. Geochem. Health, 30: 21–30. | spa |
dcterms.references | Mansourri G., Madani M. (2016). Examination of the Level of Heavy Metals in Wastewater of Bandar Abbas Wastewater Treatment Plant. Open J. Ecol., 6: 55-61. | spa |
dcterms.references | Masindi V., Muedi K. (2018). Chapter 7: Environmental Contamination by Heavy Metals: 20 pp. In: Heavy Metals. Edited by: Hosam El-Din M. Saleh and Refaat F. Aglan, IntechOpen. Disponible en: https://www.intechopen.com/books/heavy-metals/environmental- contamination-by-heavy-metals. [consultado noviembre de 2020]. | spa |
dcterms.references | Martínez V., Vucic E., Becker-Santos D., Gil L., Lam W. (2011). Arsenic exposure and the induction of human cancers. J. Toxicol., 2011: 431287. | spa |
dcterms.references | Marciniak W., Derkacz R., Muszynska M., et al. (2020). Blood arsenic levels and the risk of familial breast cancer in Poland. Int. J. Cancer: 146: 2721–2727. | spa |
dcterms.references | Matschullat J., Gutzmer J. (2012). Mining and Its Environmental Impacts: 353-366 pp. In: LaMoreaux J. (eds) Environmental Geology. Encyclopedia of Sustainability Science and Technology Series. Springer. | spa |
dcterms.references | Mabey P., Li W., Sundufu A., Lashari A. (2020). Environmental Impacts: Local Perspectives of Selected Mining Edge Communities in Sierra Leone. Sustainability, 12: 5525- 5540. | spa |
dcterms.references | MinMinas-Ministerio de Minas y Energía de Colombia. (2018). Plan Voceros- Realidades de la Minería en Colombia (Cartilla). Con el apoyo de la Universidad Pedagógica y Tecnológica de Colombia. 15 pp. Disponible en: https://www.minenergia.gov.co/documents/10192/24062340/041218_cartilla _mitos_realidades_mineria_2018.pdf/07e4445a-bcf1-4919-895a- eb2d84a89dd8. [consultado noviembre de 2020]. | spa |
dcterms.references | McIntyre N., Angarita M., Fernandez N., et al. (2018). A Framework for Assessing the Impacts of Mining Development on Regional Water Resources in Colombia. Water, 10(3): 268. | spa |
dcterms.references | Marrugo J., Pinedo J., Marrugo S., Díez S. (2020). Assessment of trace element pollution and ecological risks in a river basin impacted by mining in Colombia. Environ. Sci. Pollut. Res., 28: 1-10. | spa |
dcterms.references | Marrugo-Negrete J., Urango-Cardenas I., Burgos-Núñez S., Díez S. (2014). Atmospheric deposition of heavy metals in the mining área of the San Jorge river basin, Colombia. Air Qual. Atmos. Health, 7: 577-588. | spa |
dcterms.references | Martín A., Arias J., López J., et al. (2020). Evaluation of the Effect of Gold Mining on the Water Quality in Monterrey, Bolívar (Colombia). Water, 12(9), 2523. | spa |
dcterms.references | Maldonado-Ocampo J., Ortega-Lara A., Usma J., et al. (2005). Peces de los Andes de Colombia. Instituto de Investigación de Recursos Biológicos «Alexander von Humboldt». Bogotá, D.C. - Colombia: 346 pp. | spa |
dcterms.references | Maus V., Giljum S., Gutschlhofer J., et al. (2020). A global-scale data set of mining areas. Sci. Data, 7, 289: 1-13. | spa |
dcterms.references | Ngole-Jeme V., Fantke P. (2017). Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PloS one, 12(2): e0172517. | spa |
dcterms.references | Noreña R., Arenas T., Murillo P., Guío D., Méndez, A. (2012). Heavy metals (Cd, Pb and Ni) in fish species commercially important from Magdalena river, Tolima tract, Colombia. Revista Tumbaga, 7: 61-76. | spa |
dcterms.references | Rubio, C. R., Idrovo, J., & Castellanos, C. A. (2017). Percepción de la contaminación y arsénico en cabello de indígenas viviendo cerca de una mina a cielo abierto de ferroníquel (Córdoba, Colombia): reporte de caso en salud pública. Obtenido de https://revistas.uis.edu.co/index.php/revistasaluduis/article/view/6200 | spa |
dcterms.references | Orville H., Winjajellum S., Sivakumar R. (2018). An evaluation of heavy metals in the edible muscle tissues of two commercial fish species (Oreochromis niloticus and Hoplosternum littorale) and human health risk assessments. Int. J. Bioassays, 7(2): 5583-5591. | spa |
dcterms.references | Oliveira L., Ferreira N., Oliveira A., Nogueira A., Gonzalez M. (2017). Evaluation of Distribution and Bioaccumulation of Arsenic by ICP-MS in Tilapia (Oreochromis niloticus) Cultivated in Different Environments. J. Braz. Chem. Soc., 28(12), 2455-2463. | spa |
dcterms.references | OMS, Organización Mundial de la Salud. (2018). Arsénico. Disponible en: https://www.who.int/es/news-room/fact- | spa |
dcterms.references | sheets/detail/arsenic#:~:text=En%20China%20(Provincia%20de%20Taiw% C3%A1n,malnutrici%C3%B3n%20contribuya%20a%20su%20desarrollo. [consultada noviembre de 2020]. | spa |
dcterms.references | OMS, Organización Mundial de la Salud. (2019). Intoxicación por plomo y salud. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/lead- poisoning-and-health. [consultada noviembre de 2020]. | spa |
dcterms.references | Obasi P., Akudinobi B. (2020). Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Appl. Water Sci., 10: 184 | spa |
dcterms.references | Olivero J., Caballero K., Turizo A. (2015). Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia). Environ. Sci. Pollut. Res., 22: 5895–5907. | spa |
dcterms.references | Ortaz M., González E., Peñaherrera C. (2006). Depredación de peces sobre el zooplancton en tres embalses neotropicales con distintos estados tróficos. Interciencia, 31(7): 517-524 | spa |
dcterms.references | Oscoz J., Leunda P., Campos F., et al. (2005). Spring diet composition of Rainbow Trout, Oncorhynchus mykiss (Walbaum, 1792) in the Urederra River (Spain). Ann. Limnol. - Int. J. Lim., 41 (1): 27-34. | spa |
dcterms.references | Olaya-Nieto, C., Tordecilla-Petro, G., & Segura-Guevara, F. (2005). Crecimiento y mortalidad del moncholo (hoplias malabaricus) en la Ciénaga Grande de Lorica, Colombia. Obtenido de https://revistamvz.unicordoba.edu.co/article/view/466 | spa |
dcterms.references | Pinzón-Bedoya C., Pinzón-Bedoya M., Pinedo-Hernández J., Urango-Cardenas I., Marrugo-Negrete J. (2020). Assessment of Potential Health Risks Associated with the Intake of Heavy Metals in Fish Harvested from the Largest Estuary in Colombia. Int. J. Environ. Res. Public Health, 17(8): 2921. | spa |
dcterms.references | Pinedo-Hernández J., Marrugo-Negrete J., Díez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere, 119: 1289–1295 | spa |
dcterms.references | Pullella K., Kotsopoulos J. (2019). Arsenic Exposure and Breast Cancer Risk: A Re- Evaluation of the Literature. Nutrients, 12(11), 3305: 1-17. | spa |
dcterms.references | Poma P. (2008). Intoxicación por plomo en humanos. An. Fac. Med., 69(2): 120- 126. | spa |
dcterms.references | Park I., Tabelin C., Jeon S., Li X., Seno K., Ito M., Hiroyoshi N. (2019). A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 219: 588-606. | spa |
dcterms.references | Palacios Y., de la Rosa J., Olivero J. (2019). Trace elements in sediments and fish from Atrato River: An ecosystem with legal rights impacted by gold mining at the Colombian Pacific. Environ. Pollut., 256, 113290. | spa |
dcterms.references | Quintela F., Pinto G., Silveira M., et al. (2019). High arsenic and low lead concentrations in fish and reptiles from Taim wetlands, a Ramsar site in southern Brazil. Sci. Total Environ., 660: 1004-1014. | spa |
dcterms.references | Ramteke S., Lal Sahu B., Dahariya N., Songs Patel K., Blazhev B., Matini L. (2016). Heavy Metal Contamination of Vegetables. J. Environ. Prot., 7: 996-1004. | spa |
dcterms.references | Rangel E., Montañez L., Luévanos M., Balagurusamy N. (2015). Impacto del Arsénico en el mbiente y su transformación por microorganismos. TERRA Latinoamericana, 3(2): 103-118. | spa |
dcterms.references | Raj D. (2018). Bioaccumulation of mercury, arsenic, cadmium, and lead in plants grown on coal mine soil. Hum. Ecol. Risk Assess., 25: 1-13. | spa |
dcterms.references | Roa-Cubillos M., Villa-Navarro F. (2019). Aspectos reproductivos y pesqueros de Prochilodus magdalenae Steindachner, 1879 (Characiformes: Prochilodontidae) en la ciénaga de Marriaga, río Atrato, Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat., 43(166): 44-51. | spa |
dcterms.references | Savassi L., Paschoalini A., Arantes F., et al. (2020). Heavy metal contamination in a highly consumed Brazilian fish: immunohistochemical and histopathological assessments. Environ. Monit. Assess, 192: 542-555. | spa |
dcterms.references | Senior W., Cornejo-Rodríguez M., Tobar J., Ramírez-Muñoz M., Márquez A. (2016). Metales pesados (cadmio, plomo, mercurio) y arsénico en pescados congelados de elevado consumo en el Ecuador. Zootecnia Trop., 34 (2): 143- 153. | spa |
dcterms.references | Salazar C., Salas M., Paternina R., Marrugo J., Díez S. (2020). Mercury species in fish from a tropical river highly impacted by gold mining at the Colombian Pacific region. Chemosphere, 264: 128478. | spa |
dcterms.references | Spiegel M., Stephens L. (2009). Capítulo 8: Teoría elemental del muestreo: 203- 227. En: Roig P., Delgado A. (eds.), Estadística Serie Schaum, 4ª edición. 601 pp. | spa |
dcterms.references | Suarez L. (2016). Calidad fisicoquímica y microbiológica de dos especies de pescados dulceacuícolas comercializados en el municipio de Sincelejo- Colombia (Tesis de pregrado). Universidad de Sucre, Sincelejo-Colombia. | spa |
dcterms.references | Šlejkovec Z., Bajc Z., Doganoc D. (2004). Arsenic speciation patterns in freshwater fish. Talanta, 62: 931-936. | spa |
dcterms.references | Timothy N., Williams E. (2019). Environmental Pollution by Heavy Metal: An Overview. Int. J. Environ. Chem., 3(2): 72-82. | spa |
dcterms.references | Tchounwou P., Yedjou C., Patlolla A., Sutton D. (2012). Heavy Metals Toxicity and the Environment. EXS., 101: 133–164. | spa |
dcterms.references | Tiwari S., Tripathi I., Tiwari H. (2013). Effects of Lead on Environment. IJERMT., 2(6): 1-5. | spa |
dcterms.references | Tamele I., Vázquez P. (2020). Lead, Mercury and Cadmium in Fish and Shellfish from the Indian Ocean and Red Sea (African Countries): Public Health Challenges. J. Mar. Sci. Eng., 8: 344. | spa |
dcterms.references | Taylor M., Mould S., Kristensen L., Rouillon M. (2014). Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health. Environ. Res., 135: 296-303. | spa |
dcterms.references | Urquijo, C y Vargas, M. (2013). Caracterización territorial y de inundaciones en la región de la mojana. (Tesis de pregrado).Universidad Católica De Colombia. Bogotá. | spa |
dcterms.references | USEPA (US Environmental Protection Agency). (2002). Columbia River Basin Fish Contaminant Survey. USEPA; Seattle, WA, USA: 2002. 1996-1998. | spa |
dcterms.references | USEPA (US Environmental Protection Agency). (2012). Edition of the Drinking Water Standards and Health Advisories. EPA 822-S-12-001, 2012 Edition of the Drinking Water Standards and Health Advisories, Office of Water. Washington, DC (2012). | spa |
dcterms.references | Vargas S., Marrugo J. (2019). Mercurio, metilmercurio y otros metales pesados en peces de Colombia: riesgo por ingesta. Acta biol. Colomb., 24(2): 232-242. | spa |
dcterms.references | Varol M., Kurt Kaya G., Alp A. (2017). Heavy metal and arsenic concentrations in rainbow trout (Oncorhynchus mykiss) farmed in a dam reservoir on the Firat (Euphrates) River: Risk-based consumption advisories. Sci. Total Environ., 599–600: 1288-1296. | spa |
dcterms.references | Wani A., Ara A., Usmani J. (2015). Lead toxicity: a review. Interdisciplinary toxicology, 8(2). 55-64. | spa |
dcterms.references | Wei W., Ma R., Sun Z., Zhou A., Bu J., Long X., Liu Y. (2018). Effects of Mining Activities on the Release of Heavy Metals (HMs) in a Typical Mountain Headwater Region, the Qinghai-Tibet Plateau in China. Int. J. Environ. Res. Public Health, 15(9): 1987. | spa |
dcterms.references | Yin J., Liu Q., Wang L. et al. (2018). The distribution and risk assessment of heavy metals in water, sediments, and fish of Chaohu Lake, China. Environ. Earth Sci., 77: 97-108. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: