Publicación:
Fitorremediación: técnica aplicada a la recuperación de suelos agrícolas contaminados por plaguicidas.

dc.contributor.advisorOssa Henao, Diana Marcela
dc.contributor.authorMadera Sarmiento, Carlos Andrés
dc.date.accessioned2021-01-20T20:26:47Z
dc.date.available2021-01-20T20:26:47Z
dc.date.issued2021-01-20
dc.description.abstractA la luz de que en la agricultura los plaguicidas se han convertido en una herramienta útil por su control de plagas, su cotidianidad en la aplicación de cultivos ocasiona un daño colateral, debido a la naturaleza del ingrediente activo que poseen, puesto que la parte de la molécula que no hace frente a la plaga o patógeno se queda en su mayoría en el ambiente, mayormente en el suelo. Revisando estudios efectuados en años recientes y para salvaguardar los suelos contaminados a causa de la agricultura intensiva, se han implementado diversas tecnologías de recuperación, demostrando que existen diferentes opciones y métodos de intervención para una remediación apropiada de contaminantes; entre las cuales cabe señalar la fitorremediación, la biorremediación de suelos, la fitoestabilización, la fitoextracción, humedales artificiales o construidos, entre otras tecnologías que son viables y rentables. Es por ello que la inclinación de este trabajo se edifica en la búsqueda de los beneficios que puede producir la implementación de la fitorremediación como técnica remediadora en la recuperación de suelos, teniendo en cuenta que existen algunas especies de plantas capaces de degradar o transformar contaminantes lo cual se obtiene con la ayuda de procesos fisicoquímicos y biológicos dados en el medio.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico(a)spa
dc.description.modalityMonografíasspa
dc.description.tableofcontents1. INTRODUCCIÓN...................................................................................................... 13spa
dc.description.tableofcontents2. OBJETIVOS............................................................................................................15spa
dc.description.tableofcontents2.1. Objetivo General ................................................................................................................. 13spa
dc.description.tableofcontents2.2. Objetivos Específicos ......................................................................................................... 13spa
dc.description.tableofcontentsDESARROLLO DEL TEMA ............................................................................................................ 14spa
dc.description.tableofcontentsCAPÍTULO I 3. ALTERNATIVAS PARA LA REMEDIACIÓN DE CONTAMINANTES EN .................................................................................................................. 14spa
dc.description.tableofcontentsSUELOS ......................................................................................................................................... 14spa
dc.description.tableofcontents3.1. El suelo ................................................................................................................................ 14spa
dc.description.tableofcontents3.2. Contaminación del suelo .................................................................................................... 17spa
dc.description.tableofcontents3.3. Fuentes de contaminación del suelo ................................................................................ 18spa
dc.description.tableofcontents3.3.1. Contaminación puntual o local .................................................................................... 18spa
dc.description.tableofcontents3.3.2. Contaminación difusa .................................................................................................. 19spa
dc.description.tableofcontents3.4. Principales contaminantes del suelo ................................................................................ 19spa
dc.description.tableofcontents3.4.1. Metales pesados ........................................................................................................... 20spa
dc.description.tableofcontents3.4.2. Plaguicidas .................................................................................................................... 20spa
dc.description.tableofcontents3.4.3. Hidrocarburos aromáticos policíclicos (HAP)............................................................ 21spa
dc.description.tableofcontents3.4.4. Contaminantes emergentes (CE) ................................................................................ 22spa
dc.description.tableofcontentsPlaguicidas importantes en la contaminación del suelo ................................................. 22spa
dc.description.tableofcontents3.5.1. Clasificación de plaguicidas ........................................................................................ 24spa
dc.description.tableofcontents3.5.2. Otras clasificaciones .................................................................................................... 24spa
dc.description.tableofcontentsRemediación de suelos ...................................................................................................... 26spa
dc.description.tableofcontents3.6.1. Generalidades ............................................................................................................... 26spa
dc.description.tableofcontents3.6.2. Tipos de tratamientos .................................................................................................. 27spa
dc.description.tableofcontents3.6.2.1. Tratamientos térmicos .................................................................................................. 27spa
dc.description.tableofcontents3.6.2.2. Tratamientos fisicoquímicos ........................................................................................ 28spa
dc.description.tableofcontents3.6.2.3. Tratamientos biológicos ...............................................................................................30spa
dc.description.tableofcontentsCAPÍTULO II 4. FITORREMEDIACIÓN ESTRATEGIA ÚTIL EN LA EXTRACCIÓN DE CONTAMINANTES .................................................................................................................................................. 38spa
dc.description.tableofcontents4.1. Eficiencia de la fitorremediación ....................................................................................... 39spa
dc.description.tableofcontents4.2. Estimulación del crecimiento vegetal por comunidades microbianas .......................... 41spa
dc.description.tableofcontents4.3. Factores de concentración................................................................................................. 42spa
dc.description.tableofcontents4.3.1. Factor de bioconcentración (FBC) .............................................................................. 43spa
dc.description.tableofcontents4.3.2. Factor de translocación (FT)........................................................................................ 43spa
dc.description.tableofcontents4.4. Ventajas y desventajas de la fitorremediación ................................................................. 43spa
dc.description.tableofcontents4.5. Rizo/Fitorremediación........................................................................46spa
dc.description.tableofcontents4.6. Mecanismos de la fitorremediación..............................................................................................48spa
dc.description.tableofcontents4.6.1. Fitoextracción o Fitoacumulación....................................................................................................49spa
dc.description.tableofcontents4.6.2. Rizofiltración..................................................................................................................................................50spa
dc.description.tableofcontents4.6.3. Fitoestimulación o Rizodegradación.............................................................................................51spa
dc.description.tableofcontents4.6.4. Fitoestabilización......................................................................................................................................52spa
dc.description.tableofcontents4.6.5. Fitodegradación o fitotransformación........................................................................................53spa
dc.description.tableofcontents4.6.6. Fitovolatilización..........................................................................................................................................54spa
dc.description.tableofcontents4.7. Relación planta-endófito en fitorremediación...........................................................................57spa
dc.description.tableofcontents4.8. Biosurfactantes de endófitos y su papel en la fitorremediación..................................59spa
dc.description.tableofcontents4.9. Metabolismo vegetal en la fitorremediación de contaminantes orgánicos...........60spa
dc.description.tableofcontentsCAPÍTULO III...................................................................................................................................................................64spa
dc.description.tableofcontents5. ACCIÓN REMEDIADORA DE ALGUNAS ESPECIES DE PLANTAS EN SUELOS CONTAMINADOS POR PLAGUICIDAS........................64spa
dc.description.tableofcontents5.1. Especies vegetales aptas para fitorremediación........................................................................65spa
dc.description.tableofcontents5.1.1. Gramíneas.............................................................................................................................................................65spa
dc.description.tableofcontents5.1.2. Leguminosas..................................................................................................................................................67spa
dc.description.tableofcontents5.1.3. Otras especies.................................................................................................................................................68spa
dc.description.tableofcontents5.2. Usos de la fitorremediación....................................................................................................................69spa
dc.description.tableofcontents5.3. Perspectivas futuras de la fitorremediación................................................................................70spa
dc.description.tableofcontents5.4. Fitorremediación en Colombia.............................................................................................................71spa
dc.description.tableofcontents6. CONCLUSIONES..............................................................................................................................................74spa
dc.description.tableofcontents7. BIBLIOGRAFÍA...................................................................................................................................................75spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3906
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programQuímicaspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsPesticideseng
dc.subject.keywordsRemediationeng
dc.subject.keywordsPhytoremediationeng
dc.subject.keywordsPollutantseng
dc.subject.proposalPlaguicidasspa
dc.subject.proposalRemediaciónspa
dc.subject.proposalFitorremediaciónspa
dc.subject.proposalContaminantesspa
dc.titleFitorremediación: técnica aplicada a la recuperación de suelos agrícolas contaminados por plaguicidas.spa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbou, S., Amin, A., Shehzad, T., 2019. Genetic mapping and transcriptional profiling of phytoremediation and heavy metals responsive genes in sorghum. Ecotoxicol. Environ. Saf. 173, 366e372. https://doi.org/10.1016/j.ecoenv.2019.02.022spa
dcterms.referencesAbubakar, Y., Tijjani, H., Egbuna, C., Adetunji, C., Kala, S., Kryeziu, T., Ifemeje, C., Patrick, K., 2020. Natural Remedies for Pest, Disease and Weed Control. Chapter 3, Pesticides, History, and Classification. https://doi.org/10.1016/B978-0-12-819304-4.00003-8spa
dcterms.referencesAgencia nacional de regulación, Control y Vigilancia Sanitaria.,2017. Instructivo externo. Criterios para la categorización del riesgo sanitario de plaguicidas de uso doméstico, industrial y en salud pública. Coordinación General Técnica de Regulación para la Vigilancia y el Control Sanitario. Dirección Técnica de Perfil de Riesgos.spa
dcterms.referencesArden, S., Ma, X., 2018. Constructed wetlands for greywater recycle and reuse: A review. https://doi.org/10.1016/j.scitotenv.2018.02.218spa
dcterms.referencesArslan, M., Imran, A., Khan, Q., Afzal, M., 2015. Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ. Sci. Pollut. Res. 1-15.spa
dcterms.referencesBedmar, F., 2011. Informe especial sobre plaguicidas agrícolas. Facultad de Ciencias Agrarias Universidad Nacional de Mar del Plata.spa
dcterms.referencesBhandari, G., Atreya, K., Scheepers, P., Geissen, V., 2020. Concentration and distribution of pesticide residues in soil: Non-dietary human health risk assessment. https://doi.org/10.1016/j.chemosphere.2020.126594spa
dcterms.referencesBiasioli, M., Fabietti, G., Barberis, R., Ajmone, F., 2012. An appraisal of soil diffuse contamination in an industrial district in northern Italy. https://doi.org/10.1016/j.chemosphere.2012.03.081spa
dcterms.referencesBrady, N., Weil, R., (2017). The nature and properties of soils (15th ed.). Fifteenth Edition .Columbus: Pearson. https://www.researchgate.net/publication/301200878spa
dcterms.referencesBriceño, G., Vergara, K., Schalchli, H., Palma, G., Tortella, G., Fuentes, M., Diez, M., 2017. Organophosphorus pesticide mixture removal from environmental matrices by a soil Streptomyces mixed culture. Environ. Sci. Pollut. Res. 25 (22), 21296–21307. https://doi.org/10.1007/s11356-017-9790-y.spa
dcterms.referencesBurbano, H., 2016. El suelo y su relación con los servicios ecosistémicos y la seguridad alimentaria. Rev. Cienc. Agr. 33(2):117-124. doi: http://dx.doi.org/10.22267/rcia.163302.58.spa
dcterms.referencesCachada, A., Rocha, T., Duarte, A., 2018. Chapter 1 - Soil and Pollution: An Introduction to the Main Issues. Soil Pollution, pp. 1–28. Academic Press. (also available at https://doi.org/10.1016/B978-0-12-849873-6.00001-7spa
dcterms.referencesCameselle, C., Gouveia, S., 2019. Phytoremediation of mixed contaminated soil enhanced with electric current. J. Hazard Mater. 361, 95e102. https://doi.org/10.1016/j.jhazmat.2018.08.062spa
dcterms.referencesCAR, Corporación Autónoma Regional de Cundinamarca., 2018. Aproximación al proceso de degradación de suelos por contaminación. Dirección de Recursos Naturales Grupo Biodiversidad – Suelosspa
dcterms.referencesCarpena & Bernal, M., 2007. Claves de la fitorremediación: Fitotecnologias para la recuperación de suelos. Revista cientifica y técnica de ecología y medio ambiente, 1-3.spa
dcterms.referencesCarvalho, F., 2017. Pesticides, environment, and food safety. Food Energy Security 6, 48-60.spa
dcterms.referencesCastillo, B., Ruiz, J., Manrique, M., Pozo, C., 2020. Revista espacious. Contaminación por plaguicidas agrícolas en los campos de cultivos en Cañete (Perú).spa
dcterms.referencesCastillo, J., Casas, J., Romero, E., 2011. Isolation of an endosulfan- degrading bacterium from a coffee farm soil: Persistence and inhibitory effect on its biological functions. Sci. Total Env. 20–27.spa
dcterms.referencesChakraborty, J., Das, S., 2016. Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants. Environ. Sci. Pollut. Res. 23, 16883–16903. DOI: 10.1007 / s11356-016-6887-7spa
dcterms.referencesChennappa, G., Naik, M., Sreenivasa, M., 2015. Azotobacter-PGPR activities with special reference to effect of pesticides and biodegradation.In: Microbial Inoculants in Sustainable Agricultural Productivity Vol-II, Functional Applications. Springer Book, pp. 229–244 13(1).spa
dcterms.referencesChen, C., Zhang, X., Chen, J., Chen, F., Li, J., Chen, Y., Hou, H., shi, F., 2020. Assessment of site contaminated soil remediation based on an input output life cycle assessment. https://doi.org/10.1016/j.jclepro.2020.121422spa
dcterms.referencesChen, M., Xu, P., Zeng, G., Yang, C., Huang, D., Zhang, J., 2015. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. http://dx.doi.org/10.1016/j.biotechadv.2015.05.003spa
dcterms.referencesChennappa, G., Udaykumar, N., Vidya, M., Nagaraja, H., Amaresh, Y., Sreenivasa, M., 2019. Azotobacter—A Natural Resource for Bioremediation of Toxic Pesticides in Soil Ecosystems.In:J.S. Singh and D.P. Singh, New and Future Developments in Microbial Biotechnology and Bioengineering (págs. 267-279). India. doi:https://doi.org/10.1016/B978-0-444-64191-5.00019-5spa
dcterms.referencesCompant, S., Saikkonen, K., Mitter, B. et al., 2016. Editorial special issue: soil, plants and endophytes. Plant Soil 405, 1–11. https://doi.org/10.1007/s11104- 016https://doi.org/10.1007/s11104-016-2927-92927-9spa
dcterms.referencesCui, X., Zhang, J., Wang, X., Pan, M., Lin, Q., Khan, Y., Yan, B., Li, T., He, Z., Yang, X., Chen, G., 2020. review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products, Journal of Hazardous Materials. Doi: https://doi.org/10.1016/j.jhazmat.2020.123832spa
dcterms.referencesDamalas C., 2015. Pesticide drift: seeking reliable environmental indicators of exposure assessment.spa
dcterms.referencesDickinson, N., 2017. Phytoremediation. In: Encyclopedia of Applied Plant Sciences (Second Edition). Volume 3, Pages 327-331. https://doi.org/10.1016/B978-0- 12-394807-6.00016-2spa
dcterms.referencesDominguez, C., Romero, A., Checa, A., Santos, A., 2020. Remediation of HCHscontaminated sediments by chemical oxidation treatments. https://doi.org/10.1016/j.scitotenv.2020.141754spa
dcterms.referencesDzionek, A., Wojcieszyńska, Dzionek, A., Wojcieszyńska, D., Guzik, U., 2016. Natural carriers in bioremediation: a review. Electron. J. Biotechnol. 23, 28–36. http://dx.doi.org/10.1016/j.ejbt.2016.07.003 D., Guzik, U., 2016. Natural carriers in bioremediation: a review. Electron. J. Biotechnol. 23, 28–36. http://dx.doi.org/10.1016/j.ejbt.2016.07.003spa
dcterms.referencesEevers, N., White, J., Vangronsveld, J., Weyens, N., 2017. Bio- and Phytoremediation of Pesticide-Contaminated Environments: A Review. In: Advances in Botanical Research. Pages 277-318. https://doi.org/10.1016/bs.abr.2017.01.001spa
dcterms.referencesEkperusi, A., Sikoki, F., Nwachukwu, E., 2019. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. https://doi.org/10.1016/j.chemosphere.2019.02.025spa
dcterms.referencesErtan, M., 2020. Heavy Metal Contamination and Remediation of Water and Soil with Case Studies From Cyprus, Heavy Metal Toxicity in Public Health, John Kanayochukwu Nduka and Mohamed Nageeb Rashed, IntechOpen, DOI: 10.5772/intechopen.90060spa
dcterms.referencesEze, V., Harvey, A., 2018. Extractive recovery and valorisation of arsenic from contaminated soil through phytoremediation using Pteris cretica. https://doi.org/10.1016/j.chemosphere.2018.06.027spa
dcterms.referencesFadin, D., Tornisielo, V., Barroso, A., Ramos, S., Dos, F., Monquero, P., 2018. Absorption and Translocation of Glyphosate in Spermacoce Verticillata and Alternative Herbicide Control. DOI: 10.1111/wre.12329spa
dcterms.referencesFAO, 2016. Organización de las Naciones Unidas para la Agricultura y la Alimentación, archivos electrónicos y sitio web. ID: ag.lnd.agri.zsspa
dcterms.referencesFAO, 2018. Proceedings of the Global Symposium on Soil Pollution. Food and Agriculture Organization of the United Nations, Rome, Italy.spa
dcterms.referencesFAO, 2020. Agricultural pollution: pesticides., pp. 6. http://documents.worldbank.org/curated/en/689281521218090562/pdf/12434 5-BRI-p153343-PUBLIC-march-22-9-pm-WB-Knowledge-Pesticides.pdfspa
dcterms.referencesFaboya, L., Sojinu, O., Oguntuase, J., Sonibare, O., 2020. Impact of forest fires on polycyclic aromatic hydrocarbon concentrations and stable carbon isotope compositions in burnt soils from tropical forest, Nigeria. https://doi.org/10.1016/j.sciaf.2020.e00331spa
dcterms.referencesFebriani, I., Hadiyanto, H., 2018. Application of Pesticide Phytoremediation in Irrigated Rice Fields System Using Eceng Gondok (Eichhornia crassipes) Plants. https://doi.org/10.1051/e3sconf/20183103019spa
dcterms.referencesFeng, N., et al., Efficient phytoremediation of organic contaminants in soils using plant–endophyte Feng, N., et al., Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships, Sci Total Environ.583 (2017), pp 352-368. http://dx.doi.org/10.1016/j.scitotenv.2017.01.075 , Sci Total Environ.583 (2017), pp 352-368. http://dx.doi.org/10.1016/j.scitotenv.2017.01.075spa
dcterms.referencesFerreras, L., Toresani, S., Faggioli, V., Galarza, C., 2015. Sensibilidad de indicadores biológicos edáficos en un Argiudol de la Región Pampeana Argentina. Revista Spanish Journal of Soil Science, 5(3).spa
dcterms.referencesFloris, B., Galloni, P., Sabuzi, F., Conte, V., 2016. Metal systems as tools for soil remediation, Inorganica Chimica. doi: http://dx.doi.org/10.1016/j.ica.2016.04.003spa
dcterms.referencesFuentes, M., Raimondo, E., Amoroso, M., Benimeli, C., 2017. Removal of a mixture of pesticides by a Streptomyces consortium: influence of different soil systems. Chemosphere 173, 359–367. https://doi.org/10.1016/j. chemosphere.2017.01.044.spa
dcterms.referencesGarzón, J., Rodríguez, J., Hernández, C., 2017 Revisión del aporte de la biorremediaGarzón, J., Rodríguez, J., Hernández, C., 2017 Revisión del aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible. Rev Univ. Salud. Pag 19(2):309-318. DOI: http://dx.doi.org/10.22267/rus.171902.93 ción para solucionar problemas de contaminación y su relación con el desarrollo sostenible. Rev Univ. Salud. Pag 19(2):309-318. DOI: http://dx.doi.org/10.22267/rus.171902.93spa
dcterms.referencesGautam, M., Elhiti, M., Fomsgaard, I., 2018. Maize root culture as a model system for studying azoxystrobin biotransformation in plants. https://doi.org/10.1016/j.chemosphere.2017.12.121 0spa
dcterms.referencesGeissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van, M., van, S., Ritsema, C, 2015. Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1): 57–65. https://doi.org/10.1016/j.iswcr.2015.03.002spa
dcterms.referencesGerhardt, K., E., Gerwing, P., Greenberg, B., 2017 Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science. 256,170-185.spa
dcterms.referencesGhori, Z., Iftikhar, H., Bhatti, M., Nasar., Sharma, I., Kazi, A., Ahmad, P., 2016. Phytoextraction: The use of plants to remove heavy metals from soil. In: Plant Metal Interaction. Emerging Remediation Techniques. Páginas 385-409. http://dx.doi.org/10.1016/B978-0-12-803158-2.00015-1spa
dcterms.referencesGóngora, V., Escalante, R., Rojas, R., Giácoman, G., Ponce, C., 2020. Pesticide bioremediation in liquid media using a microbial consortium and bacteria-pure strains isolated from a biomixture used in agricultural áreas. https://doi.org/10.1016/j.ecoenv.2020.110734spa
dcterms.referencesGonzález, M., Carrillo., Sánchez, A., 2017. Definiciones y problemática en la investigación científica en aspectos de fitoremediación de suelos. In: Guía para autores, Dr. Jorge Cadena Iñiguez; Editorial agro productividad.spa
dcterms.referencesGuerrero, A., 2018. Manejo de plaguicidas en cultivos de Zea mays L. "maiz" (Poaceae), Brassica cretica Lam. "brocoli" (Brassicaceae), Apium graveolens L. "apio", Coriandrum sativum L. "cilantro"(Apiaceae), Allium fistulosum L. "Cebolla cina" (Amaryllidaceae). Arnaldoa, 25(1), 1 - 20. doi:10.22497/arnaldoa.251.25110spa
dcterms.referencesHai, F., Modin, O., Fukushi, K., Nakajima, F., Nghiem, L., Yamamoto, K., 2012. Pesticide removal by a mixed culture of bacteria and white-rot fungi. J. Taiwan Inst. Chem. Eng. 43, 459e462. https://doi.org/10.1016/j.jtice.2011.11.002spa
dcterms.referencesHaller., Henrik., Jonsson., Anders., 2020. Growing food in polluted soils: A review of risks and opportunities associated with combined phytoremediation and food production (CPFP). https://doi.org/10.1016/j.chemosphere.2020spa
dcterms.referencesHardoim, P., Overbeek, L., Berg, G., Pirttilä, A., Compant, S., Campisano, A., Döring, M., Sessitsch, A., 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320.spa
dcterms.referencesHernández, I., Rodríguez, M., 2020. “Plant Glutathione S-transferases: An overview”. https://doi.org/10.1016/j.plgene.2020.100233spa
dcterms.referencesHuanhuayo, K., 2017. El uso de plaguicidas químicos en el cultivo de papa (solanum tuberosum L), su relación con el medio ambiente y la salud. http://repositorio.unh.edu.pe/handle/UNH/2867spa
dcterms.referencesHu, H., Li, X., Wu, S., Yang, C., 2020. Sustainable livestock wastewater treatment via phytoremediation: Current status and future perspectives. https://doi.org/10.1016/j.biortech.2020.123809spa
dcterms.referencesIDEAM, Informe Nacional de Residuos o Desechos Peligrosos en Colombia, 2017. Bogotá, D.C., 2017. 82 páginas.spa
dcterms.referencesIfon, B., Finagnon, A., Sewedo, L., Suanon, F., Yessoufou, A., 2019. MetalContaminated Soil Remediation: Phytoremediation, Chemical Leaching and Electrochemical Remediation, Metals in Soil - Contamination and Remediation, Zinnat Ara Begum, Ismail M. M. Rahman and Hiroshi Hasegawa, IntechOpen, DOI: 10.5772/intechopen.81223spa
dcterms.referencesIlker., Ibrahim., Dogan, I., 2015. Plant–Microbe Interactions in Phytoremediation. https://doi.org/10.1016/B978-0-12-799937-1.00009-7spa
dcterms.referencesJeevanantham, S., Saravanan, A., Hemavathy, R., Senthil, P., Yaashikaa, P., Yuvaraj, D., 2019. Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects, Environ. Technol. Inno. Pag 264–276. https://doi.org/10.1016/j.eti.2018.12.007spa
dcterms.referencesJha, P., Sen, R., Jobby, R., Sachar, S., Bhatkalkar, S., Desai, N., 2020. Biotransformation of xenobiotics by hairy roots. https://doi.org/10.1016/j.phytochem.2020.112421spa
dcterms.referencesKhanom, S., Jang, J., Lee, O., 2019. Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis. In: Journal of Ginseng Research, Volume 43, Pages 645- 653.https://doi.org/10.1016/j.jgr.2019.04.005spa
dcterms.referencesKim, H., Kim, K., Kim, W., Owens, G., Kim, K., 2017. Influence of Road Proximity on the Concentrations of Heavy Metals in Korean Urban Agricultural Soils and Crops. Archives of Environmental Contamination and Toxicology, 72(2): 260– 268. https://doi.org/10.1007/s00244-016-0344-yspa
dcterms.referencesKoureas M., T. A., 2012. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides.spa
dcterms.referencesKumar M., Gopikumar S., Uan D., Adishkumar S., Banu., 2020. Constructed Wetlands: An Emerging Green Technology for the Treatment of Industrial Wastewaters. In: Bharagava R. (eds) Emerging Eco-friendly Green Technologies for Wastewater Treatment. Microorganisms for Sustainability, vol 18. Springer, Singapore. http://doi-org- 443.webvpn.fjmu.edu.cn/10.1007/978http://doi-org- 443.webvpn.fjmu.edu.cn/10.1007/978-981-15-1390-9_2981-15-1390-9_2spa
dcterms.referencesKumar, P., Kim, K., Lee, S., Lee, J., 2019. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. https://doi.org/10.1016/j.scitotenv.2019.135858spa
dcterms.referencesKumar, V., Kothiyal, N., 2016. Analysis of Polycyclic Aromatic Hydrocarbon, Toxic Equivalency Factor and Related Carcinogenic Potencies in Roadside Soil within a Developing City of Northern India. Polycyclic Aromatic Compounds, 36(4): 506–526. https://doi.org/10.1080/10406638.2015.1026999spa
dcterms.referencesKumar, K., Gupta, N., Kumar, A.,Reece, L.,Singh, N., Rezania, S., Ahmad, S., 2018. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. https://doi.org/10.1016/j.ecoleng.2018.05.039spa
dcterms.referencesLee, Y., Lee, Y., Jeon, C., 2019. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep 9, 860. https://doi.org/10.1038/s41598- 018-36165-xspa
dcterms.referencesLeón, J., 2017. Monografia: Una mirada a la fitorremediacion en latinoamerica. Universidad nacional abierta y a distancia-unad escuela de ciencias agrícolas, pecuarias y del medio ambiente León, J., 2017. Monografia: Una mirada a la fitorremediacion en latinoamerica. Universidad nacional abierta y a distancia-unad escuela de ciencias agrícolas, pecuarias y del medio ambiente ecapma programa especialización en biotecnología agraria zipaquira. programa especialización en biotecnología agraria zipaquira.spa
dcterms.referencesLimmer, M., Burken, J., 2016. Phyto-Volatilization of Organic Contaminants. USA: American Chemical Society. DOI: 10.1021/acs.est.5b04113spa
dcterms.referencesLin H, Liu C, Li B, Dong Y., 2020. Regulated Phytoremediation of Heavy Metal Contaminated Soil by Promoting Soil Enzyme Activities and Beneficial Rhizosphere Associated Microorganisms, Journal of Hazardous Materials. doi: https://doi.org/10.1016/j.jhazmat.2020.123829spa
dcterms.referencesLiu, C., Lin, H., Li, B., Dong, Y., Yin, T., 2020. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cdcontaminated soil. https://doi.org/10.1016/j.ecoenv.2020.110958spa
dcterms.referencesLi, X., Zhang, M., Li, Y., Yu, X., Nie, J., 2020. Effect of neonicotinoid dinotefuran on root exudates of Brassica rapa var. Chinensis. https://doi.org/10.1016/j.chemosphere.2020.129020spa
dcterms.referencesLizarazo, M., Herrera, C., Celis, C., Pombo, L., Teherán, A., Piñeros, L., Forero, S., Velandia, J., Díaz, F., Andrade, W., Rodríguez, O., 2020. Contamination of staple crops by heavy metals in Sibaté, Colombia. https://doi.org/10.1016/j.heliyon.2020.e04212spa
dcterms.referencesLominchar, M., Santos, A., de Miguel, E., Romero, A., 2018. Remediation of aged diesel contaminated soil by alkaline activated persulfate. https://doi.org/10.1016/j.scitotenv.2017.11.263spa
dcterms.referencesLondoño, L., Londoño, P., Muñoz, F., 2016. Risk of heavy metals in human and animal health. Biotecnología en el Sector Agropecuario y Agroindustrial 14(2): 145-153.spa
dcterms.referencesLv, T., Carvalho, P., Escola, M., Bollmann, U., Arias, C., Brix, H., Bester, K., 2017. Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis. http://dx.doi.org/10.1016/j.envpol.2017.06.017spa
dcterms.referencesLuo, J., Yang, G., Deshani, A., He, W., Gao, B.,. Tsang, D., Sik, Y., 2019. Effects of elevated CO2 on the phytoremediation efficiency of Noccaea caerulescens*. https://doi.org/10.1016/j.envpol.2019.113169spa
dcterms.referencesMahecha, J., Trujillo, J., Torres, M., 2017. Analysis of Studies in Heavy Metals in Agricultural Areas of Colombia. ORINOQUIA - Universidad de los Llanos - Villavicencio, Meta. Colombia Suplemento Vol. 21 - No 1spa
dcterms.referencesManoj, S., Karthik, C., Kadirvelu, K., Arulselvi, P., Shanmugasundaram, T., Bruno, B., Rajkumar, M., 2019. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. https://doi.org/10.1016/j.jenvman.2019.109779.spa
dcterms.referencesMarrugo, J., Durango, J., Pinedo, J., Olivero, J., Díez, S.,2015. Phytoremediation of mercury-contaminated soils by Jatropha curcas. http://dx.doi.org/10.1016/j.chemosphere.2014.12.073spa
dcterms.referencesMarrugo, J., Marrugo, S., Pinedo, J., Durango, J., Díez, S., 2016. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. In: Science of The Total Environment. Marrugo, J., Marrugo, S., Pinedo, J., Durango, J., Díez, S., 2016. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. In: Science of The Total Environment. Pages 809-816. http://dx.doi.org/10.1016/j.scitotenv.2015.10.117 Pages 809-816. http://dx.doi.org/10.1016/j.scitotenv.2015.10.117spa
dcterms.referencesMassot, F., Smitha, M., Vitali, V., Giulietti, A., Merini, L., 2016. Assessing the glyphosate tolerance of Lotus corniculatus and L. tenuis to perform rhizoremediation strategies in the Humid Pampa (Argentina). http://dx.doi.org/10.1016/j.ecoleng.2016.01.031spa
dcterms.referencesMendieta, C., Taisigüe, K., 2014. Acumulación y traslocación de metales, metaloides y no metales en plantas nativas de la zona minera de Chontales: Implicaciones para el potencial de fito-remediación.spa
dcterms.referencesMielke, K., Ramos, R., Ribeiro, F., Bueno, A., Barboza, F., Madalao, J., 2020. Does Canavalia ensiformis inoculation with Bradyrhizobium sp. enhance phytoremediation of sulfentrazone-contaminated soil?. https://doi.org/10.1016/j.chemosphere.2020.127033spa
dcterms.referencesMimmo, T., Bartucca, M., Del Buono, D., Cesco, S., 2015.Italian ryegrass for the phytoremediation of solutions polluted with terbuthylazine. https://doi.org/10.1016/j.chemosphere.2014.04.114spa
dcterms.referencesMontaño, N., Navarro, M., Patricio, I., Chimal, E., de la Cruz, J., 2018. El suelo y su multifuncionalidad: ¿qué ocurre ahí abajo? CIENCIA ergo-sum, 25(3).https://doi.org/10.30878/ces.v25n3a9spa
dcterms.referencesNaeem, A., Saifullah, R., Akhtar, T., Ok, Y., Rengel, Z., 2016. Genetic variation in cadmium accumulation and tolerance among wheat cultivars at the seedling stage. Commun. Soil Sci. Plant Anal. 47, 554e562. https://doi.org/10.1080/00103624.2016.1141918spa
dcterms.referencesNejad, Z., Jung, M., Kim, K., 2017. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ. Geochem. Health 40, 927–953. http://dx.doi.org/10.1007/s10653-017-9964-zspa
dcterms.referencesNikolaou I, Stefanakis, A., 2018. A novel response of industry to wastewater treatment with constructed wetlands: a managerial view through system dynamic techniques. In: Stefanakis AI (ed) Constructed wetlands for industrial wastewater treatment. Wiley, Hoboken, NJ, pp 529–549. https://doi.org/10.1002/9781119268376.ch24spa
dcterms.referencesNoguez, A., López, A., Carrillo, R., González, M., 2017. Uso de leguminosas (fabaceae) en fitorremediación. Dr. Jorge Cadena Iniguez. Editorial Agro Productividad.spa
dcterms.referencesNovillo, I., Carrillo, M., Cargua, J., Nabel, V., Albán, K., Morales, F., 2018. Propiedades físicas del suelo en diferentes sistemas agrícolas en la provincia de Los Ríos, Ecuador.spa
dcterms.referencesO'Brien, P., DeSutter, T., Casey, F., Khan, E., Wick, A.,2018. Thermal remediation alters soil properties - a review. https://doi.org/10.1016/j.jenvman.2017.11.052 Ortiz, I., Sanz, J., Dorado, M.,Villar, S., 2007 .Técnicas de recuperación de suelos contaminados. Informe de vigilancia tecnológica.spa
dcterms.referencesPajoy, H., 2017. Tesis: potencial fitorremediador de dos especies ornamentales como alternativa de tratamiento de suelos contaminados con metales pesados. Universidad nacional de Colombia –sede Medellín.spa
dcterms.referencesPandey, V., 2012. Invasive species based efficient green technology for phytoremediation of fly ash deposits. J. Geochem. Explor. 123, 13–18.spa
dcterms.referencesPandey, V., Bajpai, O., Pandey, D., Singh, N., 2015. Saccharum spontaneum: an underutilized tall grass for revegetation and restoration programs. Genet. Resour. Crop Evol. 62 (3), 443–450.spa
dcterms.referencesPandey, V., Deblina M., 2020. Perennial grasses in phytoremediation—challenges and opportunities. In: Phytoremediation Potential of Perennial Grasses. Pages 1-29. https://doi.org/10.1016/B978-0-12-817732-7.00001-8spa
dcterms.referencesPandey, V., Singh, N., 2015. Aromatic plants versus arsenic hazards in soils. J. Geochem. Explor. 157, 77–80.spa
dcterms.referencesPastor, J., Gutierrez, M., Hernandez, A., 2015. Heavy-metal phytostabilizing potential of Agrostis castellana Boiss. & Reuter. Int. J. Phytoremediation 17 (10), 988–998.spa
dcterms.referencesPeña, C., Ulloa, S., Mora, K., Helena, R., Lopez, E., Alvarez, J., Rodriguez, M., 2019. Emerging pollutants in the urban water cycle in Latin America: A review of the current literatura. https://doi.org/10.1016/j.jenvman.2019.02.100spa
dcterms.referencesPerez, J., Mendes, R., Raaijmakers, J., 2016. Impact of plant domesti-cation on rhizosphere microbiome assembly and functions. Plant Mol Biol Plant Molecular Biology 90, 635-644. DOI 10.1007/s11103-015-0337-7spa
dcterms.referencesPérez, C., Hernández, C., Martínez, M., García, M., Bech, J., 2017. Metal uptake by wetland plants: implications for phytoremediation and restoration. Journal of Soils and Sediments 17: 1384–1393.spa
dcterms.referencesRahman, M., Clark, M., Yee, L., Burton, E., 2019. Arsenic (V) sorption kinetics in long-term arsenic pesticide contaminated soils. https://doi.org/10.1016/j.apgeochem.2019.104444spa
dcterms.referencesRaimondo, E., Saez, J., Aparicio, J., Fuentes, M., Benimeli, C., 2020. Bioremediation of lindane-contaminated soils by combining of bioaugmentation and biostimulation: Effective scaling-up from microcosms to mesocosms. https://doi.org/10.1016/j.jenvman.2020.111309spa
dcterms.referencesRambabu, K., Banat, F., Minh, Q., Ho, S., Ren, N., Loke, P., 2020. Biological remediation of acid mine drainage: Review of past trends and current Outlook. https://doi.org/10.1016/j.ese.2020.100024spa
dcterms.referencesRamírez, L., Martínez, J., García, V., Bernal, M., García, R., Ramírez, L., Espinosa, B., Cano, M., Duran, M., 2017. Destino de los plaguicidas en el ambiente: Un estudio de caso para el programa de apoyo a proyectos para la innovación y mejoramiento de la enseñanza de la UNAM. DOI: 10.13140/RG.2.2.34864.10244spa
dcterms.referencesRani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Singh, A., Lal, A., Kaushal, J., 2020. An extensive review on the consequences of chemical pesticides on human health and environment. https://doi.org/10.1016/j.jclepro.2020.124657spa
dcterms.referencesRiggio, V., Ruffino, B., Campo, G., Comino, E., Comoglio, C., Zanetti, M., (2018) Constructed wetlands for the reuse of industrial wastewater: a case-study. https://doi.org/10.1016/j.jclepro.2017.10.081spa
dcterms.referencesRizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D., Zia, M., Zahir, Z., Rinklebe, J., Tack, F., Ok, Y., 2017. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182, 90e105. https://doi.org/10.1016/j.chemosphere.2017.05.013spa
dcterms.referencesRodríguez, N., McLaughlin, M., Pennock, D., 2018. Soil Pollution: a hidden reality. Rome, FAO. 142 pp.spa
dcterms.referencesRodríguez, N., McLaughlin, M., Pennock, D., 2019. La contaminación del suelo: una realidad oculta. Roma, FAO.spa
dcterms.referencesRodríguez, J., Ruíz, F., 2016. Propuesta metodológica para el monitoreo, control y recuperación del suelo mediante bioaumentación de microorganismos para sitios de disposición final de residuos sólidos. Retrieved from https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/275spa
dcterms.referencesRomeh, A., 2015. Evaluación del potencial de fitorremediación de tres especies de plantas para suelos contaminados con azoxistrobina. En t. J. Environ. Sci. Technol. 12, 3509–3518. https://doi.org/10.1007/s13762- 015https://doi.org/10.1007/s13762-015-0772-70772-7spa
dcterms.referencesRomeh, A, Hendawi, M., 2017. Biochemical interactions between Glycine max L. silicon dioxide (SiO2) and plant growth-promoting bacteria (PGPR) for improving phytoremediation of soil contaminated with fenamiphos and its degradation products. In: Pesticide Biochemistry and Physiology, Volume 142.Pages 32-43. http://dx.doi.org/10.1016/j.pestbp.2017.01.001spa
dcterms.referencesRoss, J., Driver, J., Lunchick, C., O’Mahony, C., 2015. Models for estimating human exposure to pesticides. DOI: 10.1564/v26_feb_09spa
dcterms.referencesRoy, A., 2018. A review on the Biosurfactants: Properties, Types and its Applications. Journal of Fundamentals of Renewable Energy, 8, 248-252.spa
dcterms.referencesRoy, M., Pandey, V., 2020. Role of microbes in grass-based phytoremediation. In: Phytoremediation Potential of Perennial Grasses. Pages 303-336. https://doi.org/10.1016/B978-0-12-817732-7.00015-8spa
dcterms.referencesSanchez, V., Lopez, F., Canizares, P., Rodríguez, L., 2017. Assessing the phytoremediation potential of crop and grass plants for atrazinespiked soils. In: Quimiosfera. Volumen 185, páginas 119-126. https://doi.org/10.1016/j.chemosphere.2017.07.013spa
dcterms.referencesSanzano, A., 2019. Génesis - La diferenciación del perfil del suelo. Cátedra de Edafología, Facultad de Agronomía y Zootecnia. Universidad Nacional de Tucumán.spa
dcterms.referencesSaravanan, A., Jeevananthama, S., Anantha, V., Kumar, P., Yaashikaa, P., Mathan, C., 2020. Rhizoremediation – A promising tool for the removal of soil contaminants: A review. https://doi.org/10.1016/j.jece.2019.103543spa
dcterms.referencesSauvé, S., Desrosiers, M., 2014. A review of what is an emerging contaminant. Chemistry Central Journal 8, 15. https://doi.org/10.1186/1752https://doi.org/10.1186/1752-153X-8-15153X-815spa
dcterms.referencesSaxena G., Purchase D., Mulla S., Saratale G., Bharagava R., 2019. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. In: de Voogt P. (eds) Reviews of Environmental Contamination and Toxicology Volume 249. Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews), vol 249. Springer, Cham. https://doi.org/10.1007/398_2019_24spa
dcterms.referencesSepúlveda, J., Casallas, M., 2018. Contaminación y remediación de suelos en Colombia: aplicación a la minería de oro/ Descripción: 1a edición / Bogotá: Universidad EAN.112 páginasspa
dcterms.referencesShah, V., Daverey, A., 2020. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. https://doi.org/10.1016/j.eti.2020.100774spa
dcterms.referencesSharma, A.,Shuklaa, A., Attria, K., Kumar, M., Kumar, P., Suttee, A., Singh, G., Barnwal, R.,Singla, N., 2020. Global trends in pesticides: A looming threat and viable alternatives. https://doi.org/10.1016/j.ecoenv.2020.110812spa
dcterms.referencesSikhosana, M., Botha, A., Mpenyane, L., Coetzee, M., 2020. Evaluating the effect of seasonal temperature changes on the efficiency of a rhizofiltration system in nitrogen removal from urban runoff. https://doi.org/10.1016/j.jenvman.2020.111192spa
dcterms.referencesSilveira, M., Aldana, M., Piri, J., Valenzuela, A., Jasa, G., Rodriguez, G., 2018. Plaguicidas agricolas: Un marco de referencia para evaluar riesgos a la salud en comunidades rurales en el estado de Sonora, Mèxico. Revista internacional de contaminaciòn ambiental, 34(1), 1 - 15. doi:org/10.20937/rica.2018.34.01.01spa
dcterms.referencesSingh, P., Kujur, A.,Yadav, A, et al., Chapter two -Mechanisms of plant-microbe interactions and its significance for sustainable agriculture, Food Security and Environmental Management (2019) 17–39. https://doi.org/10.1016/B978-0- 12https://doi.org/10.1016/B978-0-12-815879-1.00002-1815879-1.00002-1spa
dcterms.referencesSoto, M., Rodriguez, L., Olivera, M., Arostegui, V., Colina, C., Garate, J., 2020. Riesgos para la salud por metales pesados en productos agrícolas cultivados en áreas abandonadas por la minería aurífera en la Amazonía peruana. DOI: 10.17268/sci.agropecu.2020.01.06spa
dcterms.referencesStellet, R., Murilo, S., Ramos, C., Canela, M., 2018. Análisis de Hidrocarburos Policíclicos Aromáticos (HPA) en material particulado en la atmosfera de Campos dos Goytacazes, RJ, Brasil.spa
dcterms.referencesSun, S., Yang, W., Guo, J., Zhou, Y., Rui, X., Chen, C., Ge, F., Dai, Y., 2017. Biodegradation of the neonicotinoid insecticide acetamiprid in surface water by the bacterium: variovorax boronicumulans CGMCC 4969 and its enzymatic mechanism. RSC Adv. 7, 25387e25397. https://doi.org/10.1039/c7ra01501aspa
dcterms.referencesSurriya, O., Saleem, S., Waqar, K., Kazi, A., 2015. Phytoremediation of Soils: Prospects and Challenges. Pages 1-36. https://doi.org/10.1016/B978-012https://ezproxyucor.unicordoba.edu.co:2097/10.1016/B978-0-12-799937- 1.00001-2799937-1.00001-2spa
dcterms.referencesTarazona, J., 2014. Poluution, Soil. Encyclopedia of Toxicology, pp. 1019 -1023. Elsevier. http://linkinghub.elsevier.com/retrieve/pii/B9780123864543005315).spa
dcterms.referencesTeedon, P., Galea, K., MacCalman, L., Jones, K., Cocker, J., Cherrie, J., van Tongeren, M., 2015. Engaging with community researchers for exposure science: lessons learned from a pesticide biomonitoring study https://doi.org/10.1371/journal.pone.0136347spa
dcterms.referencesTeodoro, M., Hejcman, M., Vítková, M., Songlin W., Komárek, M., 2019. Seasonal fluctuations of Zn, Pb, As and Cd contents in the biomass of selected grass species growing on contaminated soils: Implications for in situ phytostabilization. https://doi.org/10.1016/j.scitotenv.2019.134710spa
dcterms.referencesTeófilo, T., Mendes, K., Chaves, B., Sarmento, F., Severo, T., Takeshita, V., Souza, M., Tornisielo, V., Valadao, D., 2020. Phytoextraction of diuron, hexazinone, and sulfometuron-methyl from the soil by green manure species. https://doi.org/10.1016/j.chemosphere.2020.127059spa
dcterms.referencesTiwari, J., Ankit., Sweta., Kumar, S., Korstad, J., Bauddh, K., 2019. Ecorestoration of Polluted Aquatic Ecosystems Through Rhizofiltration. In:Phytomanagement of Polluted Sites. Páginas 179-201. DOI: https://doi.org/10.1016/B978-012https://doi.org/10.1016/B978-0-12-813912-7.00005-3813912-7.00005-3spa
dcterms.referencesVarón, J., Valentim, J., Fonsêca, C., Lopes, P., Siqueira, J., de Souza, F., 2015. Biological attributes of rehabilitated soils contaminated with heavy metals. Environmental Science and Pollution Research 23: 6735-6748.spa
dcterms.referencesVenuti, A., Alfonsi, L., Cavallo, A., 2016. Anthropogenic pollutants on top soils along a section of the Salaria state road, central Italy. Annals of Geophysics(5). https://doi.org/10.4401/ag-7021spa
dcterms.referencesVerma, S., Singh, K., Gupta, A., Pandey, V., Trivedi, P., Verma, R., Patra, D., 2014. Aromatic grasses for phytomanagement of coal fly ash hazards. Ecol. Eng. 73, 425–428.spa
dcterms.referencesVymazal, J., 2014. Constructed wetlands for treatment of industrial wastewaters: A review. https://doi.org/10.1016/j.ecoleng.2014.09.034spa
dcterms.referencesWang, M., Zhang, D., Dong, J., Tan, S., 2017. Constructed wetlands for wastewater treatment in cold climate-a review. J Environ Sci 57:293–311. https://doi.org/10.1016/j.jes.2016.12.019spa
dcterms.referencesWang, N., Zheng, T., Zhang, G., Wang, P., 2016. A review on Fenton-like processes for organic wastewater treatment. http://dx.doi.org/10.1016/j.jece.2015.12.016 Wang, S., Li, T., Zheng, Z., Chen, H., 2019. Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. https://doi.org/10.1016/j.scitotenv.2018.11.032spa
dcterms.referencesWetle, R., Bensko, B., Johnson, K., Sweat, K., Cahill, T., 2020. Uptake of uranium into desert plants in an abandoned uranium mine and its implications for phytostabilization strategies. https://doi.org/10.1016/j.jenvrad.2020.106293spa
dcterms.referencesWołejko, E., Jabłońska, A., Wydro, U., Butarewicz, A., Łozowicka, B., 2019. Soil biological activity as an indicator of soil pollution with pesticides. A review. https://doi.org/10.1016/j.apsoil.2019.09.006spa
dcterms.referencesWu, H., Gao, X., Wu, M., Zhu, Y., Xiong, R., Ye, S., 2020. The efficiency and risk to groundwater of constructed wetland system for domestic sewage treatment - A case study in Xiantao, China. https://doi.org/10.1016/j.jclepro.2020.123384spa
dcterms.referencesWu, J., Li, Z., Wu, L.,et al., Triazophos (TAP) removal in horizontal subsurface flow constructed wetlands (HSCWs) and its accumulation in plants and substrates, Sci. Rep. 7 (2017) 5468. https://doi.org/10.1038/s41598-017-05874-0spa
dcterms.referenceseong, W., Teh, S., Hossain, M., Nadarajaw, T., Zabidi, Z., Chin, S., Lai, K., Lim, S., 2020. Application, monitoring and adverse effects in pesticide use: The importance of reinforcement of Good Agricultural Practices (GAPs). https://doi.org/10.1016/j.jenvman.2019.109987spa
dcterms.referencesXiao, L., Jia, H., Jeong, I., Ahn, Y., Zhu, Y., 2017. Isolation and characterization of 2,4-D butyl ester degrading acinetobacter sp. ZX02 from a Chinese ginger cultivated soil. J. Agric. Food Chem. 65, 7345e7351. DOI: 10.1021 / acs.jafc.7b02140spa
dcterms.referencesYadav, K., Gupta, N., Kumar, A., et al., Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects, Ecol. Eng. 120 (2018) 274–298spa
dcterms.referencesYang, Z., Verpoort, F., Dong, C., Chen, C., Chen, S., Kao, C., 2020. Remediation of petroleum-hydrocarbon contaminated groundwater using optimized in situ chemical oxidation system: Batch and column studies. https://doi.org/10.1016/j.psep.2020.02.032spa
dcterms.referencesZancarini, A., Lepinay, C., Burstin, J., Duc, G., Lemanceau, P., Moreau, D., Munier, N., Pivato, B., Rigaud, T., Salon, C., Mougel, C., 2013. Combining Molecular Microbial Ecology with Ecophysiology and Plant Genetics for a Better Understanding of Plant-Microbial Communities’ Interactions in the Rhizosphere, pp. 69-86. https://doi.org/10.1002/9781118297674.ch7spa
dcterms.referencesZhanga, H., Yuana, X., Xionga, T., Wanga, H., Jiang, L., 2020. Bioremediation of cocontaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. https://doi.org/10.1016/j.cej.2020.125657spa
dcterms.referencesZhang, W., Jiang, F., Ou, J., 2011. Global pesticide consumption and pollution: with China as a focus. Int. Acad. Ecol. Environ. Sci. 1, 125e144spa
dcterms.referencesZhang, H., Wang, Z., Zhang, Y., Ding, M., Li, L., 2015. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway. Science of The Total Environment, 521– 522: 160–172. https://doi.org/10.1016/j.scitotenv.2015.03.054spa
dcterms.referencesZhang, Q., Yu, R., Fu, S., Wu, Z., Chen, H., Liu, H., 2019. Spatial heterogeneity of heavy metal contamination in soils and plants in Hefei, China. Scientific Reports 9(1): 1–8.spa
dcterms.referencesZhang, H., Yuan, X., Xiong, T., Wanga, H., Jiang, L., 2020. Bioremediation of cocontaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods Hanyan. https://doi.org/10.1016/j.cej.2020.125657spa
dcterms.referencesZhao, L., Liu, W., Lian, J., Shen, M., Huo, X., 2020. Effects of electric fields on Cd accumulation and photosynthesis in Zea mays seedlings. https://doi.org/10.1016/j.jenvman.2020.111328spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Madera Sarmiento Carlos Andres.pdf
Tamaño:
1.26 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
formato de autorización.pdf
Tamaño:
285.08 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: