Publicación: Fitorremediación: técnica aplicada a la recuperación de suelos agrícolas contaminados por plaguicidas.
dc.contributor.advisor | Ossa Henao, Diana Marcela | |
dc.contributor.author | Madera Sarmiento, Carlos Andrés | |
dc.date.accessioned | 2021-01-20T20:26:47Z | |
dc.date.available | 2021-01-20T20:26:47Z | |
dc.date.issued | 2021-01-20 | |
dc.description.abstract | A la luz de que en la agricultura los plaguicidas se han convertido en una herramienta útil por su control de plagas, su cotidianidad en la aplicación de cultivos ocasiona un daño colateral, debido a la naturaleza del ingrediente activo que poseen, puesto que la parte de la molécula que no hace frente a la plaga o patógeno se queda en su mayoría en el ambiente, mayormente en el suelo. Revisando estudios efectuados en años recientes y para salvaguardar los suelos contaminados a causa de la agricultura intensiva, se han implementado diversas tecnologías de recuperación, demostrando que existen diferentes opciones y métodos de intervención para una remediación apropiada de contaminantes; entre las cuales cabe señalar la fitorremediación, la biorremediación de suelos, la fitoestabilización, la fitoextracción, humedales artificiales o construidos, entre otras tecnologías que son viables y rentables. Es por ello que la inclinación de este trabajo se edifica en la búsqueda de los beneficios que puede producir la implementación de la fitorremediación como técnica remediadora en la recuperación de suelos, teniendo en cuenta que existen algunas especies de plantas capaces de degradar o transformar contaminantes lo cual se obtiene con la ayuda de procesos fisicoquímicos y biológicos dados en el medio. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN...................................................................................................... 13 | spa |
dc.description.tableofcontents | 2. OBJETIVOS............................................................................................................15 | spa |
dc.description.tableofcontents | 2.1. Objetivo General ................................................................................................................. 13 | spa |
dc.description.tableofcontents | 2.2. Objetivos Específicos ......................................................................................................... 13 | spa |
dc.description.tableofcontents | DESARROLLO DEL TEMA ............................................................................................................ 14 | spa |
dc.description.tableofcontents | CAPÍTULO I 3. ALTERNATIVAS PARA LA REMEDIACIÓN DE CONTAMINANTES EN .................................................................................................................. 14 | spa |
dc.description.tableofcontents | SUELOS ......................................................................................................................................... 14 | spa |
dc.description.tableofcontents | 3.1. El suelo ................................................................................................................................ 14 | spa |
dc.description.tableofcontents | 3.2. Contaminación del suelo .................................................................................................... 17 | spa |
dc.description.tableofcontents | 3.3. Fuentes de contaminación del suelo ................................................................................ 18 | spa |
dc.description.tableofcontents | 3.3.1. Contaminación puntual o local .................................................................................... 18 | spa |
dc.description.tableofcontents | 3.3.2. Contaminación difusa .................................................................................................. 19 | spa |
dc.description.tableofcontents | 3.4. Principales contaminantes del suelo ................................................................................ 19 | spa |
dc.description.tableofcontents | 3.4.1. Metales pesados ........................................................................................................... 20 | spa |
dc.description.tableofcontents | 3.4.2. Plaguicidas .................................................................................................................... 20 | spa |
dc.description.tableofcontents | 3.4.3. Hidrocarburos aromáticos policíclicos (HAP)............................................................ 21 | spa |
dc.description.tableofcontents | 3.4.4. Contaminantes emergentes (CE) ................................................................................ 22 | spa |
dc.description.tableofcontents | Plaguicidas importantes en la contaminación del suelo ................................................. 22 | spa |
dc.description.tableofcontents | 3.5.1. Clasificación de plaguicidas ........................................................................................ 24 | spa |
dc.description.tableofcontents | 3.5.2. Otras clasificaciones .................................................................................................... 24 | spa |
dc.description.tableofcontents | Remediación de suelos ...................................................................................................... 26 | spa |
dc.description.tableofcontents | 3.6.1. Generalidades ............................................................................................................... 26 | spa |
dc.description.tableofcontents | 3.6.2. Tipos de tratamientos .................................................................................................. 27 | spa |
dc.description.tableofcontents | 3.6.2.1. Tratamientos térmicos .................................................................................................. 27 | spa |
dc.description.tableofcontents | 3.6.2.2. Tratamientos fisicoquímicos ........................................................................................ 28 | spa |
dc.description.tableofcontents | 3.6.2.3. Tratamientos biológicos ...............................................................................................30 | spa |
dc.description.tableofcontents | CAPÍTULO II 4. FITORREMEDIACIÓN ESTRATEGIA ÚTIL EN LA EXTRACCIÓN DE CONTAMINANTES .................................................................................................................................................. 38 | spa |
dc.description.tableofcontents | 4.1. Eficiencia de la fitorremediación ....................................................................................... 39 | spa |
dc.description.tableofcontents | 4.2. Estimulación del crecimiento vegetal por comunidades microbianas .......................... 41 | spa |
dc.description.tableofcontents | 4.3. Factores de concentración................................................................................................. 42 | spa |
dc.description.tableofcontents | 4.3.1. Factor de bioconcentración (FBC) .............................................................................. 43 | spa |
dc.description.tableofcontents | 4.3.2. Factor de translocación (FT)........................................................................................ 43 | spa |
dc.description.tableofcontents | 4.4. Ventajas y desventajas de la fitorremediación ................................................................. 43 | spa |
dc.description.tableofcontents | 4.5. Rizo/Fitorremediación........................................................................46 | spa |
dc.description.tableofcontents | 4.6. Mecanismos de la fitorremediación..............................................................................................48 | spa |
dc.description.tableofcontents | 4.6.1. Fitoextracción o Fitoacumulación....................................................................................................49 | spa |
dc.description.tableofcontents | 4.6.2. Rizofiltración..................................................................................................................................................50 | spa |
dc.description.tableofcontents | 4.6.3. Fitoestimulación o Rizodegradación.............................................................................................51 | spa |
dc.description.tableofcontents | 4.6.4. Fitoestabilización......................................................................................................................................52 | spa |
dc.description.tableofcontents | 4.6.5. Fitodegradación o fitotransformación........................................................................................53 | spa |
dc.description.tableofcontents | 4.6.6. Fitovolatilización..........................................................................................................................................54 | spa |
dc.description.tableofcontents | 4.7. Relación planta-endófito en fitorremediación...........................................................................57 | spa |
dc.description.tableofcontents | 4.8. Biosurfactantes de endófitos y su papel en la fitorremediación..................................59 | spa |
dc.description.tableofcontents | 4.9. Metabolismo vegetal en la fitorremediación de contaminantes orgánicos...........60 | spa |
dc.description.tableofcontents | CAPÍTULO III...................................................................................................................................................................64 | spa |
dc.description.tableofcontents | 5. ACCIÓN REMEDIADORA DE ALGUNAS ESPECIES DE PLANTAS EN SUELOS CONTAMINADOS POR PLAGUICIDAS........................64 | spa |
dc.description.tableofcontents | 5.1. Especies vegetales aptas para fitorremediación........................................................................65 | spa |
dc.description.tableofcontents | 5.1.1. Gramíneas.............................................................................................................................................................65 | spa |
dc.description.tableofcontents | 5.1.2. Leguminosas..................................................................................................................................................67 | spa |
dc.description.tableofcontents | 5.1.3. Otras especies.................................................................................................................................................68 | spa |
dc.description.tableofcontents | 5.2. Usos de la fitorremediación....................................................................................................................69 | spa |
dc.description.tableofcontents | 5.3. Perspectivas futuras de la fitorremediación................................................................................70 | spa |
dc.description.tableofcontents | 5.4. Fitorremediación en Colombia.............................................................................................................71 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES..............................................................................................................................................74 | spa |
dc.description.tableofcontents | 7. BIBLIOGRAFÍA...................................................................................................................................................75 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/3906 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Química | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Pesticides | eng |
dc.subject.keywords | Remediation | eng |
dc.subject.keywords | Phytoremediation | eng |
dc.subject.keywords | Pollutants | eng |
dc.subject.proposal | Plaguicidas | spa |
dc.subject.proposal | Remediación | spa |
dc.subject.proposal | Fitorremediación | spa |
dc.subject.proposal | Contaminantes | spa |
dc.title | Fitorremediación: técnica aplicada a la recuperación de suelos agrícolas contaminados por plaguicidas. | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abou, S., Amin, A., Shehzad, T., 2019. Genetic mapping and transcriptional profiling of phytoremediation and heavy metals responsive genes in sorghum. Ecotoxicol. Environ. Saf. 173, 366e372. https://doi.org/10.1016/j.ecoenv.2019.02.022 | spa |
dcterms.references | Abubakar, Y., Tijjani, H., Egbuna, C., Adetunji, C., Kala, S., Kryeziu, T., Ifemeje, C., Patrick, K., 2020. Natural Remedies for Pest, Disease and Weed Control. Chapter 3, Pesticides, History, and Classification. https://doi.org/10.1016/B978-0-12-819304-4.00003-8 | spa |
dcterms.references | Agencia nacional de regulación, Control y Vigilancia Sanitaria.,2017. Instructivo externo. Criterios para la categorización del riesgo sanitario de plaguicidas de uso doméstico, industrial y en salud pública. Coordinación General Técnica de Regulación para la Vigilancia y el Control Sanitario. Dirección Técnica de Perfil de Riesgos. | spa |
dcterms.references | Arden, S., Ma, X., 2018. Constructed wetlands for greywater recycle and reuse: A review. https://doi.org/10.1016/j.scitotenv.2018.02.218 | spa |
dcterms.references | Arslan, M., Imran, A., Khan, Q., Afzal, M., 2015. Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ. Sci. Pollut. Res. 1-15. | spa |
dcterms.references | Bedmar, F., 2011. Informe especial sobre plaguicidas agrícolas. Facultad de Ciencias Agrarias Universidad Nacional de Mar del Plata. | spa |
dcterms.references | Bhandari, G., Atreya, K., Scheepers, P., Geissen, V., 2020. Concentration and distribution of pesticide residues in soil: Non-dietary human health risk assessment. https://doi.org/10.1016/j.chemosphere.2020.126594 | spa |
dcterms.references | Biasioli, M., Fabietti, G., Barberis, R., Ajmone, F., 2012. An appraisal of soil diffuse contamination in an industrial district in northern Italy. https://doi.org/10.1016/j.chemosphere.2012.03.081 | spa |
dcterms.references | Brady, N., Weil, R., (2017). The nature and properties of soils (15th ed.). Fifteenth Edition .Columbus: Pearson. https://www.researchgate.net/publication/301200878 | spa |
dcterms.references | Briceño, G., Vergara, K., Schalchli, H., Palma, G., Tortella, G., Fuentes, M., Diez, M., 2017. Organophosphorus pesticide mixture removal from environmental matrices by a soil Streptomyces mixed culture. Environ. Sci. Pollut. Res. 25 (22), 21296–21307. https://doi.org/10.1007/s11356-017-9790-y. | spa |
dcterms.references | Burbano, H., 2016. El suelo y su relación con los servicios ecosistémicos y la seguridad alimentaria. Rev. Cienc. Agr. 33(2):117-124. doi: http://dx.doi.org/10.22267/rcia.163302.58. | spa |
dcterms.references | Cachada, A., Rocha, T., Duarte, A., 2018. Chapter 1 - Soil and Pollution: An Introduction to the Main Issues. Soil Pollution, pp. 1–28. Academic Press. (also available at https://doi.org/10.1016/B978-0-12-849873-6.00001-7 | spa |
dcterms.references | Cameselle, C., Gouveia, S., 2019. Phytoremediation of mixed contaminated soil enhanced with electric current. J. Hazard Mater. 361, 95e102. https://doi.org/10.1016/j.jhazmat.2018.08.062 | spa |
dcterms.references | CAR, Corporación Autónoma Regional de Cundinamarca., 2018. Aproximación al proceso de degradación de suelos por contaminación. Dirección de Recursos Naturales Grupo Biodiversidad – Suelos | spa |
dcterms.references | Carpena & Bernal, M., 2007. Claves de la fitorremediación: Fitotecnologias para la recuperación de suelos. Revista cientifica y técnica de ecología y medio ambiente, 1-3. | spa |
dcterms.references | Carvalho, F., 2017. Pesticides, environment, and food safety. Food Energy Security 6, 48-60. | spa |
dcterms.references | Castillo, B., Ruiz, J., Manrique, M., Pozo, C., 2020. Revista espacious. Contaminación por plaguicidas agrícolas en los campos de cultivos en Cañete (Perú). | spa |
dcterms.references | Castillo, J., Casas, J., Romero, E., 2011. Isolation of an endosulfan- degrading bacterium from a coffee farm soil: Persistence and inhibitory effect on its biological functions. Sci. Total Env. 20–27. | spa |
dcterms.references | Chakraborty, J., Das, S., 2016. Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants. Environ. Sci. Pollut. Res. 23, 16883–16903. DOI: 10.1007 / s11356-016-6887-7 | spa |
dcterms.references | Chennappa, G., Naik, M., Sreenivasa, M., 2015. Azotobacter-PGPR activities with special reference to effect of pesticides and biodegradation.In: Microbial Inoculants in Sustainable Agricultural Productivity Vol-II, Functional Applications. Springer Book, pp. 229–244 13(1). | spa |
dcterms.references | Chen, C., Zhang, X., Chen, J., Chen, F., Li, J., Chen, Y., Hou, H., shi, F., 2020. Assessment of site contaminated soil remediation based on an input output life cycle assessment. https://doi.org/10.1016/j.jclepro.2020.121422 | spa |
dcterms.references | Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., Zhang, J., 2015. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. http://dx.doi.org/10.1016/j.biotechadv.2015.05.003 | spa |
dcterms.references | Chennappa, G., Udaykumar, N., Vidya, M., Nagaraja, H., Amaresh, Y., Sreenivasa, M., 2019. Azotobacter—A Natural Resource for Bioremediation of Toxic Pesticides in Soil Ecosystems.In:J.S. Singh and D.P. Singh, New and Future Developments in Microbial Biotechnology and Bioengineering (págs. 267-279). India. doi:https://doi.org/10.1016/B978-0-444-64191-5.00019-5 | spa |
dcterms.references | Compant, S., Saikkonen, K., Mitter, B. et al., 2016. Editorial special issue: soil, plants and endophytes. Plant Soil 405, 1–11. https://doi.org/10.1007/s11104- 016https://doi.org/10.1007/s11104-016-2927-92927-9 | spa |
dcterms.references | Cui, X., Zhang, J., Wang, X., Pan, M., Lin, Q., Khan, Y., Yan, B., Li, T., He, Z., Yang, X., Chen, G., 2020. review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products, Journal of Hazardous Materials. Doi: https://doi.org/10.1016/j.jhazmat.2020.123832 | spa |
dcterms.references | Damalas C., 2015. Pesticide drift: seeking reliable environmental indicators of exposure assessment. | spa |
dcterms.references | Dickinson, N., 2017. Phytoremediation. In: Encyclopedia of Applied Plant Sciences (Second Edition). Volume 3, Pages 327-331. https://doi.org/10.1016/B978-0- 12-394807-6.00016-2 | spa |
dcterms.references | Dominguez, C., Romero, A., Checa, A., Santos, A., 2020. Remediation of HCHscontaminated sediments by chemical oxidation treatments. https://doi.org/10.1016/j.scitotenv.2020.141754 | spa |
dcterms.references | Dzionek, A., Wojcieszyńska, Dzionek, A., Wojcieszyńska, D., Guzik, U., 2016. Natural carriers in bioremediation: a review. Electron. J. Biotechnol. 23, 28–36. http://dx.doi.org/10.1016/j.ejbt.2016.07.003 D., Guzik, U., 2016. Natural carriers in bioremediation: a review. Electron. J. Biotechnol. 23, 28–36. http://dx.doi.org/10.1016/j.ejbt.2016.07.003 | spa |
dcterms.references | Eevers, N., White, J., Vangronsveld, J., Weyens, N., 2017. Bio- and Phytoremediation of Pesticide-Contaminated Environments: A Review. In: Advances in Botanical Research. Pages 277-318. https://doi.org/10.1016/bs.abr.2017.01.001 | spa |
dcterms.references | Ekperusi, A., Sikoki, F., Nwachukwu, E., 2019. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. https://doi.org/10.1016/j.chemosphere.2019.02.025 | spa |
dcterms.references | Ertan, M., 2020. Heavy Metal Contamination and Remediation of Water and Soil with Case Studies From Cyprus, Heavy Metal Toxicity in Public Health, John Kanayochukwu Nduka and Mohamed Nageeb Rashed, IntechOpen, DOI: 10.5772/intechopen.90060 | spa |
dcterms.references | Eze, V., Harvey, A., 2018. Extractive recovery and valorisation of arsenic from contaminated soil through phytoremediation using Pteris cretica. https://doi.org/10.1016/j.chemosphere.2018.06.027 | spa |
dcterms.references | Fadin, D., Tornisielo, V., Barroso, A., Ramos, S., Dos, F., Monquero, P., 2018. Absorption and Translocation of Glyphosate in Spermacoce Verticillata and Alternative Herbicide Control. DOI: 10.1111/wre.12329 | spa |
dcterms.references | FAO, 2016. Organización de las Naciones Unidas para la Agricultura y la Alimentación, archivos electrónicos y sitio web. ID: ag.lnd.agri.zs | spa |
dcterms.references | FAO, 2018. Proceedings of the Global Symposium on Soil Pollution. Food and Agriculture Organization of the United Nations, Rome, Italy. | spa |
dcterms.references | FAO, 2020. Agricultural pollution: pesticides., pp. 6. http://documents.worldbank.org/curated/en/689281521218090562/pdf/12434 5-BRI-p153343-PUBLIC-march-22-9-pm-WB-Knowledge-Pesticides.pdf | spa |
dcterms.references | Faboya, L., Sojinu, O., Oguntuase, J., Sonibare, O., 2020. Impact of forest fires on polycyclic aromatic hydrocarbon concentrations and stable carbon isotope compositions in burnt soils from tropical forest, Nigeria. https://doi.org/10.1016/j.sciaf.2020.e00331 | spa |
dcterms.references | Febriani, I., Hadiyanto, H., 2018. Application of Pesticide Phytoremediation in Irrigated Rice Fields System Using Eceng Gondok (Eichhornia crassipes) Plants. https://doi.org/10.1051/e3sconf/20183103019 | spa |
dcterms.references | Feng, N., et al., Efficient phytoremediation of organic contaminants in soils using plant–endophyte Feng, N., et al., Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships, Sci Total Environ.583 (2017), pp 352-368. http://dx.doi.org/10.1016/j.scitotenv.2017.01.075 , Sci Total Environ.583 (2017), pp 352-368. http://dx.doi.org/10.1016/j.scitotenv.2017.01.075 | spa |
dcterms.references | Ferreras, L., Toresani, S., Faggioli, V., Galarza, C., 2015. Sensibilidad de indicadores biológicos edáficos en un Argiudol de la Región Pampeana Argentina. Revista Spanish Journal of Soil Science, 5(3). | spa |
dcterms.references | Floris, B., Galloni, P., Sabuzi, F., Conte, V., 2016. Metal systems as tools for soil remediation, Inorganica Chimica. doi: http://dx.doi.org/10.1016/j.ica.2016.04.003 | spa |
dcterms.references | Fuentes, M., Raimondo, E., Amoroso, M., Benimeli, C., 2017. Removal of a mixture of pesticides by a Streptomyces consortium: influence of different soil systems. Chemosphere 173, 359–367. https://doi.org/10.1016/j. chemosphere.2017.01.044. | spa |
dcterms.references | Garzón, J., Rodríguez, J., Hernández, C., 2017 Revisión del aporte de la biorremediaGarzón, J., Rodríguez, J., Hernández, C., 2017 Revisión del aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible. Rev Univ. Salud. Pag 19(2):309-318. DOI: http://dx.doi.org/10.22267/rus.171902.93 ción para solucionar problemas de contaminación y su relación con el desarrollo sostenible. Rev Univ. Salud. Pag 19(2):309-318. DOI: http://dx.doi.org/10.22267/rus.171902.93 | spa |
dcterms.references | Gautam, M., Elhiti, M., Fomsgaard, I., 2018. Maize root culture as a model system for studying azoxystrobin biotransformation in plants. https://doi.org/10.1016/j.chemosphere.2017.12.121 0 | spa |
dcterms.references | Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van, M., van, S., Ritsema, C, 2015. Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1): 57–65. https://doi.org/10.1016/j.iswcr.2015.03.002 | spa |
dcterms.references | Gerhardt, K., E., Gerwing, P., Greenberg, B., 2017 Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science. 256,170-185. | spa |
dcterms.references | Ghori, Z., Iftikhar, H., Bhatti, M., Nasar., Sharma, I., Kazi, A., Ahmad, P., 2016. Phytoextraction: The use of plants to remove heavy metals from soil. In: Plant Metal Interaction. Emerging Remediation Techniques. Páginas 385-409. http://dx.doi.org/10.1016/B978-0-12-803158-2.00015-1 | spa |
dcterms.references | Góngora, V., Escalante, R., Rojas, R., Giácoman, G., Ponce, C., 2020. Pesticide bioremediation in liquid media using a microbial consortium and bacteria-pure strains isolated from a biomixture used in agricultural áreas. https://doi.org/10.1016/j.ecoenv.2020.110734 | spa |
dcterms.references | González, M., Carrillo., Sánchez, A., 2017. Definiciones y problemática en la investigación científica en aspectos de fitoremediación de suelos. In: Guía para autores, Dr. Jorge Cadena Iñiguez; Editorial agro productividad. | spa |
dcterms.references | Guerrero, A., 2018. Manejo de plaguicidas en cultivos de Zea mays L. "maiz" (Poaceae), Brassica cretica Lam. "brocoli" (Brassicaceae), Apium graveolens L. "apio", Coriandrum sativum L. "cilantro"(Apiaceae), Allium fistulosum L. "Cebolla cina" (Amaryllidaceae). Arnaldoa, 25(1), 1 - 20. doi:10.22497/arnaldoa.251.25110 | spa |
dcterms.references | Hai, F., Modin, O., Fukushi, K., Nakajima, F., Nghiem, L., Yamamoto, K., 2012. Pesticide removal by a mixed culture of bacteria and white-rot fungi. J. Taiwan Inst. Chem. Eng. 43, 459e462. https://doi.org/10.1016/j.jtice.2011.11.002 | spa |
dcterms.references | Haller., Henrik., Jonsson., Anders., 2020. Growing food in polluted soils: A review of risks and opportunities associated with combined phytoremediation and food production (CPFP). https://doi.org/10.1016/j.chemosphere.2020 | spa |
dcterms.references | Hardoim, P., Overbeek, L., Berg, G., Pirttilä, A., Compant, S., Campisano, A., Döring, M., Sessitsch, A., 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320. | spa |
dcterms.references | Hernández, I., Rodríguez, M., 2020. “Plant Glutathione S-transferases: An overview”. https://doi.org/10.1016/j.plgene.2020.100233 | spa |
dcterms.references | Huanhuayo, K., 2017. El uso de plaguicidas químicos en el cultivo de papa (solanum tuberosum L), su relación con el medio ambiente y la salud. http://repositorio.unh.edu.pe/handle/UNH/2867 | spa |
dcterms.references | Hu, H., Li, X., Wu, S., Yang, C., 2020. Sustainable livestock wastewater treatment via phytoremediation: Current status and future perspectives. https://doi.org/10.1016/j.biortech.2020.123809 | spa |
dcterms.references | IDEAM, Informe Nacional de Residuos o Desechos Peligrosos en Colombia, 2017. Bogotá, D.C., 2017. 82 páginas. | spa |
dcterms.references | Ifon, B., Finagnon, A., Sewedo, L., Suanon, F., Yessoufou, A., 2019. MetalContaminated Soil Remediation: Phytoremediation, Chemical Leaching and Electrochemical Remediation, Metals in Soil - Contamination and Remediation, Zinnat Ara Begum, Ismail M. M. Rahman and Hiroshi Hasegawa, IntechOpen, DOI: 10.5772/intechopen.81223 | spa |
dcterms.references | Ilker., Ibrahim., Dogan, I., 2015. Plant–Microbe Interactions in Phytoremediation. https://doi.org/10.1016/B978-0-12-799937-1.00009-7 | spa |
dcterms.references | Jeevanantham, S., Saravanan, A., Hemavathy, R., Senthil, P., Yaashikaa, P., Yuvaraj, D., 2019. Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects, Environ. Technol. Inno. Pag 264–276. https://doi.org/10.1016/j.eti.2018.12.007 | spa |
dcterms.references | Jha, P., Sen, R., Jobby, R., Sachar, S., Bhatkalkar, S., Desai, N., 2020. Biotransformation of xenobiotics by hairy roots. https://doi.org/10.1016/j.phytochem.2020.112421 | spa |
dcterms.references | Khanom, S., Jang, J., Lee, O., 2019. Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis. In: Journal of Ginseng Research, Volume 43, Pages 645- 653.https://doi.org/10.1016/j.jgr.2019.04.005 | spa |
dcterms.references | Kim, H., Kim, K., Kim, W., Owens, G., Kim, K., 2017. Influence of Road Proximity on the Concentrations of Heavy Metals in Korean Urban Agricultural Soils and Crops. Archives of Environmental Contamination and Toxicology, 72(2): 260– 268. https://doi.org/10.1007/s00244-016-0344-y | spa |
dcterms.references | Koureas M., T. A., 2012. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides. | spa |
dcterms.references | Kumar M., Gopikumar S., Uan D., Adishkumar S., Banu., 2020. Constructed Wetlands: An Emerging Green Technology for the Treatment of Industrial Wastewaters. In: Bharagava R. (eds) Emerging Eco-friendly Green Technologies for Wastewater Treatment. Microorganisms for Sustainability, vol 18. Springer, Singapore. http://doi-org- 443.webvpn.fjmu.edu.cn/10.1007/978http://doi-org- 443.webvpn.fjmu.edu.cn/10.1007/978-981-15-1390-9_2981-15-1390-9_2 | spa |
dcterms.references | Kumar, P., Kim, K., Lee, S., Lee, J., 2019. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. https://doi.org/10.1016/j.scitotenv.2019.135858 | spa |
dcterms.references | Kumar, V., Kothiyal, N., 2016. Analysis of Polycyclic Aromatic Hydrocarbon, Toxic Equivalency Factor and Related Carcinogenic Potencies in Roadside Soil within a Developing City of Northern India. Polycyclic Aromatic Compounds, 36(4): 506–526. https://doi.org/10.1080/10406638.2015.1026999 | spa |
dcterms.references | Kumar, K., Gupta, N., Kumar, A.,Reece, L.,Singh, N., Rezania, S., Ahmad, S., 2018. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. https://doi.org/10.1016/j.ecoleng.2018.05.039 | spa |
dcterms.references | Lee, Y., Lee, Y., Jeon, C., 2019. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep 9, 860. https://doi.org/10.1038/s41598- 018-36165-x | spa |
dcterms.references | León, J., 2017. Monografia: Una mirada a la fitorremediacion en latinoamerica. Universidad nacional abierta y a distancia-unad escuela de ciencias agrícolas, pecuarias y del medio ambiente León, J., 2017. Monografia: Una mirada a la fitorremediacion en latinoamerica. Universidad nacional abierta y a distancia-unad escuela de ciencias agrícolas, pecuarias y del medio ambiente ecapma programa especialización en biotecnología agraria zipaquira. programa especialización en biotecnología agraria zipaquira. | spa |
dcterms.references | Limmer, M., Burken, J., 2016. Phyto-Volatilization of Organic Contaminants. USA: American Chemical Society. DOI: 10.1021/acs.est.5b04113 | spa |
dcterms.references | Lin H, Liu C, Li B, Dong Y., 2020. Regulated Phytoremediation of Heavy Metal Contaminated Soil by Promoting Soil Enzyme Activities and Beneficial Rhizosphere Associated Microorganisms, Journal of Hazardous Materials. doi: https://doi.org/10.1016/j.jhazmat.2020.123829 | spa |
dcterms.references | Liu, C., Lin, H., Li, B., Dong, Y., Yin, T., 2020. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cdcontaminated soil. https://doi.org/10.1016/j.ecoenv.2020.110958 | spa |
dcterms.references | Li, X., Zhang, M., Li, Y., Yu, X., Nie, J., 2020. Effect of neonicotinoid dinotefuran on root exudates of Brassica rapa var. Chinensis. https://doi.org/10.1016/j.chemosphere.2020.129020 | spa |
dcterms.references | Lizarazo, M., Herrera, C., Celis, C., Pombo, L., Teherán, A., Piñeros, L., Forero, S., Velandia, J., Díaz, F., Andrade, W., Rodríguez, O., 2020. Contamination of staple crops by heavy metals in Sibaté, Colombia. https://doi.org/10.1016/j.heliyon.2020.e04212 | spa |
dcterms.references | Lominchar, M., Santos, A., de Miguel, E., Romero, A., 2018. Remediation of aged diesel contaminated soil by alkaline activated persulfate. https://doi.org/10.1016/j.scitotenv.2017.11.263 | spa |
dcterms.references | Londoño, L., Londoño, P., Muñoz, F., 2016. Risk of heavy metals in human and animal health. Biotecnología en el Sector Agropecuario y Agroindustrial 14(2): 145-153. | spa |
dcterms.references | Lv, T., Carvalho, P., Escola, M., Bollmann, U., Arias, C., Brix, H., Bester, K., 2017. Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis. http://dx.doi.org/10.1016/j.envpol.2017.06.017 | spa |
dcterms.references | Luo, J., Yang, G., Deshani, A., He, W., Gao, B.,. Tsang, D., Sik, Y., 2019. Effects of elevated CO2 on the phytoremediation efficiency of Noccaea caerulescens*. https://doi.org/10.1016/j.envpol.2019.113169 | spa |
dcterms.references | Mahecha, J., Trujillo, J., Torres, M., 2017. Analysis of Studies in Heavy Metals in Agricultural Areas of Colombia. ORINOQUIA - Universidad de los Llanos - Villavicencio, Meta. Colombia Suplemento Vol. 21 - No 1 | spa |
dcterms.references | Manoj, S., Karthik, C., Kadirvelu, K., Arulselvi, P., Shanmugasundaram, T., Bruno, B., Rajkumar, M., 2019. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. https://doi.org/10.1016/j.jenvman.2019.109779. | spa |
dcterms.references | Marrugo, J., Durango, J., Pinedo, J., Olivero, J., Díez, S.,2015. Phytoremediation of mercury-contaminated soils by Jatropha curcas. http://dx.doi.org/10.1016/j.chemosphere.2014.12.073 | spa |
dcterms.references | Marrugo, J., Marrugo, S., Pinedo, J., Durango, J., Díez, S., 2016. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. In: Science of The Total Environment. Marrugo, J., Marrugo, S., Pinedo, J., Durango, J., Díez, S., 2016. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. In: Science of The Total Environment. Pages 809-816. http://dx.doi.org/10.1016/j.scitotenv.2015.10.117 Pages 809-816. http://dx.doi.org/10.1016/j.scitotenv.2015.10.117 | spa |
dcterms.references | Massot, F., Smitha, M., Vitali, V., Giulietti, A., Merini, L., 2016. Assessing the glyphosate tolerance of Lotus corniculatus and L. tenuis to perform rhizoremediation strategies in the Humid Pampa (Argentina). http://dx.doi.org/10.1016/j.ecoleng.2016.01.031 | spa |
dcterms.references | Mendieta, C., Taisigüe, K., 2014. Acumulación y traslocación de metales, metaloides y no metales en plantas nativas de la zona minera de Chontales: Implicaciones para el potencial de fito-remediación. | spa |
dcterms.references | Mielke, K., Ramos, R., Ribeiro, F., Bueno, A., Barboza, F., Madalao, J., 2020. Does Canavalia ensiformis inoculation with Bradyrhizobium sp. enhance phytoremediation of sulfentrazone-contaminated soil?. https://doi.org/10.1016/j.chemosphere.2020.127033 | spa |
dcterms.references | Mimmo, T., Bartucca, M., Del Buono, D., Cesco, S., 2015.Italian ryegrass for the phytoremediation of solutions polluted with terbuthylazine. https://doi.org/10.1016/j.chemosphere.2014.04.114 | spa |
dcterms.references | Montaño, N., Navarro, M., Patricio, I., Chimal, E., de la Cruz, J., 2018. El suelo y su multifuncionalidad: ¿qué ocurre ahí abajo? CIENCIA ergo-sum, 25(3).https://doi.org/10.30878/ces.v25n3a9 | spa |
dcterms.references | Naeem, A., Saifullah, R., Akhtar, T., Ok, Y., Rengel, Z., 2016. Genetic variation in cadmium accumulation and tolerance among wheat cultivars at the seedling stage. Commun. Soil Sci. Plant Anal. 47, 554e562. https://doi.org/10.1080/00103624.2016.1141918 | spa |
dcterms.references | Nejad, Z., Jung, M., Kim, K., 2017. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ. Geochem. Health 40, 927–953. http://dx.doi.org/10.1007/s10653-017-9964-z | spa |
dcterms.references | Nikolaou I, Stefanakis, A., 2018. A novel response of industry to wastewater treatment with constructed wetlands: a managerial view through system dynamic techniques. In: Stefanakis AI (ed) Constructed wetlands for industrial wastewater treatment. Wiley, Hoboken, NJ, pp 529–549. https://doi.org/10.1002/9781119268376.ch24 | spa |
dcterms.references | Noguez, A., López, A., Carrillo, R., González, M., 2017. Uso de leguminosas (fabaceae) en fitorremediación. Dr. Jorge Cadena Iniguez. Editorial Agro Productividad. | spa |
dcterms.references | Novillo, I., Carrillo, M., Cargua, J., Nabel, V., Albán, K., Morales, F., 2018. Propiedades físicas del suelo en diferentes sistemas agrícolas en la provincia de Los Ríos, Ecuador. | spa |
dcterms.references | O'Brien, P., DeSutter, T., Casey, F., Khan, E., Wick, A.,2018. Thermal remediation alters soil properties - a review. https://doi.org/10.1016/j.jenvman.2017.11.052 Ortiz, I., Sanz, J., Dorado, M.,Villar, S., 2007 .Técnicas de recuperación de suelos contaminados. Informe de vigilancia tecnológica. | spa |
dcterms.references | Pajoy, H., 2017. Tesis: potencial fitorremediador de dos especies ornamentales como alternativa de tratamiento de suelos contaminados con metales pesados. Universidad nacional de Colombia –sede Medellín. | spa |
dcterms.references | Pandey, V., 2012. Invasive species based efficient green technology for phytoremediation of fly ash deposits. J. Geochem. Explor. 123, 13–18. | spa |
dcterms.references | Pandey, V., Bajpai, O., Pandey, D., Singh, N., 2015. Saccharum spontaneum: an underutilized tall grass for revegetation and restoration programs. Genet. Resour. Crop Evol. 62 (3), 443–450. | spa |
dcterms.references | Pandey, V., Deblina M., 2020. Perennial grasses in phytoremediation—challenges and opportunities. In: Phytoremediation Potential of Perennial Grasses. Pages 1-29. https://doi.org/10.1016/B978-0-12-817732-7.00001-8 | spa |
dcterms.references | Pandey, V., Singh, N., 2015. Aromatic plants versus arsenic hazards in soils. J. Geochem. Explor. 157, 77–80. | spa |
dcterms.references | Pastor, J., Gutierrez, M., Hernandez, A., 2015. Heavy-metal phytostabilizing potential of Agrostis castellana Boiss. & Reuter. Int. J. Phytoremediation 17 (10), 988–998. | spa |
dcterms.references | Peña, C., Ulloa, S., Mora, K., Helena, R., Lopez, E., Alvarez, J., Rodriguez, M., 2019. Emerging pollutants in the urban water cycle in Latin America: A review of the current literatura. https://doi.org/10.1016/j.jenvman.2019.02.100 | spa |
dcterms.references | Perez, J., Mendes, R., Raaijmakers, J., 2016. Impact of plant domesti-cation on rhizosphere microbiome assembly and functions. Plant Mol Biol Plant Molecular Biology 90, 635-644. DOI 10.1007/s11103-015-0337-7 | spa |
dcterms.references | Pérez, C., Hernández, C., Martínez, M., García, M., Bech, J., 2017. Metal uptake by wetland plants: implications for phytoremediation and restoration. Journal of Soils and Sediments 17: 1384–1393. | spa |
dcterms.references | Rahman, M., Clark, M., Yee, L., Burton, E., 2019. Arsenic (V) sorption kinetics in long-term arsenic pesticide contaminated soils. https://doi.org/10.1016/j.apgeochem.2019.104444 | spa |
dcterms.references | Raimondo, E., Saez, J., Aparicio, J., Fuentes, M., Benimeli, C., 2020. Bioremediation of lindane-contaminated soils by combining of bioaugmentation and biostimulation: Effective scaling-up from microcosms to mesocosms. https://doi.org/10.1016/j.jenvman.2020.111309 | spa |
dcterms.references | Rambabu, K., Banat, F., Minh, Q., Ho, S., Ren, N., Loke, P., 2020. Biological remediation of acid mine drainage: Review of past trends and current Outlook. https://doi.org/10.1016/j.ese.2020.100024 | spa |
dcterms.references | Ramírez, L., Martínez, J., García, V., Bernal, M., García, R., Ramírez, L., Espinosa, B., Cano, M., Duran, M., 2017. Destino de los plaguicidas en el ambiente: Un estudio de caso para el programa de apoyo a proyectos para la innovación y mejoramiento de la enseñanza de la UNAM. DOI: 10.13140/RG.2.2.34864.10244 | spa |
dcterms.references | Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Singh, A., Lal, A., Kaushal, J., 2020. An extensive review on the consequences of chemical pesticides on human health and environment. https://doi.org/10.1016/j.jclepro.2020.124657 | spa |
dcterms.references | Riggio, V., Ruffino, B., Campo, G., Comino, E., Comoglio, C., Zanetti, M., (2018) Constructed wetlands for the reuse of industrial wastewater: a case-study. https://doi.org/10.1016/j.jclepro.2017.10.081 | spa |
dcterms.references | Rizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D., Zia, M., Zahir, Z., Rinklebe, J., Tack, F., Ok, Y., 2017. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182, 90e105. https://doi.org/10.1016/j.chemosphere.2017.05.013 | spa |
dcterms.references | Rodríguez, N., McLaughlin, M., Pennock, D., 2018. Soil Pollution: a hidden reality. Rome, FAO. 142 pp. | spa |
dcterms.references | Rodríguez, N., McLaughlin, M., Pennock, D., 2019. La contaminación del suelo: una realidad oculta. Roma, FAO. | spa |
dcterms.references | Rodríguez, J., Ruíz, F., 2016. Propuesta metodológica para el monitoreo, control y recuperación del suelo mediante bioaumentación de microorganismos para sitios de disposición final de residuos sólidos. Retrieved from https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/275 | spa |
dcterms.references | Romeh, A., 2015. Evaluación del potencial de fitorremediación de tres especies de plantas para suelos contaminados con azoxistrobina. En t. J. Environ. Sci. Technol. 12, 3509–3518. https://doi.org/10.1007/s13762- 015https://doi.org/10.1007/s13762-015-0772-70772-7 | spa |
dcterms.references | Romeh, A, Hendawi, M., 2017. Biochemical interactions between Glycine max L. silicon dioxide (SiO2) and plant growth-promoting bacteria (PGPR) for improving phytoremediation of soil contaminated with fenamiphos and its degradation products. In: Pesticide Biochemistry and Physiology, Volume 142.Pages 32-43. http://dx.doi.org/10.1016/j.pestbp.2017.01.001 | spa |
dcterms.references | Ross, J., Driver, J., Lunchick, C., O’Mahony, C., 2015. Models for estimating human exposure to pesticides. DOI: 10.1564/v26_feb_09 | spa |
dcterms.references | Roy, A., 2018. A review on the Biosurfactants: Properties, Types and its Applications. Journal of Fundamentals of Renewable Energy, 8, 248-252. | spa |
dcterms.references | Roy, M., Pandey, V., 2020. Role of microbes in grass-based phytoremediation. In: Phytoremediation Potential of Perennial Grasses. Pages 303-336. https://doi.org/10.1016/B978-0-12-817732-7.00015-8 | spa |
dcterms.references | Sanchez, V., Lopez, F., Canizares, P., Rodríguez, L., 2017. Assessing the phytoremediation potential of crop and grass plants for atrazinespiked soils. In: Quimiosfera. Volumen 185, páginas 119-126. https://doi.org/10.1016/j.chemosphere.2017.07.013 | spa |
dcterms.references | Sanzano, A., 2019. Génesis - La diferenciación del perfil del suelo. Cátedra de Edafología, Facultad de Agronomía y Zootecnia. Universidad Nacional de Tucumán. | spa |
dcterms.references | Saravanan, A., Jeevananthama, S., Anantha, V., Kumar, P., Yaashikaa, P., Mathan, C., 2020. Rhizoremediation – A promising tool for the removal of soil contaminants: A review. https://doi.org/10.1016/j.jece.2019.103543 | spa |
dcterms.references | Sauvé, S., Desrosiers, M., 2014. A review of what is an emerging contaminant. Chemistry Central Journal 8, 15. https://doi.org/10.1186/1752https://doi.org/10.1186/1752-153X-8-15153X-815 | spa |
dcterms.references | Saxena G., Purchase D., Mulla S., Saratale G., Bharagava R., 2019. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. In: de Voogt P. (eds) Reviews of Environmental Contamination and Toxicology Volume 249. Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews), vol 249. Springer, Cham. https://doi.org/10.1007/398_2019_24 | spa |
dcterms.references | Sepúlveda, J., Casallas, M., 2018. Contaminación y remediación de suelos en Colombia: aplicación a la minería de oro/ Descripción: 1a edición / Bogotá: Universidad EAN.112 páginas | spa |
dcterms.references | Shah, V., Daverey, A., 2020. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. https://doi.org/10.1016/j.eti.2020.100774 | spa |
dcterms.references | Sharma, A.,Shuklaa, A., Attria, K., Kumar, M., Kumar, P., Suttee, A., Singh, G., Barnwal, R.,Singla, N., 2020. Global trends in pesticides: A looming threat and viable alternatives. https://doi.org/10.1016/j.ecoenv.2020.110812 | spa |
dcterms.references | Sikhosana, M., Botha, A., Mpenyane, L., Coetzee, M., 2020. Evaluating the effect of seasonal temperature changes on the efficiency of a rhizofiltration system in nitrogen removal from urban runoff. https://doi.org/10.1016/j.jenvman.2020.111192 | spa |
dcterms.references | Silveira, M., Aldana, M., Piri, J., Valenzuela, A., Jasa, G., Rodriguez, G., 2018. Plaguicidas agricolas: Un marco de referencia para evaluar riesgos a la salud en comunidades rurales en el estado de Sonora, Mèxico. Revista internacional de contaminaciòn ambiental, 34(1), 1 - 15. doi:org/10.20937/rica.2018.34.01.01 | spa |
dcterms.references | Singh, P., Kujur, A.,Yadav, A, et al., Chapter two -Mechanisms of plant-microbe interactions and its significance for sustainable agriculture, Food Security and Environmental Management (2019) 17–39. https://doi.org/10.1016/B978-0- 12https://doi.org/10.1016/B978-0-12-815879-1.00002-1815879-1.00002-1 | spa |
dcterms.references | Soto, M., Rodriguez, L., Olivera, M., Arostegui, V., Colina, C., Garate, J., 2020. Riesgos para la salud por metales pesados en productos agrícolas cultivados en áreas abandonadas por la minería aurífera en la Amazonía peruana. DOI: 10.17268/sci.agropecu.2020.01.06 | spa |
dcterms.references | Stellet, R., Murilo, S., Ramos, C., Canela, M., 2018. Análisis de Hidrocarburos Policíclicos Aromáticos (HPA) en material particulado en la atmosfera de Campos dos Goytacazes, RJ, Brasil. | spa |
dcterms.references | Sun, S., Yang, W., Guo, J., Zhou, Y., Rui, X., Chen, C., Ge, F., Dai, Y., 2017. Biodegradation of the neonicotinoid insecticide acetamiprid in surface water by the bacterium: variovorax boronicumulans CGMCC 4969 and its enzymatic mechanism. RSC Adv. 7, 25387e25397. https://doi.org/10.1039/c7ra01501a | spa |
dcterms.references | Surriya, O., Saleem, S., Waqar, K., Kazi, A., 2015. Phytoremediation of Soils: Prospects and Challenges. Pages 1-36. https://doi.org/10.1016/B978-012https://ezproxyucor.unicordoba.edu.co:2097/10.1016/B978-0-12-799937- 1.00001-2799937-1.00001-2 | spa |
dcterms.references | Tarazona, J., 2014. Poluution, Soil. Encyclopedia of Toxicology, pp. 1019 -1023. Elsevier. http://linkinghub.elsevier.com/retrieve/pii/B9780123864543005315). | spa |
dcterms.references | Teedon, P., Galea, K., MacCalman, L., Jones, K., Cocker, J., Cherrie, J., van Tongeren, M., 2015. Engaging with community researchers for exposure science: lessons learned from a pesticide biomonitoring study https://doi.org/10.1371/journal.pone.0136347 | spa |
dcterms.references | Teodoro, M., Hejcman, M., Vítková, M., Songlin W., Komárek, M., 2019. Seasonal fluctuations of Zn, Pb, As and Cd contents in the biomass of selected grass species growing on contaminated soils: Implications for in situ phytostabilization. https://doi.org/10.1016/j.scitotenv.2019.134710 | spa |
dcterms.references | Teófilo, T., Mendes, K., Chaves, B., Sarmento, F., Severo, T., Takeshita, V., Souza, M., Tornisielo, V., Valadao, D., 2020. Phytoextraction of diuron, hexazinone, and sulfometuron-methyl from the soil by green manure species. https://doi.org/10.1016/j.chemosphere.2020.127059 | spa |
dcterms.references | Tiwari, J., Ankit., Sweta., Kumar, S., Korstad, J., Bauddh, K., 2019. Ecorestoration of Polluted Aquatic Ecosystems Through Rhizofiltration. In:Phytomanagement of Polluted Sites. Páginas 179-201. DOI: https://doi.org/10.1016/B978-012https://doi.org/10.1016/B978-0-12-813912-7.00005-3813912-7.00005-3 | spa |
dcterms.references | Varón, J., Valentim, J., Fonsêca, C., Lopes, P., Siqueira, J., de Souza, F., 2015. Biological attributes of rehabilitated soils contaminated with heavy metals. Environmental Science and Pollution Research 23: 6735-6748. | spa |
dcterms.references | Venuti, A., Alfonsi, L., Cavallo, A., 2016. Anthropogenic pollutants on top soils along a section of the Salaria state road, central Italy. Annals of Geophysics(5). https://doi.org/10.4401/ag-7021 | spa |
dcterms.references | Verma, S., Singh, K., Gupta, A., Pandey, V., Trivedi, P., Verma, R., Patra, D., 2014. Aromatic grasses for phytomanagement of coal fly ash hazards. Ecol. Eng. 73, 425–428. | spa |
dcterms.references | Vymazal, J., 2014. Constructed wetlands for treatment of industrial wastewaters: A review. https://doi.org/10.1016/j.ecoleng.2014.09.034 | spa |
dcterms.references | Wang, M., Zhang, D., Dong, J., Tan, S., 2017. Constructed wetlands for wastewater treatment in cold climate-a review. J Environ Sci 57:293–311. https://doi.org/10.1016/j.jes.2016.12.019 | spa |
dcterms.references | Wang, N., Zheng, T., Zhang, G., Wang, P., 2016. A review on Fenton-like processes for organic wastewater treatment. http://dx.doi.org/10.1016/j.jece.2015.12.016 Wang, S., Li, T., Zheng, Z., Chen, H., 2019. Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. https://doi.org/10.1016/j.scitotenv.2018.11.032 | spa |
dcterms.references | Wetle, R., Bensko, B., Johnson, K., Sweat, K., Cahill, T., 2020. Uptake of uranium into desert plants in an abandoned uranium mine and its implications for phytostabilization strategies. https://doi.org/10.1016/j.jenvrad.2020.106293 | spa |
dcterms.references | Wołejko, E., Jabłońska, A., Wydro, U., Butarewicz, A., Łozowicka, B., 2019. Soil biological activity as an indicator of soil pollution with pesticides. A review. https://doi.org/10.1016/j.apsoil.2019.09.006 | spa |
dcterms.references | Wu, H., Gao, X., Wu, M., Zhu, Y., Xiong, R., Ye, S., 2020. The efficiency and risk to groundwater of constructed wetland system for domestic sewage treatment - A case study in Xiantao, China. https://doi.org/10.1016/j.jclepro.2020.123384 | spa |
dcterms.references | Wu, J., Li, Z., Wu, L.,et al., Triazophos (TAP) removal in horizontal subsurface flow constructed wetlands (HSCWs) and its accumulation in plants and substrates, Sci. Rep. 7 (2017) 5468. https://doi.org/10.1038/s41598-017-05874-0 | spa |
dcterms.references | eong, W., Teh, S., Hossain, M., Nadarajaw, T., Zabidi, Z., Chin, S., Lai, K., Lim, S., 2020. Application, monitoring and adverse effects in pesticide use: The importance of reinforcement of Good Agricultural Practices (GAPs). https://doi.org/10.1016/j.jenvman.2019.109987 | spa |
dcterms.references | Xiao, L., Jia, H., Jeong, I., Ahn, Y., Zhu, Y., 2017. Isolation and characterization of 2,4-D butyl ester degrading acinetobacter sp. ZX02 from a Chinese ginger cultivated soil. J. Agric. Food Chem. 65, 7345e7351. DOI: 10.1021 / acs.jafc.7b02140 | spa |
dcterms.references | Yadav, K., Gupta, N., Kumar, A., et al., Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects, Ecol. Eng. 120 (2018) 274–298 | spa |
dcterms.references | Yang, Z., Verpoort, F., Dong, C., Chen, C., Chen, S., Kao, C., 2020. Remediation of petroleum-hydrocarbon contaminated groundwater using optimized in situ chemical oxidation system: Batch and column studies. https://doi.org/10.1016/j.psep.2020.02.032 | spa |
dcterms.references | Zancarini, A., Lepinay, C., Burstin, J., Duc, G., Lemanceau, P., Moreau, D., Munier, N., Pivato, B., Rigaud, T., Salon, C., Mougel, C., 2013. Combining Molecular Microbial Ecology with Ecophysiology and Plant Genetics for a Better Understanding of Plant-Microbial Communities’ Interactions in the Rhizosphere, pp. 69-86. https://doi.org/10.1002/9781118297674.ch7 | spa |
dcterms.references | Zhanga, H., Yuana, X., Xionga, T., Wanga, H., Jiang, L., 2020. Bioremediation of cocontaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. https://doi.org/10.1016/j.cej.2020.125657 | spa |
dcterms.references | Zhang, W., Jiang, F., Ou, J., 2011. Global pesticide consumption and pollution: with China as a focus. Int. Acad. Ecol. Environ. Sci. 1, 125e144 | spa |
dcterms.references | Zhang, H., Wang, Z., Zhang, Y., Ding, M., Li, L., 2015. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway. Science of The Total Environment, 521– 522: 160–172. https://doi.org/10.1016/j.scitotenv.2015.03.054 | spa |
dcterms.references | Zhang, Q., Yu, R., Fu, S., Wu, Z., Chen, H., Liu, H., 2019. Spatial heterogeneity of heavy metal contamination in soils and plants in Hefei, China. Scientific Reports 9(1): 1–8. | spa |
dcterms.references | Zhang, H., Yuan, X., Xiong, T., Wanga, H., Jiang, L., 2020. Bioremediation of cocontaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods Hanyan. https://doi.org/10.1016/j.cej.2020.125657 | spa |
dcterms.references | Zhao, L., Liu, W., Lian, J., Shen, M., Huo, X., 2020. Effects of electric fields on Cd accumulation and photosynthesis in Zea mays seedlings. https://doi.org/10.1016/j.jenvman.2020.111328 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: