Publicación:
Resistencia a insecticidas en Aedes aegypti del departamento de Córdoba: estatus, mecanismos moleculares y bioquímicos e implicaciones en salud pública

dc.contributor.advisorHoyos López, Richard Onalbis
dc.contributor.advisorMaestre Serrano, Ronald Yesid
dc.contributor.advisorPareja Loaiza, Paula Ximena
dc.contributor.authorAtencia Pineda, María Claudia
dc.contributor.juryContreras Gutiérrez, María Angélica
dc.contributor.juryLaurito, Magdalena
dc.contributor.juryDávila Barboza, Jesús Antonio
dc.date.accessioned2025-08-25T15:40:42Z
dc.date.available2025-08-25T15:40:42Z
dc.date.issued2025-08-25
dc.description.abstractIntroducción: El control vectorial es hasta el momento la estrategia más eficaz para disminuir las densidades de insectos y reducir los casos de las enfermedades trasmitidas por vector (ETV). Los insecticidas son la piedra angular de los programas de control vectorial y su uso esta especialmente indicado durante brotes y epidemias. Sin embargo, el uso incorrecto de los insecticidas ha ocasionado la selección de poblaciones resistentes a los insecticidas de uso en salud pública. Por tal motivo antes de iniciar una intervención con insecticidas se debe conocer el estado de susceptibilidad de las poblaciones del vector a intervenir para que el control sea eficaz. El departamento de Córdoba es una de las entidades territoriales en Colombia donde más se presentan casos de dengue. Por esta razón, se utiliza durante las epidemias los insecticidas para interrumpir la transmisión y disminuir las densidades del vector Aedes aegypti. Desafortunadamente en el departamento de Córdoba no se tiene línea base de susceptibilidad a los insecticidas para las poblaciones del vector en aproximadamente el 90% de sus municipios. Esta poca información relacionada con el estado de susceptibilidad a insecticidas piretroides fue la iniciativa para el desarrollo de este trabajo. Objetivo: Evaluar el estado de la susceptibilidad a insecticidas organofosforados y piretroides y los mecanismos enzimáticos y moleculares asociados en poblaciones de Ae. aegypti del departamento de Córdoba. Métodos: Se evalúo la susceptibilidad al larvicida temefos (DD: 0,0012 µg/µl) con la metodología de la OMS y a los organofosforados malatión (50 μg/botella), fenitrotión (50 μg/botella), pirimifos-metil (75 μg/botella) con la metodología de las botellas impregnadas de los CDC y a los insecticidas piretroides permetrina (DD: 0,4% y DD: 15 µg/botella), lambdacialotrina (DD: 0,05% y DD: 10 µg/botella) y deltametrina (DD: 0,03% y DD: 10 µg/botella) con la metodología de los tubos con papeles impregnados de la OMS y la técnica del CDC. Las poblaciones que mostraron resistencia a las dosis diagnosticas establecidas para los organofosforados y piretroides con la metodología CDC se evalúo la intensidad de la resistencia 2 veces la dosis diagnostica, 5 veces y 10 veces. Se realizaron ensayos bioquímicos para detectar alteraciones en la actividad de las enzimas α, β-esterasas, GST, OFM y iAChE como posibles mecanismos de resistencia metabólica y para la identificación de las mutaciones Kdr F1534C, V101I y V410L se realizó una PCR alelo específica para la genotipificación de los mosquitos identificados como fenotípicamente resistentes y susceptibles a los piretroides evaluados por las técnicas OMS y CDC. Se determino la frecuencia alélica y genotípica para cada mutación y la asociación de los haplotipos trilocus con la resistencia a los insecticidas piretroides mediante odds ratio. Para la detección de las mutaciones en el gen Ace-1 que pudieran conferir resistencia a los organofosforados se realizó una PCR convencional con la cual se amplifico un fragmento de aproximadamente 500 pb del Exón 5 del gen, en 40 individuos de cada población y se obtuvieron las secuencias de ADN mediante secuenciación por el método de Sanger. Resultados: Se observó susceptibilidad a los insecticidas temefos, malatión en todas las poblaciones, susceptibilidad a pirimifos-metil en 7 poblaciones y resistencia generalizada al organofosforado fenitrotión. Se encontró resistencia a los insecticidas piretroides permetrina, lambdacialotrina y deltametrina por la metodología OMS y resistencia a permetrina en nueve poblaciones y a lambdacialotrina en Montería con la metodología del CDC. Se encontraron alterados los niveles de actividad de las enzimas α, β-esterasas, GST y iAChE en algunas poblaciones, sin embargo, no se encontró asociación entre la actividad enzimática y el fenotipo de resistencia. Se identificaron las mutaciones Kdr F1534C, V1016I y V410L con frecuencias alélicas que oscilaron entre 0.94 – 1.0, 0.01 – 0.6, 0.01 – 0.59 respectivamente. El haplotipo kdr triple mutante CIL se asoció con la resistencia a permetrina, lambdacialotrina y deltametrina, mientras que el haplotipo CVL se asoció con la resistencia a deltametrina. No se encontraron mutaciones en el gen Ace-1 relacionadas con la resistencia a organofosforados. Conclusiones: Los resultados obtenidos contribuyen conocer el estado actual de la susceptibilidad a insecticidas en las zonas evaluadas y proveen información para la vigilancia de la resistencia en estos municipios, lo que resulta útil para el fortalecimiento de las políticas públicas en el control vectorial.spa
dc.description.abstractBackground: Vector control is currently the most effective strategy for reducing insect densities and reducing the incidence of vector-borne diseases (VBDs). Insecticides are the cornerstone of vector control programs and are especially recommended during outbreaks and epidemics. However, the incorrect use of insecticides has led to the selection of populations resistant to public health insecticides. Therefore, before initiating an intervention with insecticides, the susceptibility status of the target vector populations must be known to ensure effective control. The department of Córdoba is one of the Colombian territories with the highest incidence of dengue fever. For this reason, insecticides are used during epidemics to interrupt transmission and reduce the density of the Aedes aegypti vector. Unfortunately, in the department of Córdoba, there is no baseline insecticide susceptibility for vector populations in approximately 90% of its municipalities. This limited information regarding susceptibility to pyrethroid insecticides was the impetus for this study. Objective: To evaluate the susceptibility status to organophosphate and pyrethroid insecticides and the associated enzymatic and molecular mechanisms in Ae. aegypti populations in the department of Córdoba. Methods: Susceptibility to the larvicide temephos (DD: 0.0012 µg/µl) was assessed using the WHO methodology and to the organophosphates malathion (50 µg/bottle), fenitrothion (50 µg/bottle), pirimiphos-methyl (75 µg/bottle) using the CDC soaked bottle methodology and to the pyrethroid insecticides permethrin (DD: 0.4% and DD: 15 µg/bottle), lambda-cyhalothrin (DD: 0.05% and DD: 10 µg/bottle) and deltamethrin (DD: 0.03% and DD: 10 µg/bottle) using the WHO soaked paper tube methodology and the CDC technique. The populations that showed resistance to the diagnostic doses established for organophosphates and pyrethroids using the CDC methodology were evaluated for the intensity of resistance at 2 times, 5 times, and 10 times the diagnostic dose. Biochemical assays were performed to detect alterations in the activity of the enzymes α, β-esterases, GST, OFM and iAChE as possible mechanisms of metabolic resistance and to identify the Kdr F1534C, V101I and V410L mutations, an allele-specific PCR was performed for genotyping the mosquitoes identified as phenotypically resistant and susceptible to pyrethroids evaluated by the WHO and CDC techniques. The allele and genotype frequencies for each mutation were determined, as well as the association of trilocus haplotypes with resistance to pyrethroid insecticides using odds ratios. To detect mutations in the Ace-1 gene that could confer resistance to organophosphates, a conventional PCR was performed, amplifying a fragment of approximately 500 bp from exon 5 of the gene in 40 individuals from each population, and DNA sequences were obtained by Sanger sequencing. Results: Susceptibility to the insecticides temephos and malathion was observed in all populations, susceptibility to pirimiphos-methyl in seven populations, and widespread resistance to the organophosphate fenitrothion. Resistance to the pyrethroid insecticides permethrin, lambda-cyhalothrin, and deltamethrin was found using the WHO methodology, while resistance to permethrin was found in nine populations and to lambda-cyhalothrin in Montería using the CDC methodology. Altered activity levels of α-, β-esterase, GST, and iAChE enzymes were found in some populations; however, no association was found between enzyme activity and the resistance phenotype. Kdr mutations F1534C, V1016I, and V410L were identified with allele frequencies ranging from 0.94–1.0, 0.01–0.6, and 0.01–0.59, respectively. The triple mutant kdr haplotype CIL was associated with resistance to permethrin, lambda-cyhalothrin, and deltamethrin, while the CVL haplotype was associated with resistance to deltamethrin. No mutations in the Ace-1 gene were found to be associated with organophosphate resistance. Conclusions: The results obtained contribute to understanding the current status of insecticide susceptibility in the evaluated areas and provide information for resistance surveillance in these municipalities, which is useful for strengthening public policies for vector control.eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor(a) en Microbiología y Salud Tropical
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsRESUMENspa
dc.description.tableofcontentsABSTRACTspa
dc.description.tableofcontentsINTRODUCCIÓNspa
dc.description.tableofcontentsPLANTEAMIENTO DEL PROBLEMAspa
dc.description.tableofcontentsJUSTIFICACIÓNspa
dc.description.tableofcontentsMARCO CONCEPTUALspa
dc.description.tableofcontentsANTECEDENTESspa
dc.description.tableofcontentsHIPÓTESISspa
dc.description.tableofcontentsOBJETIVOSspa
dc.description.tableofcontentsCAPITULO I: DETERMINAR EL ESTADO DE LA SUSCEPTIBILIDAD Y LA INTENSIDAD DE LA RESISTENCIA A INSECTICIDAS ORGANOFOSFORADOS y PIRETROIDES EN DIEZ POBLACIONES DE Aedes aegypti DEL DEPARTAMENTO DE CÓRDOBA.spa
dc.description.tableofcontentsMETODOLOGÍAspa
dc.description.tableofcontentsRESULTADOSspa
dc.description.tableofcontentsDISCUSIÓNspa
dc.description.tableofcontentsCAPITULO II: IDENTIFICAR MECANISMOS ENZIMÁTICOS DE RESISTENCIA ASOCIADOS A INSECTICIDAS DE TIPO ORGANOFOSFORADO Y PIRETROIDE EN LAS POBLACIONES DE Aedes aegypti OBJETO DE ESTUDIO.spa
dc.description.tableofcontentsMETODOLOGIAspa
dc.description.tableofcontentsRESULTADOSspa
dc.description.tableofcontentsDISCUSIÓNspa
dc.description.tableofcontentsCAPITULO III: DETECTAR LAS MUTACIONES kdr F1534C, V1016I, V410L Y MUTACIONES EN EL GEN Ace-1, SUS FRECUENCIAS ALÉLICAS Y GENOTÍPICAS Y EVALUAR SU ASOCIACIÓN CON LA RESISTENCIA OBSERVADA.spa
dc.description.tableofcontentsMETODOLOGIAspa
dc.description.tableofcontentsRESULTADOSspa
dc.description.tableofcontentsDISCUSIÓNspa
dc.description.tableofcontentsDISCUSIÓN GENERALspa
dc.description.tableofcontentsCONCLUSIONESspa
dc.description.tableofcontentsRECOMENDACIONESspa
dc.description.tableofcontentsREFERENCIASspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9536
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecnia
dc.publisher.placeBerástegui, Córdoba, Colombia
dc.publisher.programDoctorado en Microbiología y Salud Tropical
dc.relation.referencesInsecticide Resistance Action Committee (IRAC). Prevention and Management of Insecticide Resistance in Vectors and pests of Public Health Importance. Seattle. Resistance Management for Sustainable Agriculture and Improved Public Health. 2011. Disponible en: https://croplife.org/wp-content/uploads/pdf_files/IRAC-Prevention-management-of-insecticide-resistance-in-vectors-pests-of-public-health-importance.pdf
dc.relation.referencesWorld Health Organization - WHO. Manual for monitoring insecticide resistance in mosquito vectors and selecting appropriate interventions. World Health Organization. ‎2022a‎. Disponible en: https://www.who.int/publications/i/item/9789240051089.
dc.relation.referencesDusfour I, Vontas J, David JP, Weetman D, Fonseca DM, Corbel V, et al. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Negl Trop Dis. 2019;13(10):e0007615. doi: 10.1371/journal.pntd.0007615. PMID: 31600206; PMCID: PMC6786541.
dc.relation.referencesAlthoff RA, Huijben S. Comparison of the variability in mortality data generated by CDC bottle bioassay, WHO tube test, and topical application bioassay using Aedes aegypti mosquitoes. Parasit Vectors. 2022;15(1):476. doi: 10.1186/s13071-022-05583-2. PMID: 36539831; PMCID: PMC9769033.
dc.relation.referencesRatnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol. 2023;13:1128577. doi: 10.3389/fcimb.2023.1128577. PMID: 37360524; PMCID: PMC10289420.
dc.relation.referencesSiddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, et al. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol. 2023;13:1112278. doi: 10.3389/fphys.2022.1112278. PMID: 36699674; PMCID: PMC9868318.
dc.relation.referencesDu Y, Nomura Y, Satar G, Hu Z, Nauen R, He SY, Zhorov BS, Dong K. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proc Natl Acad Sci U S A. 2013;110(29):11785-90. doi: 10.1073/pnas.1305118110. Epub 2013 Jul 2. PMID: 23821746; PMCID: PMC3718148.
dc.relation.referencesBarrera-Illanes AN, Micieli MV, Ibáñez-Shimabukuro M, Santini MS, Martins AJ, Ons S. First report on knockdown resistance mutations in wild populations of Aedes aegypti from Argentina determined by a novel multiplex high-resolution melting polymerase chain reaction method. Parasit Vectors. 2023;16(1):222. doi: 10.1186/s13071-023-05840-y.
dc.relation.referencesGonzalez PV, Loureiro AC, Gómez-Bravo A, Castillo P, Espinosa M, Gil JF, Martins AJ, Harburguer LV. First detection of V410L kdr mutation in Aedes aegypti populations of Argentina supported by toxicological evidence. Parasit Vectors. 2024;17(1):331. doi: 10.1186/s13071-024-06405-3. PMID: 39107844; PMCID: PMC11302313.
dc.relation.referencesUemura N, Itokawa K, Komagata O, Kasai S. Recent advances in the study of knockdown resistance mutations in Aedes mosquitoes with a focus on several remarkable mutations. Curr Opin Insect Sci. 2024;63:101178. doi: 10.1016/j.cois.2024.101178. Epub 2024 Feb 10. PMID: 38346494.
dc.relation.referencesMaestre-Serrano R, Gómez-Camargo D, Ponce-Garcia G, Flores AE. Susceptibility to insecticides and resistance mechanisms in Aedes aegypti from the Colombian Caribbean Region. Pestic Biochem Physiol. 2014;116:63-73. doi: 10.1016/j.pestbp.2014.09.014. Epub 2014 Oct 16. PMID: 25454522.
dc.relation.referencesGranada Y, Mejía-Jaramillo AM, Strode C, Triana-Chavez O. A Point Mutation V419L in the Sodium Channel Gene from Natural Populations of Aedes aegypti Is Involved in Resistance to λ-Cyhalothrin in Colombia. Insects. 2018;9(1):23. doi: 10.3390/insects9010023. PMID: 29443870; PMCID: PMC5872288.
dc.relation.referencesMaestre-Serrano R, Pareja-Loaiza P, Gomez Camargo D, Ponce-García G, Flores AE. Co-occurrence of V1016I and F1534C mutations in the voltage-gated sodium channel and resistance to pyrethroids in Aedes aegypti (L.) from the Colombian Caribbean region. Pest Manag Sci. 2019;75(6):1681-1688. doi: 10.1002/ps.5287. Epub 2019 Jan 16. PMID: 30520256.
dc.relation.referencesPareja-Loaiza PX, Santacoloma Varon L, Rey Vega G, Gómez-Camargo D, Maestre-Serrano R, Lenhart A. Mechanisms associated with pyrethroid resistance in populations of Aedes aegypti (Diptera: Culicidae) from the Caribbean coast of Colombia. PLoS One. 2020;15(10):e0228695. doi: 10.1371/journal.pone.0228695. PMID: 33022007; PMCID: PMC7537870.
dc.relation.referencesMuthusamy R, Shivakumar MS. Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos from three districts of Tamil Nadu, India. J Vector Borne Dis. 2015;52(2):159-65. PMID: 26119549.
dc.relation.referencesNamias A, Jobe NB, Paaijmans KP, Huijben S. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. Elife. 2021;10:e65655. doi: 10.7554/eLife.65655. PMID: 34355693; PMCID: PMC8346280.
dc.relation.referencesHemingway J, Hawkes NJ, Mc Carroll L, Ranson H. The molecular basis of insecticide resistance in mosquitos. Insect Biochem. Mol. Biol. 2004;34:653-665.
dc.relation.referencesFlores A, Albeldaño-Vázquez W, Fernandez I, Badii M, Loaiza H, Ponce G, et al. Elevated α-esterase levels associated with permethrin tolerance in Aedes aegypti (L.) from Baja California, México. Pestic Biochem Physiol. 2005;82(1):66-78. https://doi.org/10.1016/j.pestbp.2004.12.007.
dc.relation.referencesMontella IR, Martins AJ, Viana-Medeiros PF, Lima JB, Braga IA, Valle D. Insecticide resistance mechanisms of Brazilian Aedes aegypti populations from 2001 to 2004. Am J Trop Med Hyg. 2007;77(3):467-77. PMID: 17827362.
dc.relation.referencesPolson KA, Brogdon WG, Rawlins SC, Chadee DD. Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes. Acta Trop. 2011;117(1):31-8. doi: 10.1016/j.actatropica.2010.09.005. Epub 2010 Sep 19. PMID: 20858454.
dc.relation.referencesÁlvarez LC, Ponce G, Oviedo M, Lopez B, Flores AE. Resistance to malathion and deltamethrin in Aedes aegypti (Diptera: Culicidae) from western Venezuela. J Med Entomol. 2013;50(5):1031-9. doi: 10.1603/me12254. PMID: 24180108.
dc.relation.referencesLumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara LA, et al. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol. 2011;41(3):203-9. doi: 10.1016/j.ibmb.2010.12.005. Epub 2010 Dec 30. PMID: 21195177.
dc.relation.referencesGranada Y, Mejía-Jaramillo AM, Zuluaga S, Triana-Chávez O. Molecular surveillance of resistance to pyrethroids insecticides in Colombian Aedes aegypti populations. PLoS Negl Trop Dis. 2021;15(12):e0010001. doi: 10.1371/journal.pntd.0010001. PMID: 34905537; PMCID: PMC8735628.
dc.relation.referencesHoué V, Bonizzoni M, Failloux AB. Endogenous non-retroviral elements in genomes of Aedes mosquitoes and vector competence. Emerg Microbes Infect. 2019;8(1):542-555. doi: 10.1080/22221751.2019.1599302. PMID: 30938223; PMCID: PMC6455143.
dc.relation.referencesPereira TN, Carvalho FD, De Mendonça SF, Rocha MN, Moreira LA. Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLoS Negl Trop Dis. 2020 A;14(4):e0007518. doi: 10.1371/journal.pntd.0007518. PMID: 32287269; PMCID: PMC7182273.
dc.relation.referencesReyes J, Apolo A, Merchán M, Valero N. Factores ambientales y climáticos de la provincia de Manabí y su asociación a la presencia de las Arbovirosis Dengue, Chikungunya y Zika desde Enero 2015 a Diciembre 2019. Polo del conoc. 2020;5(6): 453-488. Disponible en: https://dialnet.unirioja.es/descarga/articulo/7518079.pdf.
dc.relation.referencesAlvarado-Prado R, Nieto-López E. Factores socioeconómicos y ambientales asociados a la incidencia de dengue: estudio ecológico en Costa Rica, 2016. Rev. costarric. salud pública. 2019;28(2):227-38. Available from: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-14292019000200227&lng=en.
dc.relation.referencesMaceo-Madrigal M, Rosabal-Ferrer L. Factores de riesgo asociados con la infestación de Aedes Aegypti. Policlínico René Vallejo Ortíz. Bayamo 2014, Multimed. 2016;20(2):298-307.
dc.relation.referencesGómez-Dantés H, Willoquet JR. Dengue in the Americas: challenges for prevention and control. Cad Saude Publica. 2009;25Suppl1:S19-31. doi: 10.1590/s0102-311x2009001300003. PMID: 19287863.
dc.relation.referencesWorld Health Organization - WHO. Dengue - Global situation. 2024. Recuperado a partir de: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON518.
dc.relation.referencesPan American Health Organization Organization & World Health Organization - PAHO/WHO. Dengue and Severe Dengue, Cases and deaths for countries and territories of the Americas. 2024. Disponible en: https://www3.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/257-dengue-casos-muertes-pais-ano-en.html.
dc.relation.referencesPan American Health Organization & World Health Organization - PAHO/WHO. Zika-Weekly report. 2024. Disponible en: https://www3.paho.org/data/index.php/en/mnu-topics/zika-weekly-en/.
dc.relation.referencesPan American Health Organization & World Health Organization - PAHO/WHO. Chikungunya- Weekly report. 2024. Disponible en: https://www3.paho.org/data/index.php/en/mnu-topics/chikv-en/550-chikv-weekly-en.html.
dc.relation.referencesOrganización Panamericana de la Salud - OPS. Actualización Epidemiológica - Aumento de casos de dengue en la Región de las Américas. 18 de junio del 2024. 2024. Disponible en: https://www.paho.org/es/documentos/actualizacion-epidemiologica-aumento-casos-dengue-region-americas-18-junio-2024.
dc.relation.referencesInstituto Nacional de Salud (INS). Boletín epidemiológico semana 52 de 2020. 2020. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_53.pdf
dc.relation.referencesInstituto Nacional de Salud (INS). Boletín epidemiológico semana 52 de 2021. 2021. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2021_Boletin_epidemiologico_semana_52.pdf.
dc.relation.referencesInstituto Nacional de Salud (INS). Boletín epidemiológico semana 52 de 2022. 2022. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2022_Bolet%C3%ADn_epidemiologico_semana_52.pdf.
dc.relation.referencesInstituto Nacional de Salud (INS). Boletín epidemiológico semana 52 de 2023. 2023. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2023_Bolet%C3%ADn_epidemiologico_semana_52.pdf
dc.relation.referencesSistema Nacional de Vigilancia en Salud Pública (SIVIGILA). Estadísticas de vigilancia rutinaria. 2020. Disponible en: https://portalsivigila.ins.gov.co/Paginas/Vigilancia-Rutinaria.aspx.
dc.relation.referencesSistema Nacional de Vigilancia en Salud Pública (SIVIGILA). Estadísticas de vigilancia rutinaria. 2021. Disponible en: https://portalsivigila.ins.gov.co/Paginas/Vigilancia-Rutinaria.aspx
dc.relation.referencesSistema Nacional de Vigilancia en Salud Pública (SIVIGILA). Estadísticas de vigilancia rutinaria. 2022. Disponible en: https://portalsivigila.ins.gov.co/Paginas/Vigilancia-Rutinaria.aspx.
dc.relation.referencesSistema Nacional de Vigilancia en Salud Pública (SIVIGILA). 2023. Disponible en: https://portalsivigila.ins.gov.co/Paginas/Vigilancia-Rutinaria.aspx.
dc.relation.referencesInstituto Nacional de Salud (INS). Boletín epidemiológico semana 52 de 2024. 2024. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2024_Boletin_epidemiologico_semana_52.pdf.
dc.relation.referencesMejía-Jurado E, Echeverry-Cárdenas E, Aguirre-Obando OA. Potential current and future distribution for Aedes aegypti and Aedes albopictus in Colombia: important disease vectors. Biol Invasions. 2024;26:2119–2137. https://doi.org/10.1007/s10530-024-03298-2.
dc.relation.referencesRojas-Alvarez D. Contribución de la vacuna al programa de prevención y control de dengue. Biomédica. 2011;31(Supl.3),pp315. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/546/675.
dc.relation.referencesRuiz-López F, González-Mazo A, Vélez-Mira A, Gómez G, Zuleta L, Uribe S, et al . Presencia de Aedes (Stegomyia) aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no registradas para Colombia. Biomédica. 2016;36(2):303-308. https://doi.org/10.7705/biomedica.v36i2.3301.
dc.relation.referencesGonzález-Duque J. Vigilancia de susceptibilidad a insecticidas de Anopheles (Nyssorhynchus) darlingi, An. (N.) nuneztovari y An. (N.) albimanus en localidades centinelas de los departamentos de Antioquia, Cauca, Choco, Córdoba y Valle del Cuaca. Año 2009 - 2014. 2015. [Consulta: 26 octubre de 2024]. Disponible en: https://studylib.es/doc/8461416/10.resistencia-a-insecticidas.
dc.relation.referencesNajera A, Zaim M. Malaria vector control. Decision making criteria and procedures for judicious use of insecticides, USA, World Health Organization. 2003. Disponible en: https://iris.who.int/handle/10665/67365.
dc.relation.referencesMarquetti, M. Aspectos bioecológicos de importancia para el control de Aedes aegypti y otros culicidos en el ecosistema urbano. [Tesis doctoral]. Ciudad de La Habana, Cuba: Instituto de medicina tropical “PEDRO KOURÍ”. 2008. Disponible en: https://tesis.sld.cu/index.php?P=FullRecord&ID=84.
dc.relation.referencesArdila-Roldán S, Santacoloma L, Brochero H. Estado de la sensibilidad a los insecticidas de uso en salud pública en poblaciones naturales de Aedes aegypti (Diptera: Culicidae) del departamento de Casanare, Colombia. Biomedica. 2013;33(3):446-58. doi: 10.7705/biomedica.v33i3.1534. PMID: 24652181.
dc.relation.referencesAguirre-Obando OA, Bona ACD, Duque LJE, Navarro-Silva MA. Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Colombia. Zoologia, 2015;32(1),14-22. https://doi.org/10.1590/S1984-46702015000100003.
dc.relation.referencesAtencia MC, Pérez MJ, Jaramillo MC, Caldera SM, Cochero S, Bejarano EE. Primer reporte de la mutación F1534C asociada con resistencia cruzada a DDT y piretroides en Aedes aegypti en Colombia. Biomédica. 2016;36(3):432-37. https://doi.org/10.7705/biomedica.v36i3.2834.
dc.relation.referencesInstituto Nacional de Salud (INS). Red de vigilancia de la resistencia a insecticidas de uso en salud pública en Colombia, año 2018. 2018. Disponible en: https://www.ins.gov.co/BibliotecaDigital/red-de-vigilancia-de-la-resistencia-a-insecticidas-de-uso-en-salud-publica-en-colombia-a%C3%B1o-2018.pdf.
dc.relation.referencesZaim M, Guillet P. Alternative insecticides: an urgent need. Trends Parasitol. 2002;18(4):161-3. doi: 10.1016/s1471-4922(01)02220-6. PMID: 11998703.
dc.relation.referencesMaestre R. Susceptibility Status of Aedes aegypti to Insecticides in Colombia. Insecticides - Pest Engineering. InTech; 2012. Available from: http://dx.doi.org/10.5772/31243
dc.relation.referencesSantacoloma L, Chaves B, Brochero HL. Estado de la susceptibilidad de poblaciones naturales. Biomedica. 2012;32(3):333-43. doi: 10.1590/S0120-41572012000300004. PMID: 23715182.
dc.relation.referencesGiraldo-Calderón GI, Pérez M, Morales CA, Ocampo CB. Evaluación del triflumurón y la mezcla de Bacillus thuringiensis más Bacillus sphaericus para el control de las formas inmaduras de Aedes aegypti y Culex quinquefasciatus en sumideros en Cali, Colombia. Biomedica. 2008;28(2):224-33. PMID: 18719724.
dc.relation.referencesMinisterio de la Protección Social. Gestión para la vigilancia entomológica y control de la transmisión de dengue. 2011. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/gestion-vigilancia-entomologica-dengue.pdf.
dc.relation.referencesPadilla J, Rojas D, Sáenz-Gómez R. Dengue en Colombia: Epidemiología de la reemergencia a la hiperendemia. Bogotá D.C., Universidad del Rosario, primera Edición. 2012. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/INV/Dengue%20en%20Colombia.pdf.
dc.relation.referencesConde M, Orjuela LI, Castellanos CA, Herrera-Varela M, Licastro S, Quiñones ML. Evaluación de la sensibilidad a insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del departamento de Caldas, Colombia, en 2007 y 2011. Biomedica. 2015;35(1):43-52. doi: 10.1590/S0120-41572015000100007. PMID: 26148033.
dc.relation.referencesMaestre-Serrano R, Flórez-Rivadeneira Z, Castro-Camacho JM, Soto-Arenilla E, Gómez-Camargo D, Pareja-Loaiza P, et al. Spatial Distribution of Pyrethroid Resistance and kdr Mutations in Aedes aegypti from La Guajira, Colombia. Insects. 2022;14(1):31. doi: 10.3390/insects14010031. PMID: 36661959; PMCID: PMC9866231.
dc.relation.referencesBisset, J. Uso correcto de insecticidas: control de la resistencia. Rev Cubana Med Trop. 2002;54(3):202-19.
dc.relation.referencesLópez-Monroy B, Gutierrez-Rodriguez SM, Villanueva-Segura OK, Ponce-Garcia G, Morales-Forcada F, Alvarez LC, et al. Frequency and intensity of pyrethroid resistance through the CDC bottle bioassay and their association with the frequency of kdr mutations in Aedes aegypti (Diptera: Culicidae) from Mexico. Pest Manag Sci. 2018. doi: 10.1002/ps.4916. Epub ahead of print. PMID: 29575404.
dc.relation.referencesOrganización Panamericana de la Salud y Organización Mundial de la Salud – OPS/OMS. Plan de acción sobre entomología y control de vectores 2018-2023. 2018. Recuperado a partir de: https://www.paho.org/es/documentos/cd5611-plan-accion-sobre-entomologia-control-vectores-2018-2023.
dc.relation.referencesDepartamento Nacional de Planeación de Colombia - DNP. Plan Nacional de Desarrollo 2022-2026. 2023. [Internet]. [citado 26 de octubre de 2024]. Disponible en: https://www.dnp.gov.co:443/plan-nacional-desarrollo/pnd-2022-2026
dc.relation.referencesGobernación de Córdoba. Plan de desarrollo departamental 2024-2027. 2024. [Citado 26 octubre de 2024]. Disponible en: https://www.cordoba.gov.co/loader.php?lServicio=Tools2&lTipo=descargas&lFuncion=visorpdf&file=https%3A%2F%2Fwww.cordoba.gov.co%2Floader.php%3FlServicio%3DTools2%26lTipo%3Ddescargas%26lFuncion%3DexposeDocument%26idFile%3D14999%26tmp%3D1c96a8c56f605b0b33f6a8e6b441e5f5%26urlDeleteFunction%3Dhttps%253A%252F%252Fwww.cordoba.gov.co%252Floader.php%253FlServicio%253DTools2%2526lTipo%253Ddescargas%2526lFuncion%253DdeleteTemporalFile%2526tmp%253D1c96a8c56f605b0b33f6a8e6b441e5f5&pdf=1&tmp=1c96a8c56f605b0b33f6a8e6b441e5f5&fileItem=14999.
dc.relation.referencesLima RS Jr, Scarpassa VM. Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon, based on mitochondrial DNA ND4 gene sequences. Genet Mol Biol. 2009:32(2);414-22. doi: 10.1590/S1415-47572009005000036. Epub 2009 Mar 27. PMID: 21637700; PMCID: PMC3036918.
dc.relation.referencesNelson, M. Aedes aegypti: Biology and ecology. Organización Panamericana de la Salud. Washington D.C. 1986. Disponible en: https://iris.paho.org/bitstream/handle/10665.2/28514/PNSP8664_eng.pdf.
dc.relation.referencesUlloa A, Cruz-Magariño J, Danis-Lozano R. Cement tank: An artificial water container for Aedes aegypti. J. Am. Mosq. Control Assoc. 2010;26(3):307.
dc.relation.referencesPilger D, Lenhart A, Manrique-Saide P, Siqueira JB, da Rocha WT, Kroeger A. Is routine dengue vector surveillance in central Brazil able to accurately monitor the Aedes aegypti population? Results from a pupal productivity survey. Trop Med Int Health. 2011;16(9):1143-50. doi: 10.1111/j.1365-3156.2011.02818.x. Epub 2011 Jun 27. PMID: 21702871.
dc.relation.referencesOrganisation for Economic Co-operation and Development - OECD. Consensus Document of the Biology of Mosquito Aedes aegypti, OECD Publishing-Paris, Safety Assessment of Transgenic Organisms in the Environment, Volume 8. 2018. Disponible en: https://doi.org/10.1787/9789264302235-en.
dc.relation.referencesBarredo E, DeGennaro M. Not Just from Blood: Mosquito Nutrient Acquisition from Nectar Sources. Trends Parasitol. 2020;36(5):473-84. doi: 10.1016/j.pt.2020.02.003. Epub 2020 Mar 17. PMID: 32298634.
dc.relation.referencesMoore TC, Brown HE. Estimating Aedes aegypti (Diptera: Culicidae) Flight Distance: Meta-Data Analysis. J Med Entomol. 2022;59(4):1164-1170. doi: 10.1093/jme/tjac070. PMID: 35640992.
dc.relation.referencesClemons A, Mori A, Haugen M, Severson DW, Duman-Scheel M. Culturing and egg collection of Aedes aegypti. Cold Spring Harb Protoc. 2010;2010(10):pdb.prot5507. doi: 10.1101/pdb.prot5507. PMID: 20889704; PMCID: PMC2966317.
dc.relation.referencesCenters for Disease Control and Prevention - CDC. Life Cycle of Aedes Mosquitoes. 2024. [citado 25 de junio de 2024]. Disponible en: https://www.cdc.gov/mosquitoes/about/life-cycle-of-aedes-mosquitoes.html.
dc.relation.referencesDiniz DFA, de Albuquerque CMR, Oliva LO, de Melo-Santos MAV, Ayres CFJ. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit Vectors. 2017;10(1):310. doi: 10.1186/s13071-017-2235-0. PMID: 28651558; PMCID: PMC5485599.
dc.relation.referencesClements AN. The Biology of Mosquitoes, Volume I: “Development, Nutrition and Reproduction”. Oxford. 2000. Second Edition, CABI Publishing.
dc.relation.referencesGoindin D, Delannay C, Ramdini C, Gustave J, Fouque F. Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS One. 2015;10(8):e0135489. doi: 10.1371/journal.pone.0135489. PMID: 26258684; PMCID: PMC4530937.
dc.relation.referencesRodríguez R. Estrategias para el control del dengue y del Aedes aegypti en las Américas. Rev Cubana Med Trop. 2002;54(3):189-201.
dc.relation.referencesOrganización Panamericana de la Salud - OPS. Evaluación de las estrategias innovadoras para el control de Aedes aegypti: desafíos para su introducción y evaluación del impacto. Washington, D.C., OPS. 2019. Disponible en: https://iris.paho.org/handle/10665.2/51376.
dc.relation.referencesZara AL, Santos SM, Fernandes-Oliveira ES, Carvalho RG, Coelho GE. Estratégias de controle do Aedes aegypti: uma revisão. Epidemiol Serv Saude. 2016;25(2):391-404. doi: 10.5123/S1679-49742016000200017. PMID: 27869956.
dc.relation.referencesCastex M, Montada D, González I, Estévez S, San Blas O, González R. Efectividad del tratamiento perifocal con Ficam (Bendiocarb) 80 WP en el control de Aedes aegypti en Santa Clara. Cuba. Rev Cubana Med Trop. 2008;60(1):92-94.
dc.relation.referencesAbad-Franch F, Zamora-Perea E, Ferraz G, Padilla-Torres SD, Luz SL. Mosquito-disseminated pyriproxyfen yields high breeding-site coverage and boosts juvenile mosquito mortality at the neighborhood scale. PLoS Negl Trop Dis. 2015;9(4):e0003702. doi: 10.1371/journal.pntd.0003702. PMID: 25849040; PMCID: PMC4388722.
dc.relation.referencesWilder-Smith A, Byass P, Olanratmanee P, Maskhao P, Sringernyuang L, Logan JG, et al. The impact of insecticide-treated school uniforms on dengue infections in school-aged children: study protocol for a randomised controlled trial in Thailand. Trials. 2012;13:212. doi: 10.1186/1745-6215-13-212. PMID: 23153360; PMCID: PMC3519696.
dc.relation.referencesFood and Agriculture Organization of the United Nations - FAO. International Code of Conduct on the Distribution and Use of Pesticides. 1986. Roma.
dc.relation.referencesSugiura M, Horibe Y, Kawada H, Takagi M. Insect spiracle as the main penetration route of pyrethroids. Pestic Biochem Physiol. 2008;91(3):135–140.
dc.relation.referencesMartín J, Martínez S, López C, Sánchez D, Rodríguez R. Capítulo 20: Intoxicaciones por insecticidas organoclorados y carbamatos, En: Morán I, et al. Toxicología Clínica. 2011. Disponible en: https://www.fetoc.es/asistencia/Toxicologia_clinica_libro.pdf
dc.relation.referencesJayaraj R, Megha P, Sreedev P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol. 2016;9(3-4):90-100. doi: 10.1515/intox-2016-0012. Epub 2017 May 17. PMID: 28652852; PMCID: PMC5464684.
dc.relation.referencesAsem D, Kumari M, Singh R, Bhusha M. Chapter 11- Pesticides: Pollution, risks, and abatement measures, Kumar, M., et al. Emerging Aquatic Contaminants. 2023. P. 307-326. https://doi.org/10.1016/B978-0-323-96002-1.00014-6.
dc.relation.referencesNational Library of Medicine, National Center for Biotechnology Information. PubChem Compound Summary for CID 5392, Temephos. 2004. Disponible en: https://pubchem.ncbi.nlm.nih.gov/compound/Temephos.
dc.relation.referencesNational Pesticide Information Center. Malation-Technical Fact Sheet. 2011. Disponible en : http://npic.orst.edu/factsheets/archive/malatech.html#references.
dc.relation.referencesLebwohl M, Clark L, Levitt J. Therapy for head lice based on life cycle, resistance, and safety considerations. Pediatrics. 2007;119(5):965-74. doi: 10.1542/peds.2006-3087. PMID: 17473098.
dc.relation.referencesPohanish RPF. Sittig’s Handbook of Pesticides and Agricultural Chemicals. Second Edition. William Andrew; 2015. doi:10.1016/b978-1-4557-3148-0.00006-6
dc.relation.referencesUgaki M, Shono T, Fukami JI. Metabolism of fenitrothion by organophosphorus-resistant and-susceptible house flies, Musca domestica L, Pestic Biochem Physiol. 1985;23(1):33-40.
dc.relation.referencesWorld Health Organization – WHO. specifications and evaluations for public health pesticides: Pirimiphos-Methyl. World Health Organization. 2016. Disponible en: https://extranet.who.int/prequal/sites/default/files/vcp-documents/WHOVC-SP_Pirimiphos-methyl_2016.pdf
dc.relation.referencesVale A, Lotti M. Organophosphorus and carbamate insecticide poisoning. Handb Clin Neurol. 2015;131:149-68. doi: 10.1016/B978-0-444-62627-1.00010-X. PMID: 26563788.
dc.relation.referencesHorsak RD, Bedient PB, Correen-Hamilton M, Thomas FB. Pesticides. En Morrison RD, Murphy BL. Environmental Forensics. 1964. Disponible en: https://doi.org/10.1016/B978-012507751-4/50030-6
dc.relation.referencesDevine G, Eza D, Ogusuku E, Furlong MJ. Uso de insecticidas: contexto y consecuencias ecológicas. Rev. perú. med. exp. salud pública. 2008;25(1):74-100.
dc.relation.referencesAbubakar Y, Tijjani H, Egbuna C, Adetunji CO, Kala S, Kryeziu TL, et al. “Pesticides, history, and classification,” in Natural Remedies for Pest, Disease and Weed Control, eds Egbuna C., Sawicka B. (Amsterdam: Academic Press), 2020;29–42. https://doi.org/10.1016/B978-0-12-819304-4.00003-8.
dc.relation.referencesKumar A, Jasrotia S, Dutta J, Kyzas GZ. Pyrethroids toxicity in vertebrates and invertebrates and amelioration by bioactive compounds: A review. Pestic Biochem Physiol. 2023;196:105615. doi: 10.1016/j.pestbp.2023.105615. Epub 2023 Sep 12. PMID: 37945252.
dc.relation.referencesSoderlund DM. Neurotoxicology of pyrethroid insecticides. En: Aschner M, Costa L. Advances in Neurotoxicology. 1st Edition. Academic Press; 2020.
dc.relation.referencesHassaan MA, El Nemr A. Pesticides pollution: classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020;46(3):207–220. 10.1016/j.ejar.2020.08.007.
dc.relation.referencesLi H, Cheng F, Wei Y, Lydy MJ, You J. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. J Hazard Mater. 2017;324(Pt B):258-271. doi: 10.1016/j.jhazmat.2016.10.056. Epub 2016 Oct 25. PMID: 27825741.
dc.relation.referencesWorld Health Organization - WHO. Environmental Health Criteria 94 Permethrin; International Programme on Chemical Safety. Geneva. World Health Organization. 1990. Disponible en https://iris.who.int/bitstream/handle/10665/38949/9241542942-eng.pdf?isAllowed=y&sequence=1#:~:text=Permethrin%20disappears%20rapidly%20from%20the,half%2D%20life%20of%2028%20days.
dc.relation.referencesNational Pesticide Information Center. Permethrin -Technical Fact Sheet. 2011. Disponible en: http://npic.orst.edu/factsheets/archive/Permtech.html#references.
dc.relation.referencesWorld Health Organization - WHO. Environmental Health Criteria 99 - Cyhalothrin; International Programme on Chemical Safety. Geneva. World Health Organization. 1990. Disponible en https://iris.who.int/bitstream/handle/10665/39859/9241542993-eng.pdf?sequence=1.
dc.relation.referencesWorld Health Organization - WHO. Environmental Health Criteria 97 - Deltamethrin; International Programme on Chemical Safety. Geneva. World Health Organization. 1990. Disponible en: https://iris.who.int/bitstream/handle/10665/39782/9241542977-eng.pdf?sequence=1&isAllowed=y
dc.relation.referencesNational Library of Medicine, National Center for Biotechnology Information. PubChem Compound Summary for CID 40585, Deltamethrin. 2024. Disponible en: https://pubchem.ncbi.nlm.nih.gov/compound/Deltamethrin.
dc.relation.referencesNational Pesticide Information Center. Deltamethrin -Technical Fact Sheet. 2011. Disponible en: http://npic.orst.edu/factsheets/archive/Deltatech.html.
dc.relation.referencesPonce G, Cantú P, Flores A, Badii M, Zapata R, López B, Fernández I. Modo de acción de los insecticidas. RESPYN. 2006;7(4). Disponible en: https://respyn.uanl.mx/index.php/respyn/article/view/178.
dc.relation.referencesFukuto TR. Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect. 1990;87:245-54. doi: 10.1289/ehp.9087245. PMID: 2176588; PMCID: PMC1567830.
dc.relation.referencesJokanović M, Kosanović M. Neurotoxic effects in patients poisoned with organophosphorus pesticides. Environ Toxicol Pharmacol. 2010;29(3):195-201. doi: 10.1016/j.etap.2010.01.006. Epub 2010 Feb 2. PMID: 21787602.
dc.relation.referencesVenkatasubban KS, Johnson JL, Thomas JL, Fauq A, Cusack B, Rosenberry TL. Decarbamoylation of acetylcholinesterases is markedly slowed as carbamoyl groups increase in size. Arch Biochem Biophys. 2018;655:67-74. doi: 10.1016/j.abb.2018.08.006. Epub 2018 Aug 9. PMID: 30098983; PMCID: PMC6204216.
dc.relation.referencesMohamed A. Etude du mode d'action neurotoxique d'un répulsif, le deet utilisé seul et en association avec un insecticide sur l'acétylcholinesterase des dum neurones d'un insecte la blatte periplaneta americana. [Tesis doctoral]. France: Université d'Angers. 2011. Disponible en: https://theses.hal.science/tel-00969250
dc.relation.referencesRavula AR, Yenugu S. Pyrethroid based pesticides - chemical and biological aspects. Crit Rev Toxicol. 2021;51(2):117-140. doi: 10.1080/10408444.2021.1879007. Epub 2021 Apr 6. PMID: 33821762.
dc.relation.referencesWorld Health Organization - WHO. Vector resistance to pesticides. Fifteenth report of the expert committee on vector biology and control. Geneva. WHO technical report series. 1992. Disponible en: https://iris.who.int/handle/10665/37432
dc.relation.referencesRey G. Determinación de los grados de resistencia al insecticida temefos en poblaciones de Aedes aegypti Linnaeus 1762, (Diptera: Culicidae) y su implicación en la eficacia del insecticida en los departamentos de Cauca, La Guajira, Cundinamarca y Atlántico. [Tesis de Maestría]. Colombia: Universidad Nacional de Colombia, Colombia. 2011. Disponible en: https://repositorio.unal.edu.co/handle/unal/8674.
dc.relation.referencesOntiveros K. Variación espacial de la resistencia KDR a insecticidas piretroides en Aedes Aegypti (L.) en México. [Tesis de Maestría]. México: Universidad Autónoma de Nuevo León, México. 2021. Disponible en: http://eprints.uanl.mx/22226/
dc.relation.referencesMiller TA. Mechanisms of resistance to pyrethroid insecticides. Parasitol Today. 1988;4(7):S8-12. doi: 10.1016/0169-4758(88)90080-4. PMID: 15463082.
dc.relation.referencesGan SJ, Leong YQ, Bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, Ahmad RB. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasit Vectors. 2021;14(1):315. doi: 10.1186/s13071-021-04785-4. PMID: 34112220; PMCID: PMC8194039.
dc.relation.referencesCarrasco D, Lefèvre T, Moiroux N, Pennetier C, Chandre F, Cohuet A. Behavioural adaptations of mosquito vectors to insecticide control. Curr Opin Insect Sci. 2019;34:48-54. doi: 10.1016/j.cois.2019.03.005. Epub 2019 Mar 28. PMID: 31247417.
dc.relation.referencesSanou A, Nelli L, Guelbéogo WM, Cissé F, Tapsoba M, Ouédraogo P, et al. Insecticide resistance and behavioural adaptation as a response to long-lasting insecticidal net deployment in malaria vectors in the Cascades region of Burkina Faso. Sci Rep. 2021;11(1):17569. doi: 10.1038/s41598-021-96759-w. PMID: 34475470; PMCID: PMC8413378.
dc.relation.referencesBalabanidou V, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C, Juárez MP, et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci U S A. 2016;113(33):9268-73. doi: 10.1073/pnas.1608295113. Epub 2016 Jul 20. PMID: 27439866; PMCID: PMC4995928.
dc.relation.referencesCorbel V, N’Guessan R. Distribution, Mechanisms, Impact and Management of Insecticide Resistance in Malaria Vectors: A Pragmatic Review. Anopheles mosquitoes - New insights into malaria vectors. InTech; 2013. Available from: http://dx.doi.org/10.5772/56117
dc.relation.referencesBlack WC, Snell TK, Saavedra-Rodriguez K, Kading RC, Campbell CL. From Global to Local-New Insights into Features of Pyrethroid Detoxification in Vector Mosquitoes. Insects. 2021;12(4):276. doi: 10.3390/insects12040276. PMID: 33804964; PMCID: PMC8063960.
dc.relation.referencesYang F, Schildhauer S, Billeter SA, Hardstone Yoshimizu M, Payne R, Pakingan MJ, et al. Insecticide Resistance Status of Aedes aegypti (Diptera: Culicidae) in California by Biochemical Assays. J Med Entomol. 2020;57(4):1176-1183. doi: 10.1093/jme/tjaa031. PMID: 32159787; PMCID: PMC7334890.
dc.relation.referencesHemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371-91. doi: 10.1146/annurev.ento.45.1.371. PMID: 10761582.
dc.relation.referencesYe M, Nayak B, Xiong L, Xie C, Dong Y, You M, et al. The Role of Insect Cytochrome P450s in Mediating Insecticide Resistance. Agriculture. 2022;12(1):53. https://doi.org/10.3390/agriculture12010053
dc.relation.referencesRiveron JM, Tchouakui M, Mugenzi L, Menze BD, Chiang MC, Wondji CS. Insecticide Resistance in Malaria Vectors: An Update at a Global Scale [Internet]. Towards Malaria Elimination - A Leap Forward. InTech; 2018. Available from: http://dx.doi.org/10.5772/intechopen.78375.
dc.relation.referencesLu K, Song Y, Zeng R. The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Curr Opin Insect Sci. 2021;43:103-107. doi: 10.1016/j.cois.2020.11.004. Epub 2020 Dec 30. PMID: 33387688.
dc.relation.referencesNauen R, Bass C, Feyereisen R, Vontas J. The Role of Cytochrome P450s in Insect Toxicology and Resistance. Annu Rev Entomol. 2022;67:105-124. doi: 10.1146/annurev-ento-070621-061328. Epub 2021 Sep 30. PMID: 34590892.
dc.relation.referencesLumjuan N, McCarroll L, Prapanthadara LA, Hemingway J, Ranson H. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem Mol Biol. 2005;35(8):861-71. doi: 10.1016/j.ibmb.2005.03.008. PMID: 15944082.
dc.relation.referencesFonseca I, Quiñones M. Resistencia a insecticidas en mosquitos (Díptera: Culicidae): mecanismos, detección y vigilancia en salud pública. Rev Colomb Entomol. 2005;31(2):107-115.
dc.relation.referencesDu Y, Nomura Y, Zhorov BS, Dong K. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti. Insects. 2016;7(4):60. doi: 10.3390/insects7040060. PMID: 27809228; PMCID: PMC5198208.
dc.relation.referencesDong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, et al. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol. 2014;50:1-17. doi: 10.1016/j.ibmb.2014.03.012. Epub 2014 Apr 3. PMID: 24704279; PMCID: PMC4484874.
dc.relation.referencesSaavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez-Salas I, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol. 2007;16(6):785-98. doi: 10.1111/j.1365-2583.2007.00774.x. PMID: 18093007.
dc.relation.referencesKasai S, Itokawa K, Uemura N, Takaoka A, Furutani S, Maekawa Y, et al. Discovery of super-insecticide-resistant dengue mosquitoes in Asia: Threats of concomitant knockdown resistance mutations. Sci Adv. 2022;8(51):eabq7345. doi: 10.1126/sciadv.abq7345. Epub 2022 Dec 21. PMID: 36542722; PMCID: PMC9770935.
dc.relation.referencesMori A, Lobo NF, deBruyn B, Severson DW. Molecular cloning and characterization of the complete acetylcholinesterase gene (Ace1) from the mosquito Aedes aegypti with implications for comparative genome analysis. Insect Biochem Mol Biol. 2007;37(7):667-74. doi: 10.1016/j.ibmb.2007.03.014. Epub 2007 Apr 1. PMID: 17550823; PMCID: PMC2716755.
dc.relation.referencesElanga-Ndille E, Nouage L, Ndo C, Binyang A, Assatse T, Nguiffo-Nguete D, et al. The G119S Acetylcholinesterase (Ace-1) Target Site Mutation Confers Carbamate Resistance in the Major Malaria Vector Anopheles gambiae from Cameroon: A Challenge for the Coming IRS Implementation. Genes (Basel). 2019;10(10):790. doi: 10.3390/genes10100790. PMID: 31614683; PMCID: PMC6826778.
dc.relation.referencesDiallo M, Kolley ES, Dia AK, Oboh MA, Seck F, Manneh J, et al. Evolution of the Ace-1 and Gste2 Mutations and Their Potential Impact on the Use of Carbamate and Organophosphates in IRS for Controlling Anopheles gambiae s.l., the Major Malaria Mosquito in Senegal. Pathogens. 2022;11(9):1021. doi: 10.3390/pathogens11091021. PMID: 36145453; PMCID: PMC9504234.
dc.relation.referencesWeill M, Berthomieu A, Berticat C, Lutfalla G, Nègre V, Pasteur N, Philips A, Leonetti JP, Fort P, Raymond M. Insecticide resistance: a silent base prediction. Curr Biol. 2004;14(14):R552-3. doi: 10.1016/j.cub.2004.07.008. PMID: 15268871.
dc.relation.referencesBkhache M, Tmimi FZ, Charafeddine O, Filali OB, Lemrani M, Labbé P, Sarih M. G119S ace-1 mutation conferring insecticide resistance detected in the Culex pipiens complex in Morocco. Pest Manag Sci. 2019;75(1):286-91. doi: 10.1002/ps.5114. Epub 2018 Aug 21. PMID: 29885052.
dc.relation.referencesNabeshima T, Mori A, Kozaki T, Iwata Y, Hidoh O, Harada S, et al. An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Biochem Biophys Res Commun. 2004;313(3):794-801. doi: 10.1016/j.bbrc.2003.11.141. PMID: 14697262.
dc.relation.referencesAlout H, Berthomieu A, Hadjivassilis A, Weill M. A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus. Insect Biochem Mol Biol. 2007;37(1):41-7. doi: 10.1016/j.ibmb.2006.10.001. Epub 2006 Oct 10. PMID: 17175445.
dc.relation.referencesPareja P. Mutaciones kdr y enzimas de resistencia en poblaciones de Aedes aegypti (Díptera: Culicidae) de la región caribe colombiana. [Tesis doctoral]. Colombia: Universidad de Cartagena; 2019. Disponible en: https://repositorio.unicartagena.edu.co/bitstream/handle/11227/15507/TESIS%20PAULA%20X%20PAREJA%20L%20%281%29.pdf?sequence=1&isAllowed=y
dc.relation.referencesBrogdon, WG, Chan A. Instrucciones para la Evaluación de la Resistencia a Insecticida en Vectores mediante del Ensayo Biológico de la Botella de los CDC. Centers for Disease Control and Prevention, Atlanta. 2010. p. 1-28. Disponible en: https://stacks.cdc.gov/view/cdc/21776/cdc_21776_DS1.pdf.
dc.relation.referencesCollins EL, Phelan JE, Hubner M, Spadar A, Campos M, Ward D, et al. A next generation targeted amplicon sequencing method to screen for insecticide resistance mutations in Aedes aegypti populations reveals a rdl mutation in mosquitoes from Cabo Verde. PLoS Negl Trop Dis. 2022;16(12):e0010935. doi: 10.1371/journal.pntd.0010935. PMID: 36512510; PMCID: PMC9746995.
dc.relation.referencesBusvine JR, Coker WZ. Resistance patterns in DDT-resistant Aedes aegypti. Bull World Health Organ. 1958;18(4):651-6. PMID: 13536807; PMCID: PMC2537609.
dc.relation.referencesMaestre R, Gómez D. Dengue: epidemiología, políticas públicas y resistencia de vectores a insecticidas. Rev. cienc. biomed. 2013;4(2):302–317.
dc.relation.referencesBetancur-Corredor B, Pino N, Peñuela GA, Cardona-Gallo Santiago. Gestión y Ambiente. 2013;16(3):119-35.
dc.relation.referencesSuárez MF, González R, Morales C. Temefos resistance to Aedes aegypti in Cali, Colombia. 45ª Annual meeting of the American Society of Tropical Medicine and Hygiene, Baltimore, Maryland. Supplement to Am J Trop Med Hyg. 1996;55(2):257.
dc.relation.referencesOcampo CB, Salazar-Terreros MJ, Mina NJ, McAllister J, Brogdon W. Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Trop. 2011;118(1):37-44. doi: 10.1016/j.actatropica.2011.01.007. Epub 2011 Feb 12. PMID: 21300017.
dc.relation.referencesGrisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A. Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLoS Negl Trop Dis. 2013;7(9):e2438. doi: 10.1371/journal.pntd.0002438. PMID: 24069492; PMCID: PMC3777894.
dc.relation.referencesMaestre-Serrano R, Rey G, De Las Salas J, Vergara C, Santacoloma L, Goenaga S et al. Estado de la susceptibilidad de Aedes aegypti a insecticidas en Atlántico (Colombia). Rev. Colomb. Entomol. 2010;36(2):242-248.
dc.relation.referencesFonseca-González I, Quiñones ML, Lenhart A, Brogdon WG. Insecticide resistance status of Aedes aegypti (L.) from Colombia. Pest Manag Sci. 2011;67(4):430-7. doi: 10.1002/ps.2081. Epub 2011 Jan 6. PMID: 21394876.
dc.relation.referencesAponte A, Penilla RP, Rodríguez AD, Ocampo CB. Mechanisms of pyrethroid resistance in Aedes (Stegomyia) aegypti from Colombia. Acta Trop. 2019;191:146-54. doi: 10.1016/j.actatropica.2018.12.021. Epub 2018 Dec 12. PMID: 30552882; PMCID: PMC6447284.
dc.relation.referencesSantacoloma L, Chaves B, Brochero HL. Susceptibilidad de Aedes aegypti a DDT, deltametrina y lambdacialotrina en Colombia. Rev Panam Salud Publica. 2010;27(1):66-73. Spanish. doi: 10.1590/s1020-49892010000100010. PMID: 20209234.
dc.relation.referencesCantillo-Barraza O, Medina M, Granada Y, Muñoz C, Valverde C, Cely F, et al. Susceptibility to Insecticides and Natural Infection in Aedes aegypti: An Initiative to Improve the Mosquito Control Actions in Boyacá, Colombia. Ann Glob Health. 2020;86(1):94. doi: 10.5334/aogh.2805. PMID: 32864349; PMCID: PMC7427689.
dc.relation.referencesVides DL. Identificación molecular de la resistencia al insecticida Lambda-Cialotrina en el mosquito Aedes Aegypti de Cúcuta Norte de Santander, Colombia. [Trabajo de Pregrado]. Colombia: Universidad de Pamplona. 2018. Disponible en: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/724
dc.relation.referencesOrganización Mundial de la Salud - OMS. Procedimientos de las pruebas para la vigilancia de la resistencia a los insecticidas en los mosquitos vectores del paludismo. Ginebra. Organización mundial de la Salud. 2016. Disponible en: https://iris.who.int/handle/10665/258960.
dc.relation.referencesWorld Health Organization - WHO. Standard operating procedure for impregnation of filter papers for testing insecticide susceptibility of adult mosquitoes in WHO tube tests. World Health Organization. 2022. Disponible en: https://www.who.int/publications-detail-redirect/9789240043817
dc.relation.referencesWorld Health Organization - WHO. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. World Health Organization. 1981. Disponible en: https://iris.who.int/handle/10665/69615
dc.relation.referencesAbbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18(2):265–67. DOI:10.1093/jee/18.2.265a.
dc.relation.referencesPraulins G, McDermott DP, Spiers A, Lees RS. Reviewing the WHO Tube Bioassay Methodology: Accurate Method Reporting and Numbers of Mosquitoes Are Key to Producing Robust Results. Insects. 2022;13(6):544. doi: 10.3390/insects13060544. PMID: 35735881; PMCID: PMC9224656.
dc.relation.referencesAïzoun N, Ossè R, Azondekon R, Alia R, Oussou O, Gnanguenon V, et al. Comparison of the standard WHO susceptibility tests and the CDC bottle bioassay for the determination of insecticide susceptibility in malaria vectors and their correlation with biochemical and molecular biology assays in Benin, West Africa. Parasit Vectors. 2013;6:147. doi: 10.1186/1756-3305-6-147. PMID: 23688233; PMCID: PMC3669035.
dc.relation.referencesPeard EF, Luu C, Hageman KJ, Sepesy R, Bernhardt SA. Exploring sources of inaccuracy and irreproducibility in the CDC bottle bioassay through direct insecticide quantification. Parasit Vectors. 2024;17(1):310. doi: 10.1186/s13071-024-06369-4. PMID: 39030647; PMCID: PMC11264779.
dc.relation.referencesSene NM, Mavridis K, Ndiaye EH, Diagne CT, Gaye A, Ngom EHM, et al. Insecticide resistance status and mechanisms in Aedes aegypti populations from Senegal. PLoS Negl Trop Dis. 2021;15(5):e0009393. doi: 10.1371/journal.pntd.0009393. PMID: 33970904; PMCID: PMC8136859.
dc.relation.referencesMarcombe S, Fustec B, Cattel J, Chonephetsarath S, Thammavong P, Phommavanh N, et al. Distribution of insecticide resistance and mechanisms involved in the arbovirus vector Aedes aegypti in Laos and implication for vector control. PLoS Negl Trop Dis. 2019;13(12):e0007852. doi: 10.1371/journal.pntd.0007852. PMID: 31830027; PMCID: PMC6932826.
dc.relation.referencesAl-Amin HM, Gyawali N, Graham M, Alam MS, Lenhart A, Hugo LE, Rašić G, Beebe NW, Devine GJ. Insecticide resistance compromises the control of Aedes aegypti in Bangladesh. Pest Manag Sci. 2023 ;79(8):2846-61. doi: 10.1002/ps.7462. Epub 2023 Apr 4. PMID: 36942761; PMCID: PMC11694321.
dc.relation.referencesIshak IH, Jaal Z, Ranson H, Wondji CS. Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasit Vectors. 2015;8:181. doi: 10.1186/s13071-015-0797-2. PMID: 25888775; PMCID: PMC4377062.
dc.relation.referencesLópez-Solís AD, Castillo-Vera Al, Cisneros J, Solís-Santoyo F, Penilla-Navarro RP, Black W, et al. Resistencia a insecticidas en Aedes aegypti y Aedes albopictus (Diptera: Culicidae) de Tapachula, Chiapas, México. Salud pública Méx. 2020;62(4):439-446. https://doi.org/10.21149/10131.
dc.relation.referencesPinto J, Palomino M, Mendoza-Uribe L, Sinti C, Liebman KA, Lenhart A. Susceptibility to insecticides and resistance mechanisms in three populations of Aedes aegypti from Peru. Parasit Vectors. 2019;12(1):494. doi: 10.1186/s13071-019-3739-6. PMID: 31640810; PMCID: PMC6805503.
dc.relation.referencesCáceres L, Ayarza C, Bernal D. Evaluación de la eficacia biológica y de la sensibilidad de Aedes aegypti a los insecticidas piretroides deltametrina y ciflutrina durante el brote del virus Zika en Kuna Yala, Panamá. Biomédica. 2023;43(2):222-43.
dc.relation.referencesBisset JA, Rodríguez MM, San Martín JL, Romero JE, Montoya R. Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de El Salvador. Rev Panam Salud Publica. 2009;26(3):229-34.
dc.relation.referencesMekuria Y, Gwinn TA, Williams DC, Tidwell MA. Insecticide susceptibility of Aedes aegypti from Santo Domingo, Dominican Republic. J Am Mosq Control Assoc. 1991;7(1):69-72. PMID: 1710652.
dc.relation.referencesChapadense FG, Fernandes EK, Lima JB, Martins AJ, Silva LC, Rocha WT, et al. Phenotypic and genotypic profile of pyrethroid resistance in populations of the mosquito Aedes aegypti from Goiânia, Central West Brazil. Rev Soc Bras Med Trop. 2015;48(5):607-9. doi: 10.1590/0037-8682-0046-2015. PMID: 26516973.
dc.relation.referencesAlvarez LC, Ponce G, Saavedra-Rodriguez K, Lopez B, Flores AE. Frequency of V1016I and F1534C mutations in the voltage-gated sodium channel gene in Aedes aegypti in Venezuela. Pest Manag Sci. 2015;71(6):863-9. doi: 10.1002/ps.3846. Epub 2014 Jul 15. PMID: 24935645.
dc.relation.referencesCaicedo RG, Córdova MAL, Domínguez DML, Acosta LEF. Vigilancia de la resistencia a los insecticidas organosintéticos en Anopheles albimanus y Aedes aegypti de Ecuador 2019. Bol. Malariol. y Sal. 2021;61:109.
dc.relation.referencesBisset JA, Mondelo E, Rodríguez MM, Ricardo Y, Hurtado D, Fuentes I. Evaluación de la resistencia a insecticidas en Aedes aegypti (Diptera: Culicidae) de Argentina. Rev Cubana Med Trop. 2014;66(3):360-69.
dc.relation.referencesHarburguer L, Gonzalez PV, Zerba E. First Report of Adult Aedes aegypti (Diptera: Culicidae) Resistance to Pyrethroids in Argentina. J Med Entomol. 2022;59(1):372-375. doi: 10.1093/jme/tjab167. PMID: 34617566.
dc.relation.referencesBisset JA, Rodríguez MM, Hurtado D, Hernández H, Valdéz V, Fuentes I. Resistencia a insecticidas y sus mecanismos bioquímicos en Aedes aegypti del municipio Boyeros en los años 2010 y 2012. Rev Cubana Med Trop. 2016;68(1):82-94.
dc.relation.referencesBisset JA, Marín R, Rodríguez MM, Severson DW, Ricardo Y, French L, et al. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica. J Med Entomol. 2013;50(2):352-61. doi: 10.1603/me12064. PMID: 23540124.
dc.relation.referencesSeixas G, Grigoraki L, Weetman D, Vicente JL, Silva AC, Pinto J, et al. Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal). PLoS Negl Trop Dis. 2017;11(7):e0005799. doi: 10.1371/journal.pntd.0005799. PMID: 28742096; PMCID: PMC5542702.
dc.relation.referencesMorales F. Intensidad de la resistencia a piretroides y mutaciones KDR (V1016I, F1534C) en poblaciones de Aedes aegypti (L.) (Diptera: Culicidae) del este de México. [Tesis de Maestría]. México: Universidad Autónoma de Nuevo León, México. 2018. Disponible en: http://eprints.uanl.mx/15882/.
dc.relation.referencesRodriguez MM, Bisset JA, Milá LH, Calvo E, Diaz C, Alain L. Nivelés de resistencia a insecticidas y sus mecanismos en una cepa de Aedes aegypti de Santiago de Cuba. Rev Cubana Med Trop. 1999;51(2):83-88.
dc.relation.referencesLima EP, Paiva MH, de Araújo AP, da Silva EV, da Silva UM, de Oliveira LN, et al. Insecticide resistance in Aedes aegypti populations from Ceará, Brazil. Parasit Vectors. 2011;4:5. doi: 10.1186/1756-3305-4-5. PMID: 21226942; PMCID: PMC3035027.
dc.relation.referencesMelo-Santos MA, Varjal-Melo JJ, Araújo AP, Gomes TC, Paiva MH, Regis LN, et al. Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop. 2010;113(2):180-9. doi: 10.1016/j.actatropica.2009.10.015. Epub 2009 Oct 30. PMID: 19879849.
dc.relation.referencesBisset JA, Rodríguez MM, Piedra LA, Cruz M, Gutiérrez G, Ruiz A. Reversal of Resistance to the Larvicide Temephos in an Aedes aegypti (Diptera: Culicidae) Laboratory Strain From Cuba. J Med Entomol. 2020;57(3):801-806. doi: 10.1093/jme/tjz206. PMID: 31788689.
dc.relation.referencesPrieto AV, Suárez MF, González R. Susceptibilidad de dos poblaciones de Aedes aegypti (Diptera: Culicidae) de Cali (Valle, Colombia) a temefos (Abate) y Trifumuron (Starycide). Rev Colomb Entomol. 2002;28(2):175-8.
dc.relation.referencesMaestres R, Rey G, De Las Salas J, Vergara C, Santacoloma L, Goenaga S, et al. Susceptibilidad de Aedes aegypti (Diptera: Culicidae) a temefos en Atlántico-Colombia. Rev. Colomb. Entomol. 2009;35(2):202-205.
dc.relation.referencesMazzari M. Revisión del estado actual de la resistencia en Aedes aegypti a insecticidas utilizados en salud pública. Bol Malariol Salud Ambient. 2005;35:90-5.
dc.relation.referencesRojas W, Gónzález J, Amud M, Quiñones M, Vélez I. Evaluación de la susceptibilidad de Aedes aegypti del municipio de Barrancabermeja, Santander a los insecticidas malatión, fenitrotión, temefos, lambdacialotrina, deltametrina, permetrina, propoxur y DDT. Biomédica. 2003;23(Supl.1):35-6.
dc.relation.referencesBoletín Oficial Nº 33.752. Resolución 2158-E/2017: Importación, comercialización y uso. Prohibición. Ministerio de Salud [Citado el 04 de Julio de 2025]. Disponible en: https://www.boletinoficial.gob.ar/detalleAviso/primera/174770/20171115.
dc.relation.referencesMinisterio de la Protección Social de Colombia. Gestión para la vigilancia Entomológica y control de la Transmisión de malaria. 2010. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/gestion-vigilancia-entomologica-malaria.pdf
dc.relation.referencesHelias, Rafael. Distribución espacial de la malaria en el departamento de Córdoba en el periodo 2015 – 2018. [Tesis de pregrado]. Colombia: Universidad de Cordoba; 2020. Disponible en: https://repositorio.unicordoba.edu.co/server/api/core/bitstreams/896b7980-6b4e-4ee8-a1d8-1960d5d80482/content
dc.relation.referencesSaeung M, Ngoen-Klan R, Thanispong K, Muenworn V, Bangs MJ, Chareonviriyaphap T. Susceptibility of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to Temephos in Thailand and Surrounding Countries. J Med Entomol. 2020;57(4):1207-1220. doi: 10.1093/jme/tjaa035. PMID: 32159772.
dc.relation.referencesChino-Cantor A, Sánchez-Arroyo H, Ortega-Arenas LD, Castro-Hernández E. Insecticide Susceptibility of Aedes aegypti L. (Diptera: Culicidae) in Guerrero, Mexico. Southwest. Entomol. 2014;39(3):601-612.
dc.relation.referencesÁlvarez LC, Ponce G, Oviedo M, López B, Flores AE. Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos in Venezuela. Pest Manag Sci. 2014;70(8):1262-6. doi: 10.1002/ps.3688. Epub 2013 Dec 12. PMID: 24282132.
dc.relation.referencesRodríguez MM, Bisset JA, Ricardo Y, Pérez O, Montada D, Figueredo D, Fuentes I. Resistencia a insecticidas organofosforados en Aedes aegypti (Diptera: Culicidae) de Santiago de Cuba, 1997-2009. Rev Cubana Med Trop. 2010;62(3):217-23. PMID: 23437552.
dc.relation.referencesSusanty E, Yolazenia, Afandi D, Lesmana SD, Mislindawati, Akhyar MF, et al. Susceptibility to Malathion of Aedes aegypti Mosquito Population from Tangkerang Barat, Marpoyan Damai Distric. Nusantara Sci. and Tech. Proc. 2022;17-22.
dc.relation.referencesCampos KB, Martins AJ, Rodovalho CM, Bellinato DF, Dias LDS, Macoris MLDG, et al. Assessment of the susceptibility status of Aedes aegypti (Diptera: Culicidae) populations to pyriproxyfen and malathion in a nation-wide monitoring of insecticide resistance performed in Brazil from 2017 to 2018. Parasit Vectors. 2020;13(1):531. doi: 10.1186/s13071-020-04406-6. PMID: 33109249; PMCID: PMC7590490.
dc.relation.referencesMolina D, Bastidas DM, Figueroa LE. Malation vs. Aedes aegypti (Linnaeus) (Diptera: Culicidae) de diferentes regiones de Venezuela. Bol Mal Salud Amb. 2013;53(1):46-55.
dc.relation.referencesPing LT, Yatiman R, Gek LP. Susceptibility of adult field strains of Aedes aegypti and Aedes albopictus in Singapore to pirimiphos-methyl and permethrin. J Am Mosq Control Assoc. 2001;17(2):144-6. PMID: 11480824.
dc.relation.referencesAbu-Hasan H, Jaal Z, Ranson H, McCall P. Pyrethroid and organophosphate susceptibility status of Aedes aegypti (linnaeus) and Aedes albopictus (skuse) in penang, malaysia. Int. J. Entomol. Res. 2016;3(3):91-95.
dc.relation.referencesSeid M, Aklilu E, Animut A. Susceptibility status of Aedes aegypti (Diptera: Culicidae) to public health insecticides in Southern Afar Region, Ethiopia. PLoS One. 2024;19(8):e0309335. doi: 10.1371/journal.pone.0309335. PMID: 39178289; PMCID: PMC11343450.
dc.relation.referencesBastidas D, Figueroa L, Pérez E, Molina D. Estado de la resistencia a insecticidas organosintéticos de Aedes aegypti de Coro, estado Falcon, Venezuela. Bol Mal Salud Amb. 2015;55(2):173-183.
dc.relation.referencesDusfour I, Thalmensy V, Gaborit P, Issaly J, Carinci R, Girod R. Multiple insecticide resistance in Aedes aegypti (Diptera: Culicidae) populations compromises the effectiveness of dengue vector control in French Guiana. Mem Inst Oswaldo Cruz. 2011;106(3):346-52. doi: 10.1590/s0074-02762011000300015. PMID: 21655824.
dc.relation.referencesLima JB, Da-Cunha MP, Da Silva RC, Galardo AK, Soares Sda S, Braga IA, et al. Resistance of Aedes aegypti to organophosphates in several municipalities in the State of Rio de Janeiro and Espírito Santo, Brazil. Am J Trop Med Hyg. 2003;68(3):329-33. PMID: 12685640.
dc.relation.referencesPai HH, Chang CY, Lin KC, Hsu EL. Rapid insecticide resistance bioassays for three major urban insects in Taiwan. Parasit Vectors. 2023;16(1):447. doi: 10.1186/s13071-023-06055-x. PMID: 38042818; PMCID: PMC10693703.
dc.relation.referencesO'Reilly AO, Khambay BP, Williamson MS, Field LM, Wallace BA, Davies TG. Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem J. 2006;396(2):255-63. doi: 10.1042/BJ20051925. PMID: 16475981; PMCID: PMC1462714.
dc.relation.referencesViloria J. La economía ganadera en el departamento de Córdoba". Banco de la República Colombia. Banco de la República Colombia. 2004. Disponible en: https://repositorio.banrep.gov.co/server/api/core/bitstreams/3c113ecf-2170-45d2-8fbd-a8327b8f1ec8/content
dc.relation.referencesAmador C, Luna J, Puello E. Prácticas empleadas por fumigadores de plaguicidas del medio y bajo Sinú departamento de Córdoba. Temas Agrarios. 2017;22(1):29-40.
dc.relation.referencesArteaga G, Marrugo JY, Sanchez J. Plaguicidas en canales de riego del distrito de La Doctrina (Córdoba-Colombia). Temas Agrarios. 2018;23(1):20-36. https://doi.org/10.21897/rta.v23i1.1143.
dc.relation.referencesSmith LB, Sears C, Sun H, Mertz RW, Kasai S, Scott JG. CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegypti in the presence and absence of kdr. Pestic Biochem Physiol. 2019;160:119-126. doi: 10.1016/j.pestbp.2019.07.011. Epub 2019 Jul 26. PMID: 31519246.
dc.relation.referencesBrogdon WG, Hobbs JH, St Jean Y, Jacques JR, Charles LB. Microplate assay analysis of reduced fenitrothion susceptibility in Haitian Anopheles albimanus. J Am Mosq Control Assoc. 1988;4(2):152-8. PMID: 3193111.
dc.relation.referencesBrogdon WG, Beach RF, Stewart JM, Castanaza L. Microplate assay analysis of the distribution of organophosphate and carbamate resistance in Guatemalan Anopheles albimanus. Bull World Health Organ. 1988;66(3):339-46. PMID: 3262440; PMCID: PMC2491122.
dc.relation.referencesBrogdon WG, McAllister JC, Vulule J. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J Am Mosq Control Assoc. 1997;13(3):233-7. PMID: 9383763.
dc.relation.referencesBrogdon WG. Biochemical resistance detection: an alternative to bioassay. Parasitol Today. 1989;5(2):56-60. doi: 10.1016/0169-4758(89)90192-0. PMID: 15463180.
dc.relation.referencesBrogdon WG, Barber AM. Microplate assay of glutathione s-transferase activity for resistance detection in single-mosquito triturates. Comp Biochem Physiol B. 1990;96(2):339-42. doi: 10.1016/0305-0491(90)90385-7. PMID: 2361364.
dc.relation.referencesBrogdon WG. Mosquito protein microassay. I. Protein determinations from small portions of single-mosquito homogenates. Comp Biochem Physiol B. 1984;79(3):457-9. doi: 10.1016/0305-0491(84)90405-x. PMID: 6509934.
dc.relation.referencesBrogdon WG. Mosquito protein microassay. II. Modification for potential field use. Comp Biochem Physiol B. 1984;79(3):461-4. doi: 10.1016/0305-0491(84)90406-1. PMID: 6509935.
dc.relation.referencesValle D, Montella IR. Quantification methodology for enzyme activity related to insecticide resistance in Aedes aegypti. Brasil. Ministério da Saúde. Fundação Oswaldo Cruz. 2006. 128 p. Disponible en: http://bvsms.saude.gov.br/bvs/publicacoes/manual_novo_protocolo_dengue.pdf
dc.relation.referencesHemingway, J. Techniques to detect insecticide resistance mechanisms (field and laboratory manual). 1998. WHO/CDC/CPC/MAL/98.6, World Health Organization, Geneva. Disponible en: https://iris.who.int/bitstream/handle/10665/83780/WHO_CDS_CPC_MAL_98.6.pdf?sequence=1.
dc.relation.referencesPu J, Chung H. New and emerging mechanisms of insecticide resistance. Curr Opin Insect Sci. 2024;63:101184. doi: 10.1016/j.cois.2024.101184. Epub 2024 Mar 6. PMID: 38458436.
dc.relation.referencesCruse C, Moural TW, Zhu F. Dynamic Roles of Insect Carboxyl/Cholinesterases in Chemical Adaptation. Insects. 2023;14(2):194. doi: 10.3390/insects14020194. PMID: 36835763; PMCID: PMC9958613.
dc.relation.referencesSolís-Santoyo F, Rodríguez AD, Black W, Saavedra-Rodríguez K, Sánchez-Guillén D, Castillo-Vera A, et al. Current enzyme-mediated insecticide resistance status of Aedes aegypti populations from a dengue-endemic city in southern Mexico.
dc.relation.referencesGambarra WP, Martins WF, de Lucena Filho ML, de Albuquerque IM, Apolinário OK, Beserra EB. Spatial distribution and esterase activity in populations of Aedes (Stegomyia) aegypti (Linnaeus) (Diptera: Culicidae) resistant to temephos. Rev Soc Bras Med Trop. 2013;46(2):178-84. doi: 10.1590/0037-8682-1727-2013. PMID: 23740072.
dc.relation.referencesLópez-Monroy B, Flores-Suarez AE, Ponce-García G. Pyrethroid Resistance in Culex quinquefasciatus Say Strains from Nuevo Leon, Mexico. Southwest. Entomol. 2011;36(4):401-411.
dc.relation.referencesBrogdon WG, Barber AM. Fenitrothion-deltamethrin cross-resistance conferred by esterases in Guatemalan Anopheles albimanus. Pest. Biochem. Physiol. 1990;37(2):130–39. https://doi.org/10.1016/0048-3575(90)90118-L.
dc.relation.referencesEpelboin Y, Wang L, Giai Gianetto Q, Choumet V, Gaborit P, Issaly J, et al. CYP450 core involvement in multiple resistance strains of Aedes aegypti from French Guiana highlighted by proteomics, molecular and biochemical studies. PLoS One. 2021;16(1):e0243992. doi: 10.1371/journal.pone.0243992. PMID: 33428654; PMCID: PMC7799788.
dc.relation.referencesMacoris MDL, Martins AJ, Andrighetti MTM, Lima JBP, Valle D. Pyrethroid resistance persists after ten years without usage against Aedes aegypti in governmental campaigns: Lessons from São Paulo State, Brazil. PLoS Negl Trop Dis. 2018;12(3): e0006390. https://doi.org/10.1371/journal.pntd.0006390.
dc.relation.referencesMejía A, Mejía-Jaramillo AM, Fernandez GJ, Granada Y, Lowenberger C, Triana-Chávez O. Long-Term Exposure to Lambda-Cyhalothrin Reveals Novel Genes Potentially Involved in Aedes aegypti Insecticide Resistance. Insects. 2025;16(2):106. doi: 10.3390/insects16020106. PMID: 40003736; PMCID: PMC11855735.
dc.relation.referencesFeyereisen R. 8-Insect CYP Genes and P450 Enzymes. Insect Biochem Mol Biol. 2012:236–316. doi:10.1016/b978-0-12-384747-8.10008-x.
dc.relation.referencesFaucon F, Gaude T, Dusfour I, Navratil V, Corbel V, Juntarajumnong et al. In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: An integrated next-generation sequencing approach. PLoS Negl Trop Dis. 2017;11(4):e0005526. doi: 10.1371/journal.pntd.0005526. PMID: 28379969; PMCID: PMC5393893.
dc.relation.referencesSaavedra-Rodriguez K, Beaty M, Lozano-Fuentes S, Denham S, Garcia-Rejon J, Reyes-Solis G, et al. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico. Am J Trop Med Hyg. 2015;92(1):201-9. doi: 10.4269/ajtmh.14-0277. Epub 2014 Nov 4. PMID: 25371186; PMCID: PMC4347380.
dc.relation.referencesSaavedra-Rodriguez K, Campbell CL, Lozano S, Penilla-Navarro P, Lopez-Solis A, Solis-Santoyo F, et al. Permethrin resistance in Aedes aegypti: Genomic variants that confer knockdown resistance, recovery, and death. PLoS Genet. 2021;17(6):e1009606. doi: 10.1371/journal.pgen.1009606. PMID: 34138859; PMCID: PMC8211209.
dc.relation.referencesFaucon F, Dusfour I, Gaude T, Navratil V, Boyer F, Chandre F, et al. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Res. 2015;25(9):1347-59. doi: 10.1101/gr.189225.115. Epub 2015 Jul 23. PMID: 26206155; PMCID: PMC4561493.
dc.relation.referencesDusfour I, Zorrilla P, Guidez A, Issaly J, Girod R, Guillaumot L, et al. Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide. PLoS Negl Trop Dis. 2015;9(11):e0004226. doi: 10.1371/journal.pntd.0004226. PMID: 26588076; PMCID: PMC4654492.
dc.relation.referencesKasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Negl Trop Dis. 2014;8:e2948.
dc.relation.referencesYanola J, Somboon P, Walton C, Nachaiwieng W, Somwang P, Prapanthadara LA. High-throughput assays for detection of the F1534C mutation in the voltage-gated sodium channel gene in permethrin-resistant Aedes aegypti and the distribution of this mutation throughout Thailand. Trop Med Int Health. 2011;16(4):501-9. doi: 10.1111/j.1365-3156.2011.02725.x. Epub 2011 Feb 22. PMID: 21342372.
dc.relation.referencesHaddi K, Tomé HVV, Du Y, Valbon WR, Nomura Y, Martins GF, et al. Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti: a potential challenge for mosquito control. Sci Rep. 2017;7:46549. doi: 10.1038/srep46549. PMID: 28422157; PMCID: PMC5396194.
dc.relation.referencesKumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018;35(6):1547-1549. doi: 10.1093/molbev/msy096. PMID: 29722887; PMCID: PMC5967553.
dc.relation.referencesBrengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P, et al. Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med Vet Entomol. 2003;17(1):87-94. doi: 10.1046/j.1365-2915.2003.00412.x. PMID: 12680930.
dc.relation.referencesKushwah RBS, Kaur T, Dykes CL, Ravi Kumar H, Kapoor N, Singh OP. A new knockdown resistance (kdr) mutation, F1534L, in the voltage-gated sodium channel of Aedes aegypti, co-occurring with F1534C, S989P and V1016G. Parasit Vectors. 2020;13(1):327. doi: 10.1186/s13071-020-04201-3. PMID: 32600469; PMCID: PMC7325290.
dc.relation.referencesLien NTK, Ngoc NTH, Hien NT, Hoang NH, Binh NTH. Two novel mutations in the voltage-gated sodium channel associated with knockdown resistance (kdr) in the dengue vector Aedes aegypti in Vietnam. J Vector Ecol. 2018;43(1):184-189. doi: 10.1111/jvec.12298. PMID: 29757514.
dc.relation.referencesSrisawat R, Komalamisra N, Apiwathnasorn C, Paeporn P, Roytrakul S, Rongsriyam Y, Eshita Y. Field-collected permethrin-resistant Aedes aegypti from central Thailand contain point mutations in the domain IIS6 of the sodium channel gene (KDR). Southeast Asian J Trop Med Public Health. 2012;43(6):1380-6. PMID: 23413701.
dc.relation.referencesSiller Q, Ponce G, Lozano S, Flores AE. Update on the frequency of Ile1016 mutation in voltage-gated sodium channel gene of Aedes aegypti in Mexico. J Am Mosq Control Assoc. 2011;27(4):357-62. doi: 10.2987/11-6149.1. PMID: 22329266.
dc.relation.referencesVera-Maloof FZ, Saavedra-Rodriguez K, Elizondo-Quiroga AE, Lozano-Fuentes S, Black WC. Coevolution of the Ile1,016 and Cys1,534 Mutations in the Voltage Gated Sodium Channel Gene of Aedes aegypti in Mexico. PLoS Negl Trop Dis. 2015;9(12):e0004263. doi: 10.1371/journal.pntd.0004263. PMID: 26658798; PMCID: PMC4684211.
dc.relation.referencesVillanueva-Segura OK, Ontiveros-Zapata KA, Lopez-Monroy B, Ponce-Garcia G, Gutierrez-Rodriguez SM, Davila-Barboza JA, et al. Distribution and Frequency of the kdr Mutation V410L in Natural Populations of Aedes aegypti (L.) (Diptera: Culicidae) From Eastern and Southern Mexico. J Med Entomol. 2020;57(1):218-223. doi: 10.1093/jme/tjz148. PMID: 31504686.
dc.relation.referencesContreras-Perera Y, Ponce-Garcia G, Villanueva-Segura K, Lopez-Monroy B, Rodríguez-Sanchez IP, Lenhart A, et al. Impact of deltamethrin selection on kdr mutations and insecticide detoxifying enzymes in Aedes aegypti from Mexico. Parasit Vectors. 2020;13(1):224. doi: 10.1186/s13071-020-04093-3. PMID: 32375862; PMCID: PMC7201803.
dc.relation.referencesMelo Costa M, Campos KB, Brito LP, Roux E, Melo Rodovalho C, Bellinato DF, et al. Kdr genotyping in Aedes aegypti from Brazil on a nation-wide scale from 2017 to 2018. Sci Rep. 2020;10(1):13267. doi: 10.1038/s41598-020-70029-7. PMID: 32764661; PMCID: PMC7414026.
dc.relation.referencesDavid MR, Garcia GA, Valle D, Maciel-de-Freitas R. Insecticide Resistance and Fitness: The Case of Four Aedes aegypti Populations from Different Brazilian Regions. Biomed Res Int. 2018; 2018:6257860. doi: 10.1155/2018/6257860. PMID: 30402487; PMCID: PMC6198578.
dc.relation.referencesHayd RLN, Carrara L, de Melo Lima J, de Almeida NCV, Lima JBP, Martins AJ. Evaluation of resistance to pyrethroid and organophosphate adulticides and kdr genotyping in Aedes aegypti populations from Roraima, the northernmost Brazilian State. Parasit Vectors. 2020;13(1):264. doi: 10.1186/s13071-020-04127-w. PMID: 32434575; PMCID: PMC7238546.
dc.relation.referencesRahman RU, Cosme LV, Costa MM, Carrara L, Lima JBP, Martins AJ. Insecticide resistance and genetic structure of Aedes aegypti populations from Rio de Janeiro State, Brazil. PLoS Negl Trop Dis. 2021;15(2):e0008492. doi: 10.1371/journal.pntd.0008492. PMID: 33591988; PMCID: PMC7909666.
dc.relation.referencesZardkoohi A, Castañeda D, Lol JC, Castillo C, Lopez F, Marín Rodriguez R, Padilla N. Co-occurrence of kdr Mutations V1016I and F1534C and Its Association With Phenotypic Resistance to Pyrethroids in Aedes aegypti (Diptera: Culicidae) Populations From Costa Rica. J Med Entomol. 2020;57(3):830-836. doi: 10.1093/jme/tjz241. PMID: 31891404.
dc.relation.referencesPonce-García G, Del Río-Galvan S, Barrera R, Saavedra-Rodriguez K, Villanueva-Segura K, Felix G, et al. Knockdown Resistance Mutations in Aedes aegypti (Diptera: Culicidae) From Puerto Rico. J Med Entomol. 2016;53(6):1410-1414. doi: 10.1093/jme/tjw115. Epub 2016 Aug 4. PMID: 27493252.
dc.relation.referencesEstep AS, Sanscrainte ND, Okech BA. Aedes aegypti Knockdown Resistance Mutations and Dengue Virus Infection in Haiti. J Am Mosq Control Assoc. 2024;40(2):102-108. doi: 10.2987/23-7160. PMID: 38547924.
dc.relation.referencesHernandez JR, Liu S, Fredregill CL, Pietrantonio PV. Impact of the V410L kdr mutation and co-occurring genotypes at kdr sites 1016 and 1534 in the VGSC on the probability of survival of the mosquito Aedes aegypti (L.) to Permanone in Harris County, TX, USA. PLoS Negl Trop Dis. 2023;17(1):e0011033. doi: 10.1371/journal.pntd.0011033. PMID: 36689414; PMCID: PMC9870149.
dc.relation.referencesRubio-Palis Y, Dzuris N, Sandi C, Vizcaino-Cabarrus RL, Corredor-Medina C, González JA, Lenhart AE. Insecticide resistance levels and associated mechanisms in three Aedes aegypti populations from Venezuela. Mem Inst Oswaldo Cruz. 2023;118:e220210. doi: 10.1590/0074-02760220210. PMID: 37377253; PMCID: PMC10292823.
dc.relation.referencesPenilla-Navarro P, Solis-Santoyo F, Lopez-Solis A, Rodriguez AD, Vera-Maloof F, Lozano S, et al. Pyrethroid susceptibility reversal in Aedes aegypti: A longitudinal study in Tapachula, Mexico. PLoS Negl Trop Dis. 2024;18(1):e0011369. doi: 10.1371/journal.pntd.0011369. PMID: 38166129; PMCID: PMC10786364.
dc.relation.referencesChen M, Du Y, Wu S, Nomura Y, Zhu G, Zhorov BS, Dong K. Molecular evidence of sequential evolution of DDT- and pyrethroid-resistant sodium channel in Aedes aegypti. PLoS Negl Trop Dis. 2019;13(6):e0007432. doi: 10.1371/journal.pntd.0007432. PMID: 31158225; PMCID: PMC6564045.
dc.relation.referencesFay JV, Espinola SL, Boaglio MV, Blariza MJ, Lopez K, Zelaya F, et al. Pyrethroid genetic resistance in the dengue vector (Aedes aegypti) in Posadas, Argentina. Front Public Health. 2023;11:1166007. doi: 10.3389/fpubh.2023.1166007. PMID: 37181710; PMCID: PMC10174043.
dc.relation.referencesSaavedra-Rodriguez K, Maloof FV, Campbell CL, Garcia-Rejon J, Lenhart A, Penilla P, et al. Parallel evolution of vgsc mutations at domains IS6, IIS6 and IIIS6 in pyrethroid resistant Aedes aegypti from Mexico. Sci Rep. 2018;8(1):6747. doi: 10.1038/s41598-018-25222-0. PMID: 29712956; PMCID: PMC5928250.
dc.relation.referencesSombié A, Saiki E, Yaméogo F, Sakurai T, Shirozu T, Fukumoto S, et al. High frequencies of F1534C and V1016I kdr mutations and association with pyrethroid resistance in Aedes aegypti from Somgandé (Ouagadougou), Burkina Faso. Trop Med Health. 2019;47:2. doi: 10.1186/s41182-018-0134-5. PMID: 30787670; PMCID: PMC6318976.
dc.relation.referencesHasmiwati H, Rusjdi SR, Nofita E. Detection of Ace-1 gene with insecticides resistance in Aedes aegypti populations from DHF-endemic areas in Padang, Indonesia. Biodiversitas. 2018;19(1):31-36.
dc.relation.referencesRahayu R, Melta D, Hasmiwati. Detection of Ace-1 Mutation in Temephos-Resistant Aedes aegypti L. in West Sumatra, Indonesia. Pak J Biol Sci. 2022;25(9):816-821. doi: 10.3923/pjbs.2022.816.821. PMID: 36098083.
dc.relation.referencesGutiérrez S. Mutaciones asociadas a esterasas relacionadas con la resistencia a insecticidas organofosforados en Aedes aegypti (L.). [Tesis de Maestría]. México: Universidad Autónoma de Nuevo León, México. 2016. Disponible en: http://eprints.uanl.mx/13877/
dc.relation.referencesSamal RR, Panmei K, Lanbiliu P, Kumar S. Metabolic detoxification and ace-1 target site mutations associated with acetamiprid resistance in Aedes aegypti L. Front Physiol. 2022;13:988907. doi: 10.3389/fphys.2022.988907. PMID: 36111159; PMCID: PMC9468370.
dc.relation.referencesWeill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc R Soc Lond B. 2002;269:2007–2016.
dc.relation.referencesWeill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, Raymond M. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol. 2004;13(1):1-7. doi: 10.1111/j.1365-2583.2004.00452.x. PMID: 14728661.
dc.relation.referencesMuthusamy R, Shivakumar MS. Involvement of metabolic resistance and F1534C kdr mutation in the pyrethroid resistance mechanisms of Aedes aegypti in India. Acta Trop. 2015;148:137-41. doi: 10.1016/j.actatropica.2015.04.026. Epub 2015 May 2. PMID: 25944353.
dc.relation.referencesSilva AP, Santos JM, Martins AJ. Mutations in the voltage-gated sodium channel gene of anophelines and their association with resistance to pyrethroids - a review. Parasit Vectors. 2014;7(7):450. doi: 10.1186/1756-3305-7-450. PMID: 25292318; PMCID: PMC4283120.
dc.relation.referencesHancock PA, Ochomo E, Messenger LA. Genetic surveillance of insecticide resistance in African Anopheles populations to inform malaria vector control. Trends Parasitol. 2024;40(7):604-618. doi: 10.1016/j.pt.2024.04.016. Epub 2024 May 16. PMID: 38760258.
dc.relation.referencesCatteruccia F. Malaria-carrying mosquitoes get a leg up on insecticides. Nature. 2020;577(7790):319-320. doi: 10.1038/d41586-019-03728-5. PMID: 31937951.
dc.relation.referencesHe L, Li T, Zhang L, Liu N. Multiple sodium channel variants in the mosquito Culex quinquefasciatus. Int J Biol Sci. 2012;8(10):1291-309. doi: 10.7150/ijbs.4966. Epub 2012 Oct 25. PMID: 23139629; PMCID: PMC3492789.
dc.relation.referencesStevenson BJ, Bibby J, Pignatelli PM, Muangnoicharoen S, O’Neill PM, Liand L-Y, et al. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol. 2011;41:492e502.
dc.relation.referencesMitchell SN, Stevenson BJ, M€ uller P, Wilding CS, Egyir-Yawson A, Field SG, et al. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci USA. 2012;109:6147e52.
dc.relation.referencesRiaz MA, Chandor-Proust A, Dauphin-Villemant C, Poupardin R, Jones CM, Strode C, et al. Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti. Aquat Toxicol. 2013;126: 326e37.
dc.relation.referencesKasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, Tomita T. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Negl Trop Dis. 2014;8(6):e2948. doi: 10.1371/journal.pntd.0002948. PMID: 24945250; PMCID: PMC4063723.
dc.relation.referencesHardstone MC, Scott JG. A review of the interactions between multiple insecticide resistance loci. Pestic Biochem Physiol. 2010;97:123e8.
dc.relation.referencesStevenson BJ, Pignatelli P, Nikou D, Paine MJI. Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance. PLoS Negl Trop Dis. 2012;6:e1595.
dc.relation.referencesVontas J, Katsavou E, Mavridis K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. Pestic Biochem Physiol. 2020;170:104666. doi: 10.1016/j.pestbp.2020.104666.
dc.relation.referencesPavlidi N, Vontas J, Van Leeuwen T. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr Opin Insect Sci. 2018;27:97-102. doi: 10.1016/j.cois.2018.04.007.
dc.relation.referencesEnayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005;14(1):3-8. doi: 10.1111/j.1365-2583.2004.00529.x. PMID: 15663770.
dc.relation.referencesLabbé P, David J, Alout H, Milesi P, Pasteur N, Weill M. Evolution of resistance to insecticide in disease vectors. Genetics and evolution of infectious diseases, Academic press, Elsevier, 2017, 9780127999425. 10.1016/B978-0-12-799942-5.00014-7. hal-02786153.
dc.relation.referencesNorris LC, Norris DE. Insecticide resistance in Culex quinquefasciatus mosquitoes after the introduction of insecticide-treated bed nets in Macha, Zambia. J Vector Ecol. 2011;36(2):411-20. doi: 10.1111/j.1948-7134.2011.00182.x.
dc.relation.referencesPoupardin R, Srisukontarat W, Yunta C, Ranson H. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti. PLoS Negl Trop Dis. 2014;8(3):e2743. doi: 10.1371/journal.pntd.0002743.
dc.relation.referencesGrigoraki L, Lagnel J, Kioulos I, Kampouraki A, Morou E, Labbé P, Weill M, Vontas J. Transcriptome Profiling and Genetic Study Reveal Amplified Carboxylesterase Genes Implicated in Temephos Resistance, in the Asian Tiger Mosquito Aedes albopictus. PLoS Negl Trop Dis. 2015;9(5):e0003771. doi: 10.1371/journal.pntd.0003771.
dc.relation.referencesZhong D, Degefa T, Zhou G, Lee MC, Wang C, Chen J, Yewhalaw D, Yan G. Esterase-Mediated Pyrethroid Resistance in Populations of an Invasive Malaria Vector Anopheles stephensi from Ethiopia. Genes (Basel). 2024;15(12):1603. doi: 10.3390/genes15121603. PMID: 39766870; PMCID: PMC11675767.
dc.relation.referencesSamal RR, Kumar S. Cuticular thickening associated with insecticide resistance in dengue vector, Aedes aegypti L. Int J Trop Insect Sci. 2021;41:809–820. https://doi.org/10.1007/s42690-020-00271-z.
dc.relation.referencesJacobs E, Chrissian C, Rankin-Turner S, Wear M, Camacho E, Scott JG, Broderick NA, McMeniman CJ, Stark RE, Casadevall A. Cuticular profiling of insecticide resistant Aedes aegypti. Sci Rep. 2023;13(1):10154. doi: 10.1038/s41598-023-36926-3.
dc.relation.referencesIngham VA, Anthousi A, Douris V, Harding NJ, Lycett G, Morris M, Vontas J, Ranson H. A sensory appendage protein protects malaria vectors from pyrethroids. Nature. 2020;577(7790):376-380. doi: 10.1038/s41586-019-1864-1.
dc.relation.referencesScates SS, O'Neal ST, Anderson TD. Bacteria-mediated modification of insecticide toxicity in the yellow fever mosquito, Aedes aegypti. Pestic Biochem Physiol. 2019;161:77-85. doi: 10.1016/j.pestbp.2019.07.016. Epub 2019 Aug 2. PMID: 31685200.
dc.relation.referencesArévalo-Cortés A, Mejia-Jaramillo AM, Granada Y, Coatsworth H, Lowenberger C, Triana-Chavez O. The Midgut Microbiota of Colombian Aedes aegypti Populations with Different Levels of Resistance to the Insecticide Lambda-cyhalothrin. Insects. 2020;11(9):584. doi: 10.3390/insects11090584. PMID: 32882829; PMCID: PMC7565445.
dc.relation.referencesWang H, Liu H, Peng H, Wang Y, Zhang C, Guo X, Wang H, Liu L, Lv W, Cheng P, Gong M. A symbiotic gut bacterium enhances Aedes albopictus resistance to insecticide. PLoS Negl Trop Dis. 2022;16(3):e0010208. doi: 10.1371/journal.pntd.0010208. PMID: 35245311; PMCID: PMC8896681.
dc.relation.referencesBarnard K, Jeanrenaud ACSN, Brooke BD, Oliver SV. The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Sci Rep. 2019;9(1):9117. doi: 10.1038/s41598-019-45499-z. PMID: 31235803; PMCID: PMC6591418.
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsAedes aegyptieng
dc.subject.keywordsInsecticide resistanceeng
dc.subject.keywordsKdr mutationseng
dc.subject.keywordsDetoxification enzymeseng
dc.subject.keywordsCórdobaeng
dc.subject.proposalAedes aegyptispa
dc.subject.proposalResistencia a insecticidasspa
dc.subject.proposalMutaciones kdrspa
dc.subject.proposalEnzimas de detoxificaciónspa
dc.subject.proposalCórdobaspa
dc.titleResistencia a insecticidas en Aedes aegypti del departamento de Córdoba: estatus, mecanismos moleculares y bioquímicos e implicaciones en salud públicaspa
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
AtenciaPinedaMariaClaudia .pdf
Tamaño:
1.69 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
382.84 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones